base.cc revision 12843:d2ab5af49985
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheVerbose.hh"
56#include "mem/cache/mshr.hh"
57#include "mem/cache/prefetch/base.hh"
58#include "mem/cache/queue_entry.hh"
59#include "params/BaseCache.hh"
60#include "sim/core.hh"
61
62class BaseMasterPort;
63class BaseSlavePort;
64
65using namespace std;
66
67BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
68                                          BaseCache *_cache,
69                                          const std::string &_label)
70    : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
71      blocked(false), mustSendRetry(false),
72      sendRetryEvent([this]{ processSendRetry(); }, _name)
73{
74}
75
76BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
77    : MemObject(p),
78      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
79      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
80      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
81      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
82      tags(p->tags),
83      prefetcher(p->prefetcher),
84      prefetchOnAccess(p->prefetch_on_access),
85      writebackClean(p->writeback_clean),
86      tempBlockWriteback(nullptr),
87      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
88                                    name(), false,
89                                    EventBase::Delayed_Writeback_Pri),
90      blkSize(blk_size),
91      lookupLatency(p->tag_latency),
92      dataLatency(p->data_latency),
93      forwardLatency(p->tag_latency),
94      fillLatency(p->data_latency),
95      responseLatency(p->response_latency),
96      numTarget(p->tgts_per_mshr),
97      forwardSnoops(true),
98      clusivity(p->clusivity),
99      isReadOnly(p->is_read_only),
100      blocked(0),
101      order(0),
102      noTargetMSHR(nullptr),
103      missCount(p->max_miss_count),
104      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
105      system(p->system)
106{
107    // the MSHR queue has no reserve entries as we check the MSHR
108    // queue on every single allocation, whereas the write queue has
109    // as many reserve entries as we have MSHRs, since every MSHR may
110    // eventually require a writeback, and we do not check the write
111    // buffer before committing to an MSHR
112
113    // forward snoops is overridden in init() once we can query
114    // whether the connected master is actually snooping or not
115
116    tempBlock = new TempCacheBlk(blkSize);
117
118    tags->setCache(this);
119    if (prefetcher)
120        prefetcher->setCache(this);
121}
122
123BaseCache::~BaseCache()
124{
125    delete tempBlock;
126}
127
128void
129BaseCache::CacheSlavePort::setBlocked()
130{
131    assert(!blocked);
132    DPRINTF(CachePort, "Port is blocking new requests\n");
133    blocked = true;
134    // if we already scheduled a retry in this cycle, but it has not yet
135    // happened, cancel it
136    if (sendRetryEvent.scheduled()) {
137        owner.deschedule(sendRetryEvent);
138        DPRINTF(CachePort, "Port descheduled retry\n");
139        mustSendRetry = true;
140    }
141}
142
143void
144BaseCache::CacheSlavePort::clearBlocked()
145{
146    assert(blocked);
147    DPRINTF(CachePort, "Port is accepting new requests\n");
148    blocked = false;
149    if (mustSendRetry) {
150        // @TODO: need to find a better time (next cycle?)
151        owner.schedule(sendRetryEvent, curTick() + 1);
152    }
153}
154
155void
156BaseCache::CacheSlavePort::processSendRetry()
157{
158    DPRINTF(CachePort, "Port is sending retry\n");
159
160    // reset the flag and call retry
161    mustSendRetry = false;
162    sendRetryReq();
163}
164
165Addr
166BaseCache::regenerateBlkAddr(CacheBlk* blk)
167{
168    if (blk != tempBlock) {
169        return tags->regenerateBlkAddr(blk);
170    } else {
171        return tempBlock->getAddr();
172    }
173}
174
175void
176BaseCache::init()
177{
178    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
179        fatal("Cache ports on %s are not connected\n", name());
180    cpuSidePort.sendRangeChange();
181    forwardSnoops = cpuSidePort.isSnooping();
182}
183
184BaseMasterPort &
185BaseCache::getMasterPort(const std::string &if_name, PortID idx)
186{
187    if (if_name == "mem_side") {
188        return memSidePort;
189    }  else {
190        return MemObject::getMasterPort(if_name, idx);
191    }
192}
193
194BaseSlavePort &
195BaseCache::getSlavePort(const std::string &if_name, PortID idx)
196{
197    if (if_name == "cpu_side") {
198        return cpuSidePort;
199    } else {
200        return MemObject::getSlavePort(if_name, idx);
201    }
202}
203
204bool
205BaseCache::inRange(Addr addr) const
206{
207    for (const auto& r : addrRanges) {
208        if (r.contains(addr)) {
209            return true;
210       }
211    }
212    return false;
213}
214
215void
216BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
217{
218    if (pkt->needsResponse()) {
219        pkt->makeTimingResponse();
220        // @todo: Make someone pay for this
221        pkt->headerDelay = pkt->payloadDelay = 0;
222
223        // In this case we are considering request_time that takes
224        // into account the delay of the xbar, if any, and just
225        // lat, neglecting responseLatency, modelling hit latency
226        // just as lookupLatency or or the value of lat overriden
227        // by access(), that calls accessBlock() function.
228        cpuSidePort.schedTimingResp(pkt, request_time, true);
229    } else {
230        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
231                pkt->print());
232
233        // queue the packet for deletion, as the sending cache is
234        // still relying on it; if the block is found in access(),
235        // CleanEvict and Writeback messages will be deleted
236        // here as well
237        pendingDelete.reset(pkt);
238    }
239}
240
241void
242BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
243                               Tick forward_time, Tick request_time)
244{
245    if (mshr) {
246        /// MSHR hit
247        /// @note writebacks will be checked in getNextMSHR()
248        /// for any conflicting requests to the same block
249
250        //@todo remove hw_pf here
251
252        // Coalesce unless it was a software prefetch (see above).
253        if (pkt) {
254            assert(!pkt->isWriteback());
255            // CleanEvicts corresponding to blocks which have
256            // outstanding requests in MSHRs are simply sunk here
257            if (pkt->cmd == MemCmd::CleanEvict) {
258                pendingDelete.reset(pkt);
259            } else if (pkt->cmd == MemCmd::WriteClean) {
260                // A WriteClean should never coalesce with any
261                // outstanding cache maintenance requests.
262
263                // We use forward_time here because there is an
264                // uncached memory write, forwarded to WriteBuffer.
265                allocateWriteBuffer(pkt, forward_time);
266            } else {
267                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
268                        pkt->print());
269
270                assert(pkt->req->masterId() < system->maxMasters());
271                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
272
273                // We use forward_time here because it is the same
274                // considering new targets. We have multiple
275                // requests for the same address here. It
276                // specifies the latency to allocate an internal
277                // buffer and to schedule an event to the queued
278                // port and also takes into account the additional
279                // delay of the xbar.
280                mshr->allocateTarget(pkt, forward_time, order++,
281                                     allocOnFill(pkt->cmd));
282                if (mshr->getNumTargets() == numTarget) {
283                    noTargetMSHR = mshr;
284                    setBlocked(Blocked_NoTargets);
285                    // need to be careful with this... if this mshr isn't
286                    // ready yet (i.e. time > curTick()), we don't want to
287                    // move it ahead of mshrs that are ready
288                    // mshrQueue.moveToFront(mshr);
289                }
290            }
291        }
292    } else {
293        // no MSHR
294        assert(pkt->req->masterId() < system->maxMasters());
295        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
296
297        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
298            // We use forward_time here because there is an
299            // writeback or writeclean, forwarded to WriteBuffer.
300            allocateWriteBuffer(pkt, forward_time);
301        } else {
302            if (blk && blk->isValid()) {
303                // If we have a write miss to a valid block, we
304                // need to mark the block non-readable.  Otherwise
305                // if we allow reads while there's an outstanding
306                // write miss, the read could return stale data
307                // out of the cache block... a more aggressive
308                // system could detect the overlap (if any) and
309                // forward data out of the MSHRs, but we don't do
310                // that yet.  Note that we do need to leave the
311                // block valid so that it stays in the cache, in
312                // case we get an upgrade response (and hence no
313                // new data) when the write miss completes.
314                // As long as CPUs do proper store/load forwarding
315                // internally, and have a sufficiently weak memory
316                // model, this is probably unnecessary, but at some
317                // point it must have seemed like we needed it...
318                assert((pkt->needsWritable() && !blk->isWritable()) ||
319                       pkt->req->isCacheMaintenance());
320                blk->status &= ~BlkReadable;
321            }
322            // Here we are using forward_time, modelling the latency of
323            // a miss (outbound) just as forwardLatency, neglecting the
324            // lookupLatency component.
325            allocateMissBuffer(pkt, forward_time);
326        }
327    }
328}
329
330void
331BaseCache::recvTimingReq(PacketPtr pkt)
332{
333    // anything that is merely forwarded pays for the forward latency and
334    // the delay provided by the crossbar
335    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
336
337    // We use lookupLatency here because it is used to specify the latency
338    // to access.
339    Cycles lat = lookupLatency;
340    CacheBlk *blk = nullptr;
341    bool satisfied = false;
342    {
343        PacketList writebacks;
344        // Note that lat is passed by reference here. The function
345        // access() calls accessBlock() which can modify lat value.
346        satisfied = access(pkt, blk, lat, writebacks);
347
348        // copy writebacks to write buffer here to ensure they logically
349        // precede anything happening below
350        doWritebacks(writebacks, forward_time);
351    }
352
353    // Here we charge the headerDelay that takes into account the latencies
354    // of the bus, if the packet comes from it.
355    // The latency charged it is just lat that is the value of lookupLatency
356    // modified by access() function, or if not just lookupLatency.
357    // In case of a hit we are neglecting response latency.
358    // In case of a miss we are neglecting forward latency.
359    Tick request_time = clockEdge(lat) + pkt->headerDelay;
360    // Here we reset the timing of the packet.
361    pkt->headerDelay = pkt->payloadDelay = 0;
362    // track time of availability of next prefetch, if any
363    Tick next_pf_time = MaxTick;
364
365    if (satisfied) {
366        // if need to notify the prefetcher we have to do it before
367        // anything else as later handleTimingReqHit might turn the
368        // packet in a response
369        if (prefetcher &&
370            (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
371            if (blk)
372                blk->status &= ~BlkHWPrefetched;
373
374            // Don't notify on SWPrefetch
375            if (!pkt->cmd.isSWPrefetch()) {
376                assert(!pkt->req->isCacheMaintenance());
377                next_pf_time = prefetcher->notify(pkt);
378            }
379        }
380
381        handleTimingReqHit(pkt, blk, request_time);
382    } else {
383        handleTimingReqMiss(pkt, blk, forward_time, request_time);
384
385        // We should call the prefetcher reguardless if the request is
386        // satisfied or not, reguardless if the request is in the MSHR
387        // or not. The request could be a ReadReq hit, but still not
388        // satisfied (potentially because of a prior write to the same
389        // cache line. So, even when not satisfied, there is an MSHR
390        // already allocated for this, we need to let the prefetcher
391        // know about the request
392
393        // Don't notify prefetcher on SWPrefetch or cache maintenance
394        // operations
395        if (prefetcher && pkt &&
396            !pkt->cmd.isSWPrefetch() &&
397            !pkt->req->isCacheMaintenance()) {
398            next_pf_time = prefetcher->notify(pkt);
399        }
400    }
401
402    if (next_pf_time != MaxTick) {
403        schedMemSideSendEvent(next_pf_time);
404    }
405}
406
407void
408BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
409{
410    Tick completion_time = clockEdge(responseLatency) +
411        pkt->headerDelay + pkt->payloadDelay;
412
413    // Reset the bus additional time as it is now accounted for
414    pkt->headerDelay = pkt->payloadDelay = 0;
415
416    cpuSidePort.schedTimingResp(pkt, completion_time, true);
417}
418
419void
420BaseCache::recvTimingResp(PacketPtr pkt)
421{
422    assert(pkt->isResponse());
423
424    // all header delay should be paid for by the crossbar, unless
425    // this is a prefetch response from above
426    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
427             "%s saw a non-zero packet delay\n", name());
428
429    const bool is_error = pkt->isError();
430
431    if (is_error) {
432        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
433                pkt->print());
434    }
435
436    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
437            pkt->print());
438
439    // if this is a write, we should be looking at an uncacheable
440    // write
441    if (pkt->isWrite()) {
442        assert(pkt->req->isUncacheable());
443        handleUncacheableWriteResp(pkt);
444        return;
445    }
446
447    // we have dealt with any (uncacheable) writes above, from here on
448    // we know we are dealing with an MSHR due to a miss or a prefetch
449    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
450    assert(mshr);
451
452    if (mshr == noTargetMSHR) {
453        // we always clear at least one target
454        clearBlocked(Blocked_NoTargets);
455        noTargetMSHR = nullptr;
456    }
457
458    // Initial target is used just for stats
459    MSHR::Target *initial_tgt = mshr->getTarget();
460    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
461    Tick miss_latency = curTick() - initial_tgt->recvTime;
462
463    if (pkt->req->isUncacheable()) {
464        assert(pkt->req->masterId() < system->maxMasters());
465        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
466            miss_latency;
467    } else {
468        assert(pkt->req->masterId() < system->maxMasters());
469        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
470            miss_latency;
471    }
472
473    PacketList writebacks;
474
475    bool is_fill = !mshr->isForward &&
476        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
477
478    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
479
480    if (is_fill && !is_error) {
481        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
482                pkt->getAddr());
483
484        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
485        assert(blk != nullptr);
486    }
487
488    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
489        // The block was marked not readable while there was a pending
490        // cache maintenance operation, restore its flag.
491        blk->status |= BlkReadable;
492
493        // This was a cache clean operation (without invalidate)
494        // and we have a copy of the block already. Since there
495        // is no invalidation, we can promote targets that don't
496        // require a writable copy
497        mshr->promoteReadable();
498    }
499
500    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
501        // If at this point the referenced block is writable and the
502        // response is not a cache invalidate, we promote targets that
503        // were deferred as we couldn't guarrantee a writable copy
504        mshr->promoteWritable();
505    }
506
507    serviceMSHRTargets(mshr, pkt, blk, writebacks);
508
509    if (mshr->promoteDeferredTargets()) {
510        // avoid later read getting stale data while write miss is
511        // outstanding.. see comment in timingAccess()
512        if (blk) {
513            blk->status &= ~BlkReadable;
514        }
515        mshrQueue.markPending(mshr);
516        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
517    } else {
518        // while we deallocate an mshr from the queue we still have to
519        // check the isFull condition before and after as we might
520        // have been using the reserved entries already
521        const bool was_full = mshrQueue.isFull();
522        mshrQueue.deallocate(mshr);
523        if (was_full && !mshrQueue.isFull()) {
524            clearBlocked(Blocked_NoMSHRs);
525        }
526
527        // Request the bus for a prefetch if this deallocation freed enough
528        // MSHRs for a prefetch to take place
529        if (prefetcher && mshrQueue.canPrefetch()) {
530            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
531                                         clockEdge());
532            if (next_pf_time != MaxTick)
533                schedMemSideSendEvent(next_pf_time);
534        }
535    }
536
537    // if we used temp block, check to see if its valid and then clear it out
538    if (blk == tempBlock && tempBlock->isValid()) {
539        evictBlock(blk, writebacks);
540    }
541
542    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
543    // copy writebacks to write buffer
544    doWritebacks(writebacks, forward_time);
545
546    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
547    delete pkt;
548}
549
550
551Tick
552BaseCache::recvAtomic(PacketPtr pkt)
553{
554    // We are in atomic mode so we pay just for lookupLatency here.
555    Cycles lat = lookupLatency;
556
557    // follow the same flow as in recvTimingReq, and check if a cache
558    // above us is responding
559    if (pkt->cacheResponding() && !pkt->isClean()) {
560        assert(!pkt->req->isCacheInvalidate());
561        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
562                pkt->print());
563
564        // if a cache is responding, and it had the line in Owned
565        // rather than Modified state, we need to invalidate any
566        // copies that are not on the same path to memory
567        assert(pkt->needsWritable() && !pkt->responderHadWritable());
568        lat += ticksToCycles(memSidePort.sendAtomic(pkt));
569
570        return lat * clockPeriod();
571    }
572
573    // should assert here that there are no outstanding MSHRs or
574    // writebacks... that would mean that someone used an atomic
575    // access in timing mode
576
577    CacheBlk *blk = nullptr;
578    PacketList writebacks;
579    bool satisfied = access(pkt, blk, lat, writebacks);
580
581    if (pkt->isClean() && blk && blk->isDirty()) {
582        // A cache clean opearation is looking for a dirty
583        // block. If a dirty block is encountered a WriteClean
584        // will update any copies to the path to the memory
585        // until the point of reference.
586        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
587                __func__, pkt->print(), blk->print());
588        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
589        writebacks.push_back(wb_pkt);
590        pkt->setSatisfied();
591    }
592
593    // handle writebacks resulting from the access here to ensure they
594    // logically precede anything happening below
595    doWritebacksAtomic(writebacks);
596    assert(writebacks.empty());
597
598    if (!satisfied) {
599        lat += handleAtomicReqMiss(pkt, blk, writebacks);
600    }
601
602    // Note that we don't invoke the prefetcher at all in atomic mode.
603    // It's not clear how to do it properly, particularly for
604    // prefetchers that aggressively generate prefetch candidates and
605    // rely on bandwidth contention to throttle them; these will tend
606    // to pollute the cache in atomic mode since there is no bandwidth
607    // contention.  If we ever do want to enable prefetching in atomic
608    // mode, though, this is the place to do it... see timingAccess()
609    // for an example (though we'd want to issue the prefetch(es)
610    // immediately rather than calling requestMemSideBus() as we do
611    // there).
612
613    // do any writebacks resulting from the response handling
614    doWritebacksAtomic(writebacks);
615
616    // if we used temp block, check to see if its valid and if so
617    // clear it out, but only do so after the call to recvAtomic is
618    // finished so that any downstream observers (such as a snoop
619    // filter), first see the fill, and only then see the eviction
620    if (blk == tempBlock && tempBlock->isValid()) {
621        // the atomic CPU calls recvAtomic for fetch and load/store
622        // sequentuially, and we may already have a tempBlock
623        // writeback from the fetch that we have not yet sent
624        if (tempBlockWriteback) {
625            // if that is the case, write the prevoius one back, and
626            // do not schedule any new event
627            writebackTempBlockAtomic();
628        } else {
629            // the writeback/clean eviction happens after the call to
630            // recvAtomic has finished (but before any successive
631            // calls), so that the response handling from the fill is
632            // allowed to happen first
633            schedule(writebackTempBlockAtomicEvent, curTick());
634        }
635
636        tempBlockWriteback = evictBlock(blk);
637    }
638
639    if (pkt->needsResponse()) {
640        pkt->makeAtomicResponse();
641    }
642
643    return lat * clockPeriod();
644}
645
646void
647BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
648{
649    Addr blk_addr = pkt->getBlockAddr(blkSize);
650    bool is_secure = pkt->isSecure();
651    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
652    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
653
654    pkt->pushLabel(name());
655
656    CacheBlkPrintWrapper cbpw(blk);
657
658    // Note that just because an L2/L3 has valid data doesn't mean an
659    // L1 doesn't have a more up-to-date modified copy that still
660    // needs to be found.  As a result we always update the request if
661    // we have it, but only declare it satisfied if we are the owner.
662
663    // see if we have data at all (owned or otherwise)
664    bool have_data = blk && blk->isValid()
665        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
666                                     blk->data);
667
668    // data we have is dirty if marked as such or if we have an
669    // in-service MSHR that is pending a modified line
670    bool have_dirty =
671        have_data && (blk->isDirty() ||
672                      (mshr && mshr->inService && mshr->isPendingModified()));
673
674    bool done = have_dirty ||
675        cpuSidePort.trySatisfyFunctional(pkt) ||
676        mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
677        writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
678        memSidePort.trySatisfyFunctional(pkt);
679
680    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
681            (blk && blk->isValid()) ? "valid " : "",
682            have_data ? "data " : "", done ? "done " : "");
683
684    // We're leaving the cache, so pop cache->name() label
685    pkt->popLabel();
686
687    if (done) {
688        pkt->makeResponse();
689    } else {
690        // if it came as a request from the CPU side then make sure it
691        // continues towards the memory side
692        if (from_cpu_side) {
693            memSidePort.sendFunctional(pkt);
694        } else if (cpuSidePort.isSnooping()) {
695            // if it came from the memory side, it must be a snoop request
696            // and we should only forward it if we are forwarding snoops
697            cpuSidePort.sendFunctionalSnoop(pkt);
698        }
699    }
700}
701
702
703void
704BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
705{
706    assert(pkt->isRequest());
707
708    uint64_t overwrite_val;
709    bool overwrite_mem;
710    uint64_t condition_val64;
711    uint32_t condition_val32;
712
713    int offset = pkt->getOffset(blkSize);
714    uint8_t *blk_data = blk->data + offset;
715
716    assert(sizeof(uint64_t) >= pkt->getSize());
717
718    overwrite_mem = true;
719    // keep a copy of our possible write value, and copy what is at the
720    // memory address into the packet
721    pkt->writeData((uint8_t *)&overwrite_val);
722    pkt->setData(blk_data);
723
724    if (pkt->req->isCondSwap()) {
725        if (pkt->getSize() == sizeof(uint64_t)) {
726            condition_val64 = pkt->req->getExtraData();
727            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
728                                         sizeof(uint64_t));
729        } else if (pkt->getSize() == sizeof(uint32_t)) {
730            condition_val32 = (uint32_t)pkt->req->getExtraData();
731            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
732                                         sizeof(uint32_t));
733        } else
734            panic("Invalid size for conditional read/write\n");
735    }
736
737    if (overwrite_mem) {
738        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
739        blk->status |= BlkDirty;
740    }
741}
742
743QueueEntry*
744BaseCache::getNextQueueEntry()
745{
746    // Check both MSHR queue and write buffer for potential requests,
747    // note that null does not mean there is no request, it could
748    // simply be that it is not ready
749    MSHR *miss_mshr  = mshrQueue.getNext();
750    WriteQueueEntry *wq_entry = writeBuffer.getNext();
751
752    // If we got a write buffer request ready, first priority is a
753    // full write buffer, otherwise we favour the miss requests
754    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
755        // need to search MSHR queue for conflicting earlier miss.
756        MSHR *conflict_mshr =
757            mshrQueue.findPending(wq_entry->blkAddr,
758                                  wq_entry->isSecure);
759
760        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
761            // Service misses in order until conflict is cleared.
762            return conflict_mshr;
763
764            // @todo Note that we ignore the ready time of the conflict here
765        }
766
767        // No conflicts; issue write
768        return wq_entry;
769    } else if (miss_mshr) {
770        // need to check for conflicting earlier writeback
771        WriteQueueEntry *conflict_mshr =
772            writeBuffer.findPending(miss_mshr->blkAddr,
773                                    miss_mshr->isSecure);
774        if (conflict_mshr) {
775            // not sure why we don't check order here... it was in the
776            // original code but commented out.
777
778            // The only way this happens is if we are
779            // doing a write and we didn't have permissions
780            // then subsequently saw a writeback (owned got evicted)
781            // We need to make sure to perform the writeback first
782            // To preserve the dirty data, then we can issue the write
783
784            // should we return wq_entry here instead?  I.e. do we
785            // have to flush writes in order?  I don't think so... not
786            // for Alpha anyway.  Maybe for x86?
787            return conflict_mshr;
788
789            // @todo Note that we ignore the ready time of the conflict here
790        }
791
792        // No conflicts; issue read
793        return miss_mshr;
794    }
795
796    // fall through... no pending requests.  Try a prefetch.
797    assert(!miss_mshr && !wq_entry);
798    if (prefetcher && mshrQueue.canPrefetch()) {
799        // If we have a miss queue slot, we can try a prefetch
800        PacketPtr pkt = prefetcher->getPacket();
801        if (pkt) {
802            Addr pf_addr = pkt->getBlockAddr(blkSize);
803            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
804                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
805                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
806                // Update statistic on number of prefetches issued
807                // (hwpf_mshr_misses)
808                assert(pkt->req->masterId() < system->maxMasters());
809                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
810
811                // allocate an MSHR and return it, note
812                // that we send the packet straight away, so do not
813                // schedule the send
814                return allocateMissBuffer(pkt, curTick(), false);
815            } else {
816                // free the request and packet
817                delete pkt;
818            }
819        }
820    }
821
822    return nullptr;
823}
824
825void
826BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
827{
828    assert(pkt->isRequest());
829
830    assert(blk && blk->isValid());
831    // Occasionally this is not true... if we are a lower-level cache
832    // satisfying a string of Read and ReadEx requests from
833    // upper-level caches, a Read will mark the block as shared but we
834    // can satisfy a following ReadEx anyway since we can rely on the
835    // Read requester(s) to have buffered the ReadEx snoop and to
836    // invalidate their blocks after receiving them.
837    // assert(!pkt->needsWritable() || blk->isWritable());
838    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
839
840    // Check RMW operations first since both isRead() and
841    // isWrite() will be true for them
842    if (pkt->cmd == MemCmd::SwapReq) {
843        if (pkt->isAtomicOp()) {
844            // extract data from cache and save it into the data field in
845            // the packet as a return value from this atomic op
846
847            int offset = tags->extractBlkOffset(pkt->getAddr());
848            uint8_t *blk_data = blk->data + offset;
849            std::memcpy(pkt->getPtr<uint8_t>(), blk_data, pkt->getSize());
850
851            // execute AMO operation
852            (*(pkt->getAtomicOp()))(blk_data);
853
854            // set block status to dirty
855            blk->status |= BlkDirty;
856        } else {
857            cmpAndSwap(blk, pkt);
858        }
859    } else if (pkt->isWrite()) {
860        // we have the block in a writable state and can go ahead,
861        // note that the line may be also be considered writable in
862        // downstream caches along the path to memory, but always
863        // Exclusive, and never Modified
864        assert(blk->isWritable());
865        // Write or WriteLine at the first cache with block in writable state
866        if (blk->checkWrite(pkt)) {
867            pkt->writeDataToBlock(blk->data, blkSize);
868        }
869        // Always mark the line as dirty (and thus transition to the
870        // Modified state) even if we are a failed StoreCond so we
871        // supply data to any snoops that have appended themselves to
872        // this cache before knowing the store will fail.
873        blk->status |= BlkDirty;
874        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
875    } else if (pkt->isRead()) {
876        if (pkt->isLLSC()) {
877            blk->trackLoadLocked(pkt);
878        }
879
880        // all read responses have a data payload
881        assert(pkt->hasRespData());
882        pkt->setDataFromBlock(blk->data, blkSize);
883    } else if (pkt->isUpgrade()) {
884        // sanity check
885        assert(!pkt->hasSharers());
886
887        if (blk->isDirty()) {
888            // we were in the Owned state, and a cache above us that
889            // has the line in Shared state needs to be made aware
890            // that the data it already has is in fact dirty
891            pkt->setCacheResponding();
892            blk->status &= ~BlkDirty;
893        }
894    } else if (pkt->isClean()) {
895        blk->status &= ~BlkDirty;
896    } else {
897        assert(pkt->isInvalidate());
898        invalidateBlock(blk);
899        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
900                pkt->print());
901    }
902}
903
904/////////////////////////////////////////////////////
905//
906// Access path: requests coming in from the CPU side
907//
908/////////////////////////////////////////////////////
909
910bool
911BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
912                  PacketList &writebacks)
913{
914    // sanity check
915    assert(pkt->isRequest());
916
917    chatty_assert(!(isReadOnly && pkt->isWrite()),
918                  "Should never see a write in a read-only cache %s\n",
919                  name());
920
921    // Here lat is the value passed as parameter to accessBlock() function
922    // that can modify its value.
923    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
924
925    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
926            blk ? "hit " + blk->print() : "miss");
927
928    if (pkt->req->isCacheMaintenance()) {
929        // A cache maintenance operation is always forwarded to the
930        // memory below even if the block is found in dirty state.
931
932        // We defer any changes to the state of the block until we
933        // create and mark as in service the mshr for the downstream
934        // packet.
935        return false;
936    }
937
938    if (pkt->isEviction()) {
939        // We check for presence of block in above caches before issuing
940        // Writeback or CleanEvict to write buffer. Therefore the only
941        // possible cases can be of a CleanEvict packet coming from above
942        // encountering a Writeback generated in this cache peer cache and
943        // waiting in the write buffer. Cases of upper level peer caches
944        // generating CleanEvict and Writeback or simply CleanEvict and
945        // CleanEvict almost simultaneously will be caught by snoops sent out
946        // by crossbar.
947        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
948                                                          pkt->isSecure());
949        if (wb_entry) {
950            assert(wb_entry->getNumTargets() == 1);
951            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
952            assert(wbPkt->isWriteback());
953
954            if (pkt->isCleanEviction()) {
955                // The CleanEvict and WritebackClean snoops into other
956                // peer caches of the same level while traversing the
957                // crossbar. If a copy of the block is found, the
958                // packet is deleted in the crossbar. Hence, none of
959                // the other upper level caches connected to this
960                // cache have the block, so we can clear the
961                // BLOCK_CACHED flag in the Writeback if set and
962                // discard the CleanEvict by returning true.
963                wbPkt->clearBlockCached();
964                return true;
965            } else {
966                assert(pkt->cmd == MemCmd::WritebackDirty);
967                // Dirty writeback from above trumps our clean
968                // writeback... discard here
969                // Note: markInService will remove entry from writeback buffer.
970                markInService(wb_entry);
971                delete wbPkt;
972            }
973        }
974    }
975
976    // Writeback handling is special case.  We can write the block into
977    // the cache without having a writeable copy (or any copy at all).
978    if (pkt->isWriteback()) {
979        assert(blkSize == pkt->getSize());
980
981        // we could get a clean writeback while we are having
982        // outstanding accesses to a block, do the simple thing for
983        // now and drop the clean writeback so that we do not upset
984        // any ordering/decisions about ownership already taken
985        if (pkt->cmd == MemCmd::WritebackClean &&
986            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
987            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
988                    "dropping\n", pkt->getAddr());
989            return true;
990        }
991
992        if (!blk) {
993            // need to do a replacement
994            blk = allocateBlock(pkt, writebacks);
995            if (!blk) {
996                // no replaceable block available: give up, fwd to next level.
997                incMissCount(pkt);
998                return false;
999            }
1000
1001            blk->status |= (BlkValid | BlkReadable);
1002        }
1003        // only mark the block dirty if we got a writeback command,
1004        // and leave it as is for a clean writeback
1005        if (pkt->cmd == MemCmd::WritebackDirty) {
1006            // TODO: the coherent cache can assert(!blk->isDirty());
1007            blk->status |= BlkDirty;
1008        }
1009        // if the packet does not have sharers, it is passing
1010        // writable, and we got the writeback in Modified or Exclusive
1011        // state, if not we are in the Owned or Shared state
1012        if (!pkt->hasSharers()) {
1013            blk->status |= BlkWritable;
1014        }
1015        // nothing else to do; writeback doesn't expect response
1016        assert(!pkt->needsResponse());
1017        pkt->writeDataToBlock(blk->data, blkSize);
1018        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1019        incHitCount(pkt);
1020        // populate the time when the block will be ready to access.
1021        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1022            pkt->payloadDelay;
1023        return true;
1024    } else if (pkt->cmd == MemCmd::CleanEvict) {
1025        if (blk) {
1026            // Found the block in the tags, need to stop CleanEvict from
1027            // propagating further down the hierarchy. Returning true will
1028            // treat the CleanEvict like a satisfied write request and delete
1029            // it.
1030            return true;
1031        }
1032        // We didn't find the block here, propagate the CleanEvict further
1033        // down the memory hierarchy. Returning false will treat the CleanEvict
1034        // like a Writeback which could not find a replaceable block so has to
1035        // go to next level.
1036        return false;
1037    } else if (pkt->cmd == MemCmd::WriteClean) {
1038        // WriteClean handling is a special case. We can allocate a
1039        // block directly if it doesn't exist and we can update the
1040        // block immediately. The WriteClean transfers the ownership
1041        // of the block as well.
1042        assert(blkSize == pkt->getSize());
1043
1044        if (!blk) {
1045            if (pkt->writeThrough()) {
1046                // if this is a write through packet, we don't try to
1047                // allocate if the block is not present
1048                return false;
1049            } else {
1050                // a writeback that misses needs to allocate a new block
1051                blk = allocateBlock(pkt, writebacks);
1052                if (!blk) {
1053                    // no replaceable block available: give up, fwd to
1054                    // next level.
1055                    incMissCount(pkt);
1056                    return false;
1057                }
1058
1059                blk->status |= (BlkValid | BlkReadable);
1060            }
1061        }
1062
1063        // at this point either this is a writeback or a write-through
1064        // write clean operation and the block is already in this
1065        // cache, we need to update the data and the block flags
1066        assert(blk);
1067        // TODO: the coherent cache can assert(!blk->isDirty());
1068        if (!pkt->writeThrough()) {
1069            blk->status |= BlkDirty;
1070        }
1071        // nothing else to do; writeback doesn't expect response
1072        assert(!pkt->needsResponse());
1073        pkt->writeDataToBlock(blk->data, blkSize);
1074        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1075
1076        incHitCount(pkt);
1077        // populate the time when the block will be ready to access.
1078        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1079            pkt->payloadDelay;
1080        // if this a write-through packet it will be sent to cache
1081        // below
1082        return !pkt->writeThrough();
1083    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1084                       blk->isReadable())) {
1085        // OK to satisfy access
1086        incHitCount(pkt);
1087        satisfyRequest(pkt, blk);
1088        maintainClusivity(pkt->fromCache(), blk);
1089
1090        return true;
1091    }
1092
1093    // Can't satisfy access normally... either no block (blk == nullptr)
1094    // or have block but need writable
1095
1096    incMissCount(pkt);
1097
1098    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1099        // complete miss on store conditional... just give up now
1100        pkt->req->setExtraData(0);
1101        return true;
1102    }
1103
1104    return false;
1105}
1106
1107void
1108BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1109{
1110    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1111        clusivity == Enums::mostly_excl) {
1112        // if we have responded to a cache, and our block is still
1113        // valid, but not dirty, and this cache is mostly exclusive
1114        // with respect to the cache above, drop the block
1115        invalidateBlock(blk);
1116    }
1117}
1118
1119CacheBlk*
1120BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1121                      bool allocate)
1122{
1123    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1124    Addr addr = pkt->getAddr();
1125    bool is_secure = pkt->isSecure();
1126#if TRACING_ON
1127    CacheBlk::State old_state = blk ? blk->status : 0;
1128#endif
1129
1130    // When handling a fill, we should have no writes to this line.
1131    assert(addr == pkt->getBlockAddr(blkSize));
1132    assert(!writeBuffer.findMatch(addr, is_secure));
1133
1134    if (!blk) {
1135        // better have read new data...
1136        assert(pkt->hasData());
1137
1138        // only read responses and write-line requests have data;
1139        // note that we don't write the data here for write-line - that
1140        // happens in the subsequent call to satisfyRequest
1141        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1142
1143        // need to do a replacement if allocating, otherwise we stick
1144        // with the temporary storage
1145        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1146
1147        if (!blk) {
1148            // No replaceable block or a mostly exclusive
1149            // cache... just use temporary storage to complete the
1150            // current request and then get rid of it
1151            assert(!tempBlock->isValid());
1152            blk = tempBlock;
1153            tempBlock->insert(addr, is_secure);
1154            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1155                    is_secure ? "s" : "ns");
1156        }
1157
1158        // we should never be overwriting a valid block
1159        assert(!blk->isValid());
1160    } else {
1161        // existing block... probably an upgrade
1162        assert(regenerateBlkAddr(blk) == addr);
1163        assert(blk->isSecure() == is_secure);
1164        // either we're getting new data or the block should already be valid
1165        assert(pkt->hasData() || blk->isValid());
1166        // don't clear block status... if block is already dirty we
1167        // don't want to lose that
1168    }
1169
1170    blk->status |= BlkValid | BlkReadable;
1171
1172    // sanity check for whole-line writes, which should always be
1173    // marked as writable as part of the fill, and then later marked
1174    // dirty as part of satisfyRequest
1175    if (pkt->cmd == MemCmd::WriteLineReq) {
1176        assert(!pkt->hasSharers());
1177    }
1178
1179    // here we deal with setting the appropriate state of the line,
1180    // and we start by looking at the hasSharers flag, and ignore the
1181    // cacheResponding flag (normally signalling dirty data) if the
1182    // packet has sharers, thus the line is never allocated as Owned
1183    // (dirty but not writable), and always ends up being either
1184    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1185    // for more details
1186    if (!pkt->hasSharers()) {
1187        // we could get a writable line from memory (rather than a
1188        // cache) even in a read-only cache, note that we set this bit
1189        // even for a read-only cache, possibly revisit this decision
1190        blk->status |= BlkWritable;
1191
1192        // check if we got this via cache-to-cache transfer (i.e., from a
1193        // cache that had the block in Modified or Owned state)
1194        if (pkt->cacheResponding()) {
1195            // we got the block in Modified state, and invalidated the
1196            // owners copy
1197            blk->status |= BlkDirty;
1198
1199            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1200                          "in read-only cache %s\n", name());
1201        }
1202    }
1203
1204    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1205            addr, is_secure ? "s" : "ns", old_state, blk->print());
1206
1207    // if we got new data, copy it in (checking for a read response
1208    // and a response that has data is the same in the end)
1209    if (pkt->isRead()) {
1210        // sanity checks
1211        assert(pkt->hasData());
1212        assert(pkt->getSize() == blkSize);
1213
1214        pkt->writeDataToBlock(blk->data, blkSize);
1215    }
1216    // We pay for fillLatency here.
1217    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1218        pkt->payloadDelay;
1219
1220    return blk;
1221}
1222
1223CacheBlk*
1224BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1225{
1226    // Get address
1227    const Addr addr = pkt->getAddr();
1228
1229    // Get secure bit
1230    const bool is_secure = pkt->isSecure();
1231
1232    // Find replacement victim
1233    std::vector<CacheBlk*> evict_blks;
1234    CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1235
1236    // It is valid to return nullptr if there is no victim
1237    if (!victim)
1238        return nullptr;
1239
1240    // Check for transient state allocations. If any of the entries listed
1241    // for eviction has a transient state, the allocation fails
1242    for (const auto& blk : evict_blks) {
1243        if (blk->isValid()) {
1244            Addr repl_addr = regenerateBlkAddr(blk);
1245            MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1246            if (repl_mshr) {
1247                // must be an outstanding upgrade or clean request
1248                // on a block we're about to replace...
1249                assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1250                       repl_mshr->isCleaning());
1251
1252                // too hard to replace block with transient state
1253                // allocation failed, block not inserted
1254                return nullptr;
1255            }
1256        }
1257    }
1258
1259    // The victim will be replaced by a new entry, so increase the replacement
1260    // counter if a valid block is being replaced
1261    if (victim->isValid()) {
1262        DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1263                "(%s): %s\n", regenerateBlkAddr(victim),
1264                victim->isSecure() ? "s" : "ns",
1265                addr, is_secure ? "s" : "ns",
1266                victim->isDirty() ? "writeback" : "clean");
1267
1268        replacements++;
1269    }
1270
1271    // Evict valid blocks associated to this victim block
1272    for (const auto& blk : evict_blks) {
1273        if (blk->isValid()) {
1274            if (blk->wasPrefetched()) {
1275                unusedPrefetches++;
1276            }
1277
1278            evictBlock(blk, writebacks);
1279        }
1280    }
1281
1282    // Insert new block at victimized entry
1283    tags->insertBlock(pkt, victim);
1284
1285    return victim;
1286}
1287
1288void
1289BaseCache::invalidateBlock(CacheBlk *blk)
1290{
1291    if (blk != tempBlock)
1292        tags->invalidate(blk);
1293    blk->invalidate();
1294}
1295
1296PacketPtr
1297BaseCache::writebackBlk(CacheBlk *blk)
1298{
1299    chatty_assert(!isReadOnly || writebackClean,
1300                  "Writeback from read-only cache");
1301    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1302
1303    writebacks[Request::wbMasterId]++;
1304
1305    RequestPtr req = std::make_shared<Request>(
1306        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1307
1308    if (blk->isSecure())
1309        req->setFlags(Request::SECURE);
1310
1311    req->taskId(blk->task_id);
1312
1313    PacketPtr pkt =
1314        new Packet(req, blk->isDirty() ?
1315                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1316
1317    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1318            pkt->print(), blk->isWritable(), blk->isDirty());
1319
1320    if (blk->isWritable()) {
1321        // not asserting shared means we pass the block in modified
1322        // state, mark our own block non-writeable
1323        blk->status &= ~BlkWritable;
1324    } else {
1325        // we are in the Owned state, tell the receiver
1326        pkt->setHasSharers();
1327    }
1328
1329    // make sure the block is not marked dirty
1330    blk->status &= ~BlkDirty;
1331
1332    pkt->allocate();
1333    pkt->setDataFromBlock(blk->data, blkSize);
1334
1335    return pkt;
1336}
1337
1338PacketPtr
1339BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1340{
1341    RequestPtr req = std::make_shared<Request>(
1342        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1343
1344    if (blk->isSecure()) {
1345        req->setFlags(Request::SECURE);
1346    }
1347    req->taskId(blk->task_id);
1348
1349    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1350
1351    if (dest) {
1352        req->setFlags(dest);
1353        pkt->setWriteThrough();
1354    }
1355
1356    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1357            blk->isWritable(), blk->isDirty());
1358
1359    if (blk->isWritable()) {
1360        // not asserting shared means we pass the block in modified
1361        // state, mark our own block non-writeable
1362        blk->status &= ~BlkWritable;
1363    } else {
1364        // we are in the Owned state, tell the receiver
1365        pkt->setHasSharers();
1366    }
1367
1368    // make sure the block is not marked dirty
1369    blk->status &= ~BlkDirty;
1370
1371    pkt->allocate();
1372    pkt->setDataFromBlock(blk->data, blkSize);
1373
1374    return pkt;
1375}
1376
1377
1378void
1379BaseCache::memWriteback()
1380{
1381    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1382}
1383
1384void
1385BaseCache::memInvalidate()
1386{
1387    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1388}
1389
1390bool
1391BaseCache::isDirty() const
1392{
1393    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1394}
1395
1396void
1397BaseCache::writebackVisitor(CacheBlk &blk)
1398{
1399    if (blk.isDirty()) {
1400        assert(blk.isValid());
1401
1402        RequestPtr request = std::make_shared<Request>(
1403            regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1404
1405        request->taskId(blk.task_id);
1406        if (blk.isSecure()) {
1407            request->setFlags(Request::SECURE);
1408        }
1409
1410        Packet packet(request, MemCmd::WriteReq);
1411        packet.dataStatic(blk.data);
1412
1413        memSidePort.sendFunctional(&packet);
1414
1415        blk.status &= ~BlkDirty;
1416    }
1417}
1418
1419void
1420BaseCache::invalidateVisitor(CacheBlk &blk)
1421{
1422    if (blk.isDirty())
1423        warn_once("Invalidating dirty cache lines. " \
1424                  "Expect things to break.\n");
1425
1426    if (blk.isValid()) {
1427        assert(!blk.isDirty());
1428        invalidateBlock(&blk);
1429    }
1430}
1431
1432Tick
1433BaseCache::nextQueueReadyTime() const
1434{
1435    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1436                              writeBuffer.nextReadyTime());
1437
1438    // Don't signal prefetch ready time if no MSHRs available
1439    // Will signal once enoguh MSHRs are deallocated
1440    if (prefetcher && mshrQueue.canPrefetch()) {
1441        nextReady = std::min(nextReady,
1442                             prefetcher->nextPrefetchReadyTime());
1443    }
1444
1445    return nextReady;
1446}
1447
1448
1449bool
1450BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1451{
1452    assert(mshr);
1453
1454    // use request from 1st target
1455    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1456
1457    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1458
1459    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1460
1461    // either a prefetch that is not present upstream, or a normal
1462    // MSHR request, proceed to get the packet to send downstream
1463    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
1464
1465    mshr->isForward = (pkt == nullptr);
1466
1467    if (mshr->isForward) {
1468        // not a cache block request, but a response is expected
1469        // make copy of current packet to forward, keep current
1470        // copy for response handling
1471        pkt = new Packet(tgt_pkt, false, true);
1472        assert(!pkt->isWrite());
1473    }
1474
1475    // play it safe and append (rather than set) the sender state,
1476    // as forwarded packets may already have existing state
1477    pkt->pushSenderState(mshr);
1478
1479    if (pkt->isClean() && blk && blk->isDirty()) {
1480        // A cache clean opearation is looking for a dirty block. Mark
1481        // the packet so that the destination xbar can determine that
1482        // there will be a follow-up write packet as well.
1483        pkt->setSatisfied();
1484    }
1485
1486    if (!memSidePort.sendTimingReq(pkt)) {
1487        // we are awaiting a retry, but we
1488        // delete the packet and will be creating a new packet
1489        // when we get the opportunity
1490        delete pkt;
1491
1492        // note that we have now masked any requestBus and
1493        // schedSendEvent (we will wait for a retry before
1494        // doing anything), and this is so even if we do not
1495        // care about this packet and might override it before
1496        // it gets retried
1497        return true;
1498    } else {
1499        // As part of the call to sendTimingReq the packet is
1500        // forwarded to all neighbouring caches (and any caches
1501        // above them) as a snoop. Thus at this point we know if
1502        // any of the neighbouring caches are responding, and if
1503        // so, we know it is dirty, and we can determine if it is
1504        // being passed as Modified, making our MSHR the ordering
1505        // point
1506        bool pending_modified_resp = !pkt->hasSharers() &&
1507            pkt->cacheResponding();
1508        markInService(mshr, pending_modified_resp);
1509
1510        if (pkt->isClean() && blk && blk->isDirty()) {
1511            // A cache clean opearation is looking for a dirty
1512            // block. If a dirty block is encountered a WriteClean
1513            // will update any copies to the path to the memory
1514            // until the point of reference.
1515            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1516                    __func__, pkt->print(), blk->print());
1517            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1518                                             pkt->id);
1519            PacketList writebacks;
1520            writebacks.push_back(wb_pkt);
1521            doWritebacks(writebacks, 0);
1522        }
1523
1524        return false;
1525    }
1526}
1527
1528bool
1529BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1530{
1531    assert(wq_entry);
1532
1533    // always a single target for write queue entries
1534    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1535
1536    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1537
1538    // forward as is, both for evictions and uncacheable writes
1539    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1540        // note that we have now masked any requestBus and
1541        // schedSendEvent (we will wait for a retry before
1542        // doing anything), and this is so even if we do not
1543        // care about this packet and might override it before
1544        // it gets retried
1545        return true;
1546    } else {
1547        markInService(wq_entry);
1548        return false;
1549    }
1550}
1551
1552void
1553BaseCache::serialize(CheckpointOut &cp) const
1554{
1555    bool dirty(isDirty());
1556
1557    if (dirty) {
1558        warn("*** The cache still contains dirty data. ***\n");
1559        warn("    Make sure to drain the system using the correct flags.\n");
1560        warn("    This checkpoint will not restore correctly " \
1561             "and dirty data in the cache will be lost!\n");
1562    }
1563
1564    // Since we don't checkpoint the data in the cache, any dirty data
1565    // will be lost when restoring from a checkpoint of a system that
1566    // wasn't drained properly. Flag the checkpoint as invalid if the
1567    // cache contains dirty data.
1568    bool bad_checkpoint(dirty);
1569    SERIALIZE_SCALAR(bad_checkpoint);
1570}
1571
1572void
1573BaseCache::unserialize(CheckpointIn &cp)
1574{
1575    bool bad_checkpoint;
1576    UNSERIALIZE_SCALAR(bad_checkpoint);
1577    if (bad_checkpoint) {
1578        fatal("Restoring from checkpoints with dirty caches is not "
1579              "supported in the classic memory system. Please remove any "
1580              "caches or drain them properly before taking checkpoints.\n");
1581    }
1582}
1583
1584void
1585BaseCache::regStats()
1586{
1587    MemObject::regStats();
1588
1589    using namespace Stats;
1590
1591    // Hit statistics
1592    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1593        MemCmd cmd(access_idx);
1594        const string &cstr = cmd.toString();
1595
1596        hits[access_idx]
1597            .init(system->maxMasters())
1598            .name(name() + "." + cstr + "_hits")
1599            .desc("number of " + cstr + " hits")
1600            .flags(total | nozero | nonan)
1601            ;
1602        for (int i = 0; i < system->maxMasters(); i++) {
1603            hits[access_idx].subname(i, system->getMasterName(i));
1604        }
1605    }
1606
1607// These macros make it easier to sum the right subset of commands and
1608// to change the subset of commands that are considered "demand" vs
1609// "non-demand"
1610#define SUM_DEMAND(s) \
1611    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1612     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1613
1614// should writebacks be included here?  prior code was inconsistent...
1615#define SUM_NON_DEMAND(s) \
1616    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
1617
1618    demandHits
1619        .name(name() + ".demand_hits")
1620        .desc("number of demand (read+write) hits")
1621        .flags(total | nozero | nonan)
1622        ;
1623    demandHits = SUM_DEMAND(hits);
1624    for (int i = 0; i < system->maxMasters(); i++) {
1625        demandHits.subname(i, system->getMasterName(i));
1626    }
1627
1628    overallHits
1629        .name(name() + ".overall_hits")
1630        .desc("number of overall hits")
1631        .flags(total | nozero | nonan)
1632        ;
1633    overallHits = demandHits + SUM_NON_DEMAND(hits);
1634    for (int i = 0; i < system->maxMasters(); i++) {
1635        overallHits.subname(i, system->getMasterName(i));
1636    }
1637
1638    // Miss statistics
1639    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1640        MemCmd cmd(access_idx);
1641        const string &cstr = cmd.toString();
1642
1643        misses[access_idx]
1644            .init(system->maxMasters())
1645            .name(name() + "." + cstr + "_misses")
1646            .desc("number of " + cstr + " misses")
1647            .flags(total | nozero | nonan)
1648            ;
1649        for (int i = 0; i < system->maxMasters(); i++) {
1650            misses[access_idx].subname(i, system->getMasterName(i));
1651        }
1652    }
1653
1654    demandMisses
1655        .name(name() + ".demand_misses")
1656        .desc("number of demand (read+write) misses")
1657        .flags(total | nozero | nonan)
1658        ;
1659    demandMisses = SUM_DEMAND(misses);
1660    for (int i = 0; i < system->maxMasters(); i++) {
1661        demandMisses.subname(i, system->getMasterName(i));
1662    }
1663
1664    overallMisses
1665        .name(name() + ".overall_misses")
1666        .desc("number of overall misses")
1667        .flags(total | nozero | nonan)
1668        ;
1669    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1670    for (int i = 0; i < system->maxMasters(); i++) {
1671        overallMisses.subname(i, system->getMasterName(i));
1672    }
1673
1674    // Miss latency statistics
1675    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1676        MemCmd cmd(access_idx);
1677        const string &cstr = cmd.toString();
1678
1679        missLatency[access_idx]
1680            .init(system->maxMasters())
1681            .name(name() + "." + cstr + "_miss_latency")
1682            .desc("number of " + cstr + " miss cycles")
1683            .flags(total | nozero | nonan)
1684            ;
1685        for (int i = 0; i < system->maxMasters(); i++) {
1686            missLatency[access_idx].subname(i, system->getMasterName(i));
1687        }
1688    }
1689
1690    demandMissLatency
1691        .name(name() + ".demand_miss_latency")
1692        .desc("number of demand (read+write) miss cycles")
1693        .flags(total | nozero | nonan)
1694        ;
1695    demandMissLatency = SUM_DEMAND(missLatency);
1696    for (int i = 0; i < system->maxMasters(); i++) {
1697        demandMissLatency.subname(i, system->getMasterName(i));
1698    }
1699
1700    overallMissLatency
1701        .name(name() + ".overall_miss_latency")
1702        .desc("number of overall miss cycles")
1703        .flags(total | nozero | nonan)
1704        ;
1705    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1706    for (int i = 0; i < system->maxMasters(); i++) {
1707        overallMissLatency.subname(i, system->getMasterName(i));
1708    }
1709
1710    // access formulas
1711    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1712        MemCmd cmd(access_idx);
1713        const string &cstr = cmd.toString();
1714
1715        accesses[access_idx]
1716            .name(name() + "." + cstr + "_accesses")
1717            .desc("number of " + cstr + " accesses(hits+misses)")
1718            .flags(total | nozero | nonan)
1719            ;
1720        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1721
1722        for (int i = 0; i < system->maxMasters(); i++) {
1723            accesses[access_idx].subname(i, system->getMasterName(i));
1724        }
1725    }
1726
1727    demandAccesses
1728        .name(name() + ".demand_accesses")
1729        .desc("number of demand (read+write) accesses")
1730        .flags(total | nozero | nonan)
1731        ;
1732    demandAccesses = demandHits + demandMisses;
1733    for (int i = 0; i < system->maxMasters(); i++) {
1734        demandAccesses.subname(i, system->getMasterName(i));
1735    }
1736
1737    overallAccesses
1738        .name(name() + ".overall_accesses")
1739        .desc("number of overall (read+write) accesses")
1740        .flags(total | nozero | nonan)
1741        ;
1742    overallAccesses = overallHits + overallMisses;
1743    for (int i = 0; i < system->maxMasters(); i++) {
1744        overallAccesses.subname(i, system->getMasterName(i));
1745    }
1746
1747    // miss rate formulas
1748    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1749        MemCmd cmd(access_idx);
1750        const string &cstr = cmd.toString();
1751
1752        missRate[access_idx]
1753            .name(name() + "." + cstr + "_miss_rate")
1754            .desc("miss rate for " + cstr + " accesses")
1755            .flags(total | nozero | nonan)
1756            ;
1757        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1758
1759        for (int i = 0; i < system->maxMasters(); i++) {
1760            missRate[access_idx].subname(i, system->getMasterName(i));
1761        }
1762    }
1763
1764    demandMissRate
1765        .name(name() + ".demand_miss_rate")
1766        .desc("miss rate for demand accesses")
1767        .flags(total | nozero | nonan)
1768        ;
1769    demandMissRate = demandMisses / demandAccesses;
1770    for (int i = 0; i < system->maxMasters(); i++) {
1771        demandMissRate.subname(i, system->getMasterName(i));
1772    }
1773
1774    overallMissRate
1775        .name(name() + ".overall_miss_rate")
1776        .desc("miss rate for overall accesses")
1777        .flags(total | nozero | nonan)
1778        ;
1779    overallMissRate = overallMisses / overallAccesses;
1780    for (int i = 0; i < system->maxMasters(); i++) {
1781        overallMissRate.subname(i, system->getMasterName(i));
1782    }
1783
1784    // miss latency formulas
1785    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1786        MemCmd cmd(access_idx);
1787        const string &cstr = cmd.toString();
1788
1789        avgMissLatency[access_idx]
1790            .name(name() + "." + cstr + "_avg_miss_latency")
1791            .desc("average " + cstr + " miss latency")
1792            .flags(total | nozero | nonan)
1793            ;
1794        avgMissLatency[access_idx] =
1795            missLatency[access_idx] / misses[access_idx];
1796
1797        for (int i = 0; i < system->maxMasters(); i++) {
1798            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1799        }
1800    }
1801
1802    demandAvgMissLatency
1803        .name(name() + ".demand_avg_miss_latency")
1804        .desc("average overall miss latency")
1805        .flags(total | nozero | nonan)
1806        ;
1807    demandAvgMissLatency = demandMissLatency / demandMisses;
1808    for (int i = 0; i < system->maxMasters(); i++) {
1809        demandAvgMissLatency.subname(i, system->getMasterName(i));
1810    }
1811
1812    overallAvgMissLatency
1813        .name(name() + ".overall_avg_miss_latency")
1814        .desc("average overall miss latency")
1815        .flags(total | nozero | nonan)
1816        ;
1817    overallAvgMissLatency = overallMissLatency / overallMisses;
1818    for (int i = 0; i < system->maxMasters(); i++) {
1819        overallAvgMissLatency.subname(i, system->getMasterName(i));
1820    }
1821
1822    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1823    blocked_cycles
1824        .name(name() + ".blocked_cycles")
1825        .desc("number of cycles access was blocked")
1826        .subname(Blocked_NoMSHRs, "no_mshrs")
1827        .subname(Blocked_NoTargets, "no_targets")
1828        ;
1829
1830
1831    blocked_causes.init(NUM_BLOCKED_CAUSES);
1832    blocked_causes
1833        .name(name() + ".blocked")
1834        .desc("number of cycles access was blocked")
1835        .subname(Blocked_NoMSHRs, "no_mshrs")
1836        .subname(Blocked_NoTargets, "no_targets")
1837        ;
1838
1839    avg_blocked
1840        .name(name() + ".avg_blocked_cycles")
1841        .desc("average number of cycles each access was blocked")
1842        .subname(Blocked_NoMSHRs, "no_mshrs")
1843        .subname(Blocked_NoTargets, "no_targets")
1844        ;
1845
1846    avg_blocked = blocked_cycles / blocked_causes;
1847
1848    unusedPrefetches
1849        .name(name() + ".unused_prefetches")
1850        .desc("number of HardPF blocks evicted w/o reference")
1851        .flags(nozero)
1852        ;
1853
1854    writebacks
1855        .init(system->maxMasters())
1856        .name(name() + ".writebacks")
1857        .desc("number of writebacks")
1858        .flags(total | nozero | nonan)
1859        ;
1860    for (int i = 0; i < system->maxMasters(); i++) {
1861        writebacks.subname(i, system->getMasterName(i));
1862    }
1863
1864    // MSHR statistics
1865    // MSHR hit statistics
1866    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1867        MemCmd cmd(access_idx);
1868        const string &cstr = cmd.toString();
1869
1870        mshr_hits[access_idx]
1871            .init(system->maxMasters())
1872            .name(name() + "." + cstr + "_mshr_hits")
1873            .desc("number of " + cstr + " MSHR hits")
1874            .flags(total | nozero | nonan)
1875            ;
1876        for (int i = 0; i < system->maxMasters(); i++) {
1877            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1878        }
1879    }
1880
1881    demandMshrHits
1882        .name(name() + ".demand_mshr_hits")
1883        .desc("number of demand (read+write) MSHR hits")
1884        .flags(total | nozero | nonan)
1885        ;
1886    demandMshrHits = SUM_DEMAND(mshr_hits);
1887    for (int i = 0; i < system->maxMasters(); i++) {
1888        demandMshrHits.subname(i, system->getMasterName(i));
1889    }
1890
1891    overallMshrHits
1892        .name(name() + ".overall_mshr_hits")
1893        .desc("number of overall MSHR hits")
1894        .flags(total | nozero | nonan)
1895        ;
1896    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1897    for (int i = 0; i < system->maxMasters(); i++) {
1898        overallMshrHits.subname(i, system->getMasterName(i));
1899    }
1900
1901    // MSHR miss statistics
1902    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1903        MemCmd cmd(access_idx);
1904        const string &cstr = cmd.toString();
1905
1906        mshr_misses[access_idx]
1907            .init(system->maxMasters())
1908            .name(name() + "." + cstr + "_mshr_misses")
1909            .desc("number of " + cstr + " MSHR misses")
1910            .flags(total | nozero | nonan)
1911            ;
1912        for (int i = 0; i < system->maxMasters(); i++) {
1913            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1914        }
1915    }
1916
1917    demandMshrMisses
1918        .name(name() + ".demand_mshr_misses")
1919        .desc("number of demand (read+write) MSHR misses")
1920        .flags(total | nozero | nonan)
1921        ;
1922    demandMshrMisses = SUM_DEMAND(mshr_misses);
1923    for (int i = 0; i < system->maxMasters(); i++) {
1924        demandMshrMisses.subname(i, system->getMasterName(i));
1925    }
1926
1927    overallMshrMisses
1928        .name(name() + ".overall_mshr_misses")
1929        .desc("number of overall MSHR misses")
1930        .flags(total | nozero | nonan)
1931        ;
1932    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1933    for (int i = 0; i < system->maxMasters(); i++) {
1934        overallMshrMisses.subname(i, system->getMasterName(i));
1935    }
1936
1937    // MSHR miss latency statistics
1938    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1939        MemCmd cmd(access_idx);
1940        const string &cstr = cmd.toString();
1941
1942        mshr_miss_latency[access_idx]
1943            .init(system->maxMasters())
1944            .name(name() + "." + cstr + "_mshr_miss_latency")
1945            .desc("number of " + cstr + " MSHR miss cycles")
1946            .flags(total | nozero | nonan)
1947            ;
1948        for (int i = 0; i < system->maxMasters(); i++) {
1949            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1950        }
1951    }
1952
1953    demandMshrMissLatency
1954        .name(name() + ".demand_mshr_miss_latency")
1955        .desc("number of demand (read+write) MSHR miss cycles")
1956        .flags(total | nozero | nonan)
1957        ;
1958    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
1959    for (int i = 0; i < system->maxMasters(); i++) {
1960        demandMshrMissLatency.subname(i, system->getMasterName(i));
1961    }
1962
1963    overallMshrMissLatency
1964        .name(name() + ".overall_mshr_miss_latency")
1965        .desc("number of overall MSHR miss cycles")
1966        .flags(total | nozero | nonan)
1967        ;
1968    overallMshrMissLatency =
1969        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
1970    for (int i = 0; i < system->maxMasters(); i++) {
1971        overallMshrMissLatency.subname(i, system->getMasterName(i));
1972    }
1973
1974    // MSHR uncacheable statistics
1975    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1976        MemCmd cmd(access_idx);
1977        const string &cstr = cmd.toString();
1978
1979        mshr_uncacheable[access_idx]
1980            .init(system->maxMasters())
1981            .name(name() + "." + cstr + "_mshr_uncacheable")
1982            .desc("number of " + cstr + " MSHR uncacheable")
1983            .flags(total | nozero | nonan)
1984            ;
1985        for (int i = 0; i < system->maxMasters(); i++) {
1986            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
1987        }
1988    }
1989
1990    overallMshrUncacheable
1991        .name(name() + ".overall_mshr_uncacheable_misses")
1992        .desc("number of overall MSHR uncacheable misses")
1993        .flags(total | nozero | nonan)
1994        ;
1995    overallMshrUncacheable =
1996        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
1997    for (int i = 0; i < system->maxMasters(); i++) {
1998        overallMshrUncacheable.subname(i, system->getMasterName(i));
1999    }
2000
2001    // MSHR miss latency statistics
2002    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2003        MemCmd cmd(access_idx);
2004        const string &cstr = cmd.toString();
2005
2006        mshr_uncacheable_lat[access_idx]
2007            .init(system->maxMasters())
2008            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2009            .desc("number of " + cstr + " MSHR uncacheable cycles")
2010            .flags(total | nozero | nonan)
2011            ;
2012        for (int i = 0; i < system->maxMasters(); i++) {
2013            mshr_uncacheable_lat[access_idx].subname(
2014                i, system->getMasterName(i));
2015        }
2016    }
2017
2018    overallMshrUncacheableLatency
2019        .name(name() + ".overall_mshr_uncacheable_latency")
2020        .desc("number of overall MSHR uncacheable cycles")
2021        .flags(total | nozero | nonan)
2022        ;
2023    overallMshrUncacheableLatency =
2024        SUM_DEMAND(mshr_uncacheable_lat) +
2025        SUM_NON_DEMAND(mshr_uncacheable_lat);
2026    for (int i = 0; i < system->maxMasters(); i++) {
2027        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2028    }
2029
2030#if 0
2031    // MSHR access formulas
2032    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2033        MemCmd cmd(access_idx);
2034        const string &cstr = cmd.toString();
2035
2036        mshrAccesses[access_idx]
2037            .name(name() + "." + cstr + "_mshr_accesses")
2038            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2039            .flags(total | nozero | nonan)
2040            ;
2041        mshrAccesses[access_idx] =
2042            mshr_hits[access_idx] + mshr_misses[access_idx]
2043            + mshr_uncacheable[access_idx];
2044    }
2045
2046    demandMshrAccesses
2047        .name(name() + ".demand_mshr_accesses")
2048        .desc("number of demand (read+write) mshr accesses")
2049        .flags(total | nozero | nonan)
2050        ;
2051    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2052
2053    overallMshrAccesses
2054        .name(name() + ".overall_mshr_accesses")
2055        .desc("number of overall (read+write) mshr accesses")
2056        .flags(total | nozero | nonan)
2057        ;
2058    overallMshrAccesses = overallMshrHits + overallMshrMisses
2059        + overallMshrUncacheable;
2060#endif
2061
2062    // MSHR miss rate formulas
2063    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2064        MemCmd cmd(access_idx);
2065        const string &cstr = cmd.toString();
2066
2067        mshrMissRate[access_idx]
2068            .name(name() + "." + cstr + "_mshr_miss_rate")
2069            .desc("mshr miss rate for " + cstr + " accesses")
2070            .flags(total | nozero | nonan)
2071            ;
2072        mshrMissRate[access_idx] =
2073            mshr_misses[access_idx] / accesses[access_idx];
2074
2075        for (int i = 0; i < system->maxMasters(); i++) {
2076            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2077        }
2078    }
2079
2080    demandMshrMissRate
2081        .name(name() + ".demand_mshr_miss_rate")
2082        .desc("mshr miss rate for demand accesses")
2083        .flags(total | nozero | nonan)
2084        ;
2085    demandMshrMissRate = demandMshrMisses / demandAccesses;
2086    for (int i = 0; i < system->maxMasters(); i++) {
2087        demandMshrMissRate.subname(i, system->getMasterName(i));
2088    }
2089
2090    overallMshrMissRate
2091        .name(name() + ".overall_mshr_miss_rate")
2092        .desc("mshr miss rate for overall accesses")
2093        .flags(total | nozero | nonan)
2094        ;
2095    overallMshrMissRate = overallMshrMisses / overallAccesses;
2096    for (int i = 0; i < system->maxMasters(); i++) {
2097        overallMshrMissRate.subname(i, system->getMasterName(i));
2098    }
2099
2100    // mshrMiss latency formulas
2101    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2102        MemCmd cmd(access_idx);
2103        const string &cstr = cmd.toString();
2104
2105        avgMshrMissLatency[access_idx]
2106            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2107            .desc("average " + cstr + " mshr miss latency")
2108            .flags(total | nozero | nonan)
2109            ;
2110        avgMshrMissLatency[access_idx] =
2111            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2112
2113        for (int i = 0; i < system->maxMasters(); i++) {
2114            avgMshrMissLatency[access_idx].subname(
2115                i, system->getMasterName(i));
2116        }
2117    }
2118
2119    demandAvgMshrMissLatency
2120        .name(name() + ".demand_avg_mshr_miss_latency")
2121        .desc("average overall mshr miss latency")
2122        .flags(total | nozero | nonan)
2123        ;
2124    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2125    for (int i = 0; i < system->maxMasters(); i++) {
2126        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2127    }
2128
2129    overallAvgMshrMissLatency
2130        .name(name() + ".overall_avg_mshr_miss_latency")
2131        .desc("average overall mshr miss latency")
2132        .flags(total | nozero | nonan)
2133        ;
2134    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2135    for (int i = 0; i < system->maxMasters(); i++) {
2136        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2137    }
2138
2139    // mshrUncacheable latency formulas
2140    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2141        MemCmd cmd(access_idx);
2142        const string &cstr = cmd.toString();
2143
2144        avgMshrUncacheableLatency[access_idx]
2145            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2146            .desc("average " + cstr + " mshr uncacheable latency")
2147            .flags(total | nozero | nonan)
2148            ;
2149        avgMshrUncacheableLatency[access_idx] =
2150            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2151
2152        for (int i = 0; i < system->maxMasters(); i++) {
2153            avgMshrUncacheableLatency[access_idx].subname(
2154                i, system->getMasterName(i));
2155        }
2156    }
2157
2158    overallAvgMshrUncacheableLatency
2159        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2160        .desc("average overall mshr uncacheable latency")
2161        .flags(total | nozero | nonan)
2162        ;
2163    overallAvgMshrUncacheableLatency =
2164        overallMshrUncacheableLatency / overallMshrUncacheable;
2165    for (int i = 0; i < system->maxMasters(); i++) {
2166        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2167    }
2168
2169    replacements
2170        .name(name() + ".replacements")
2171        .desc("number of replacements")
2172        ;
2173}
2174
2175///////////////
2176//
2177// CpuSidePort
2178//
2179///////////////
2180bool
2181BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2182{
2183    // Snoops shouldn't happen when bypassing caches
2184    assert(!cache->system->bypassCaches());
2185
2186    assert(pkt->isResponse());
2187
2188    // Express snoop responses from master to slave, e.g., from L1 to L2
2189    cache->recvTimingSnoopResp(pkt);
2190    return true;
2191}
2192
2193
2194bool
2195BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2196{
2197    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2198        // always let express snoop packets through even if blocked
2199        return true;
2200    } else if (blocked || mustSendRetry) {
2201        // either already committed to send a retry, or blocked
2202        mustSendRetry = true;
2203        return false;
2204    }
2205    mustSendRetry = false;
2206    return true;
2207}
2208
2209bool
2210BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2211{
2212    assert(pkt->isRequest());
2213
2214    if (cache->system->bypassCaches()) {
2215        // Just forward the packet if caches are disabled.
2216        // @todo This should really enqueue the packet rather
2217        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2218        assert(success);
2219        return true;
2220    } else if (tryTiming(pkt)) {
2221        cache->recvTimingReq(pkt);
2222        return true;
2223    }
2224    return false;
2225}
2226
2227Tick
2228BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2229{
2230    if (cache->system->bypassCaches()) {
2231        // Forward the request if the system is in cache bypass mode.
2232        return cache->memSidePort.sendAtomic(pkt);
2233    } else {
2234        return cache->recvAtomic(pkt);
2235    }
2236}
2237
2238void
2239BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2240{
2241    if (cache->system->bypassCaches()) {
2242        // The cache should be flushed if we are in cache bypass mode,
2243        // so we don't need to check if we need to update anything.
2244        cache->memSidePort.sendFunctional(pkt);
2245        return;
2246    }
2247
2248    // functional request
2249    cache->functionalAccess(pkt, true);
2250}
2251
2252AddrRangeList
2253BaseCache::CpuSidePort::getAddrRanges() const
2254{
2255    return cache->getAddrRanges();
2256}
2257
2258
2259BaseCache::
2260CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2261                         const std::string &_label)
2262    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2263{
2264}
2265
2266///////////////
2267//
2268// MemSidePort
2269//
2270///////////////
2271bool
2272BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2273{
2274    cache->recvTimingResp(pkt);
2275    return true;
2276}
2277
2278// Express snooping requests to memside port
2279void
2280BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2281{
2282    // Snoops shouldn't happen when bypassing caches
2283    assert(!cache->system->bypassCaches());
2284
2285    // handle snooping requests
2286    cache->recvTimingSnoopReq(pkt);
2287}
2288
2289Tick
2290BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2291{
2292    // Snoops shouldn't happen when bypassing caches
2293    assert(!cache->system->bypassCaches());
2294
2295    return cache->recvAtomicSnoop(pkt);
2296}
2297
2298void
2299BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2300{
2301    // Snoops shouldn't happen when bypassing caches
2302    assert(!cache->system->bypassCaches());
2303
2304    // functional snoop (note that in contrast to atomic we don't have
2305    // a specific functionalSnoop method, as they have the same
2306    // behaviour regardless)
2307    cache->functionalAccess(pkt, false);
2308}
2309
2310void
2311BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2312{
2313    // sanity check
2314    assert(!waitingOnRetry);
2315
2316    // there should never be any deferred request packets in the
2317    // queue, instead we resly on the cache to provide the packets
2318    // from the MSHR queue or write queue
2319    assert(deferredPacketReadyTime() == MaxTick);
2320
2321    // check for request packets (requests & writebacks)
2322    QueueEntry* entry = cache.getNextQueueEntry();
2323
2324    if (!entry) {
2325        // can happen if e.g. we attempt a writeback and fail, but
2326        // before the retry, the writeback is eliminated because
2327        // we snoop another cache's ReadEx.
2328    } else {
2329        // let our snoop responses go first if there are responses to
2330        // the same addresses
2331        if (checkConflictingSnoop(entry->blkAddr)) {
2332            return;
2333        }
2334        waitingOnRetry = entry->sendPacket(cache);
2335    }
2336
2337    // if we succeeded and are not waiting for a retry, schedule the
2338    // next send considering when the next queue is ready, note that
2339    // snoop responses have their own packet queue and thus schedule
2340    // their own events
2341    if (!waitingOnRetry) {
2342        schedSendEvent(cache.nextQueueReadyTime());
2343    }
2344}
2345
2346BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2347                                    BaseCache *_cache,
2348                                    const std::string &_label)
2349    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2350      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2351      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2352{
2353}
2354