base.cc revision 12744
1/* 2 * Copyright (c) 2012-2013, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Nikos Nikoleris 42 */ 43 44/** 45 * @file 46 * Definition of BaseCache functions. 47 */ 48 49#include "mem/cache/base.hh" 50 51#include "base/compiler.hh" 52#include "base/logging.hh" 53#include "debug/Cache.hh" 54#include "debug/CachePort.hh" 55#include "debug/CacheVerbose.hh" 56#include "mem/cache/mshr.hh" 57#include "mem/cache/prefetch/base.hh" 58#include "mem/cache/queue_entry.hh" 59#include "params/BaseCache.hh" 60#include "sim/core.hh" 61 62class BaseMasterPort; 63class BaseSlavePort; 64 65using namespace std; 66 67BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, 68 BaseCache *_cache, 69 const std::string &_label) 70 : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label), 71 blocked(false), mustSendRetry(false), 72 sendRetryEvent([this]{ processSendRetry(); }, _name) 73{ 74} 75 76BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) 77 : MemObject(p), 78 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), 79 memSidePort(p->name + ".mem_side", this, "MemSidePort"), 80 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below 81 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below 82 tags(p->tags), 83 prefetcher(p->prefetcher), 84 prefetchOnAccess(p->prefetch_on_access), 85 writebackClean(p->writeback_clean), 86 tempBlockWriteback(nullptr), 87 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 88 name(), false, 89 EventBase::Delayed_Writeback_Pri), 90 blkSize(blk_size), 91 lookupLatency(p->tag_latency), 92 dataLatency(p->data_latency), 93 forwardLatency(p->tag_latency), 94 fillLatency(p->data_latency), 95 responseLatency(p->response_latency), 96 numTarget(p->tgts_per_mshr), 97 forwardSnoops(true), 98 clusivity(p->clusivity), 99 isReadOnly(p->is_read_only), 100 blocked(0), 101 order(0), 102 noTargetMSHR(nullptr), 103 missCount(p->max_miss_count), 104 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()), 105 system(p->system) 106{ 107 // the MSHR queue has no reserve entries as we check the MSHR 108 // queue on every single allocation, whereas the write queue has 109 // as many reserve entries as we have MSHRs, since every MSHR may 110 // eventually require a writeback, and we do not check the write 111 // buffer before committing to an MSHR 112 113 // forward snoops is overridden in init() once we can query 114 // whether the connected master is actually snooping or not 115 116 tempBlock = new TempCacheBlk(); 117 tempBlock->data = new uint8_t[blkSize]; 118 119 tags->setCache(this); 120 if (prefetcher) 121 prefetcher->setCache(this); 122} 123 124BaseCache::~BaseCache() 125{ 126 delete [] tempBlock->data; 127 delete tempBlock; 128} 129 130void 131BaseCache::CacheSlavePort::setBlocked() 132{ 133 assert(!blocked); 134 DPRINTF(CachePort, "Port is blocking new requests\n"); 135 blocked = true; 136 // if we already scheduled a retry in this cycle, but it has not yet 137 // happened, cancel it 138 if (sendRetryEvent.scheduled()) { 139 owner.deschedule(sendRetryEvent); 140 DPRINTF(CachePort, "Port descheduled retry\n"); 141 mustSendRetry = true; 142 } 143} 144 145void 146BaseCache::CacheSlavePort::clearBlocked() 147{ 148 assert(blocked); 149 DPRINTF(CachePort, "Port is accepting new requests\n"); 150 blocked = false; 151 if (mustSendRetry) { 152 // @TODO: need to find a better time (next cycle?) 153 owner.schedule(sendRetryEvent, curTick() + 1); 154 } 155} 156 157void 158BaseCache::CacheSlavePort::processSendRetry() 159{ 160 DPRINTF(CachePort, "Port is sending retry\n"); 161 162 // reset the flag and call retry 163 mustSendRetry = false; 164 sendRetryReq(); 165} 166 167Addr 168BaseCache::regenerateBlkAddr(CacheBlk* blk) 169{ 170 if (blk != tempBlock) { 171 return tags->regenerateBlkAddr(blk); 172 } else { 173 return tempBlock->getAddr(); 174 } 175} 176 177void 178BaseCache::init() 179{ 180 if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) 181 fatal("Cache ports on %s are not connected\n", name()); 182 cpuSidePort.sendRangeChange(); 183 forwardSnoops = cpuSidePort.isSnooping(); 184} 185 186BaseMasterPort & 187BaseCache::getMasterPort(const std::string &if_name, PortID idx) 188{ 189 if (if_name == "mem_side") { 190 return memSidePort; 191 } else { 192 return MemObject::getMasterPort(if_name, idx); 193 } 194} 195 196BaseSlavePort & 197BaseCache::getSlavePort(const std::string &if_name, PortID idx) 198{ 199 if (if_name == "cpu_side") { 200 return cpuSidePort; 201 } else { 202 return MemObject::getSlavePort(if_name, idx); 203 } 204} 205 206bool 207BaseCache::inRange(Addr addr) const 208{ 209 for (const auto& r : addrRanges) { 210 if (r.contains(addr)) { 211 return true; 212 } 213 } 214 return false; 215} 216 217void 218BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 219{ 220 if (pkt->needsResponse()) { 221 pkt->makeTimingResponse(); 222 // @todo: Make someone pay for this 223 pkt->headerDelay = pkt->payloadDelay = 0; 224 225 // In this case we are considering request_time that takes 226 // into account the delay of the xbar, if any, and just 227 // lat, neglecting responseLatency, modelling hit latency 228 // just as lookupLatency or or the value of lat overriden 229 // by access(), that calls accessBlock() function. 230 cpuSidePort.schedTimingResp(pkt, request_time, true); 231 } else { 232 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 233 pkt->print()); 234 235 // queue the packet for deletion, as the sending cache is 236 // still relying on it; if the block is found in access(), 237 // CleanEvict and Writeback messages will be deleted 238 // here as well 239 pendingDelete.reset(pkt); 240 } 241} 242 243void 244BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 245 Tick forward_time, Tick request_time) 246{ 247 if (mshr) { 248 /// MSHR hit 249 /// @note writebacks will be checked in getNextMSHR() 250 /// for any conflicting requests to the same block 251 252 //@todo remove hw_pf here 253 254 // Coalesce unless it was a software prefetch (see above). 255 if (pkt) { 256 assert(!pkt->isWriteback()); 257 // CleanEvicts corresponding to blocks which have 258 // outstanding requests in MSHRs are simply sunk here 259 if (pkt->cmd == MemCmd::CleanEvict) { 260 pendingDelete.reset(pkt); 261 } else if (pkt->cmd == MemCmd::WriteClean) { 262 // A WriteClean should never coalesce with any 263 // outstanding cache maintenance requests. 264 265 // We use forward_time here because there is an 266 // uncached memory write, forwarded to WriteBuffer. 267 allocateWriteBuffer(pkt, forward_time); 268 } else { 269 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 270 pkt->print()); 271 272 assert(pkt->req->masterId() < system->maxMasters()); 273 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 274 275 // We use forward_time here because it is the same 276 // considering new targets. We have multiple 277 // requests for the same address here. It 278 // specifies the latency to allocate an internal 279 // buffer and to schedule an event to the queued 280 // port and also takes into account the additional 281 // delay of the xbar. 282 mshr->allocateTarget(pkt, forward_time, order++, 283 allocOnFill(pkt->cmd)); 284 if (mshr->getNumTargets() == numTarget) { 285 noTargetMSHR = mshr; 286 setBlocked(Blocked_NoTargets); 287 // need to be careful with this... if this mshr isn't 288 // ready yet (i.e. time > curTick()), we don't want to 289 // move it ahead of mshrs that are ready 290 // mshrQueue.moveToFront(mshr); 291 } 292 } 293 } 294 } else { 295 // no MSHR 296 assert(pkt->req->masterId() < system->maxMasters()); 297 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 298 299 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { 300 // We use forward_time here because there is an 301 // writeback or writeclean, forwarded to WriteBuffer. 302 allocateWriteBuffer(pkt, forward_time); 303 } else { 304 if (blk && blk->isValid()) { 305 // If we have a write miss to a valid block, we 306 // need to mark the block non-readable. Otherwise 307 // if we allow reads while there's an outstanding 308 // write miss, the read could return stale data 309 // out of the cache block... a more aggressive 310 // system could detect the overlap (if any) and 311 // forward data out of the MSHRs, but we don't do 312 // that yet. Note that we do need to leave the 313 // block valid so that it stays in the cache, in 314 // case we get an upgrade response (and hence no 315 // new data) when the write miss completes. 316 // As long as CPUs do proper store/load forwarding 317 // internally, and have a sufficiently weak memory 318 // model, this is probably unnecessary, but at some 319 // point it must have seemed like we needed it... 320 assert((pkt->needsWritable() && !blk->isWritable()) || 321 pkt->req->isCacheMaintenance()); 322 blk->status &= ~BlkReadable; 323 } 324 // Here we are using forward_time, modelling the latency of 325 // a miss (outbound) just as forwardLatency, neglecting the 326 // lookupLatency component. 327 allocateMissBuffer(pkt, forward_time); 328 } 329 } 330} 331 332void 333BaseCache::recvTimingReq(PacketPtr pkt) 334{ 335 // anything that is merely forwarded pays for the forward latency and 336 // the delay provided by the crossbar 337 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 338 339 // We use lookupLatency here because it is used to specify the latency 340 // to access. 341 Cycles lat = lookupLatency; 342 CacheBlk *blk = nullptr; 343 bool satisfied = false; 344 { 345 PacketList writebacks; 346 // Note that lat is passed by reference here. The function 347 // access() calls accessBlock() which can modify lat value. 348 satisfied = access(pkt, blk, lat, writebacks); 349 350 // copy writebacks to write buffer here to ensure they logically 351 // proceed anything happening below 352 doWritebacks(writebacks, forward_time); 353 } 354 355 // Here we charge the headerDelay that takes into account the latencies 356 // of the bus, if the packet comes from it. 357 // The latency charged it is just lat that is the value of lookupLatency 358 // modified by access() function, or if not just lookupLatency. 359 // In case of a hit we are neglecting response latency. 360 // In case of a miss we are neglecting forward latency. 361 Tick request_time = clockEdge(lat) + pkt->headerDelay; 362 // Here we reset the timing of the packet. 363 pkt->headerDelay = pkt->payloadDelay = 0; 364 // track time of availability of next prefetch, if any 365 Tick next_pf_time = MaxTick; 366 367 if (satisfied) { 368 // if need to notify the prefetcher we have to do it before 369 // anything else as later handleTimingReqHit might turn the 370 // packet in a response 371 if (prefetcher && 372 (prefetchOnAccess || (blk && blk->wasPrefetched()))) { 373 if (blk) 374 blk->status &= ~BlkHWPrefetched; 375 376 // Don't notify on SWPrefetch 377 if (!pkt->cmd.isSWPrefetch()) { 378 assert(!pkt->req->isCacheMaintenance()); 379 next_pf_time = prefetcher->notify(pkt); 380 } 381 } 382 383 handleTimingReqHit(pkt, blk, request_time); 384 } else { 385 handleTimingReqMiss(pkt, blk, forward_time, request_time); 386 387 // We should call the prefetcher reguardless if the request is 388 // satisfied or not, reguardless if the request is in the MSHR 389 // or not. The request could be a ReadReq hit, but still not 390 // satisfied (potentially because of a prior write to the same 391 // cache line. So, even when not satisfied, there is an MSHR 392 // already allocated for this, we need to let the prefetcher 393 // know about the request 394 395 // Don't notify prefetcher on SWPrefetch or cache maintenance 396 // operations 397 if (prefetcher && pkt && 398 !pkt->cmd.isSWPrefetch() && 399 !pkt->req->isCacheMaintenance()) { 400 next_pf_time = prefetcher->notify(pkt); 401 } 402 } 403 404 if (next_pf_time != MaxTick) { 405 schedMemSideSendEvent(next_pf_time); 406 } 407} 408 409void 410BaseCache::handleUncacheableWriteResp(PacketPtr pkt) 411{ 412 Tick completion_time = clockEdge(responseLatency) + 413 pkt->headerDelay + pkt->payloadDelay; 414 415 // Reset the bus additional time as it is now accounted for 416 pkt->headerDelay = pkt->payloadDelay = 0; 417 418 cpuSidePort.schedTimingResp(pkt, completion_time, true); 419} 420 421void 422BaseCache::recvTimingResp(PacketPtr pkt) 423{ 424 assert(pkt->isResponse()); 425 426 // all header delay should be paid for by the crossbar, unless 427 // this is a prefetch response from above 428 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 429 "%s saw a non-zero packet delay\n", name()); 430 431 const bool is_error = pkt->isError(); 432 433 if (is_error) { 434 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 435 pkt->print()); 436 } 437 438 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 439 pkt->print()); 440 441 // if this is a write, we should be looking at an uncacheable 442 // write 443 if (pkt->isWrite()) { 444 assert(pkt->req->isUncacheable()); 445 handleUncacheableWriteResp(pkt); 446 return; 447 } 448 449 // we have dealt with any (uncacheable) writes above, from here on 450 // we know we are dealing with an MSHR due to a miss or a prefetch 451 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 452 assert(mshr); 453 454 if (mshr == noTargetMSHR) { 455 // we always clear at least one target 456 clearBlocked(Blocked_NoTargets); 457 noTargetMSHR = nullptr; 458 } 459 460 // Initial target is used just for stats 461 MSHR::Target *initial_tgt = mshr->getTarget(); 462 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 463 Tick miss_latency = curTick() - initial_tgt->recvTime; 464 465 if (pkt->req->isUncacheable()) { 466 assert(pkt->req->masterId() < system->maxMasters()); 467 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 468 miss_latency; 469 } else { 470 assert(pkt->req->masterId() < system->maxMasters()); 471 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 472 miss_latency; 473 } 474 475 PacketList writebacks; 476 477 bool is_fill = !mshr->isForward && 478 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 479 480 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 481 482 if (is_fill && !is_error) { 483 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 484 pkt->getAddr()); 485 486 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill()); 487 assert(blk != nullptr); 488 } 489 490 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { 491 // The block was marked not readable while there was a pending 492 // cache maintenance operation, restore its flag. 493 blk->status |= BlkReadable; 494 } 495 496 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { 497 // If at this point the referenced block is writable and the 498 // response is not a cache invalidate, we promote targets that 499 // were deferred as we couldn't guarrantee a writable copy 500 mshr->promoteWritable(); 501 } 502 503 serviceMSHRTargets(mshr, pkt, blk, writebacks); 504 505 if (mshr->promoteDeferredTargets()) { 506 // avoid later read getting stale data while write miss is 507 // outstanding.. see comment in timingAccess() 508 if (blk) { 509 blk->status &= ~BlkReadable; 510 } 511 mshrQueue.markPending(mshr); 512 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 513 } else { 514 // while we deallocate an mshr from the queue we still have to 515 // check the isFull condition before and after as we might 516 // have been using the reserved entries already 517 const bool was_full = mshrQueue.isFull(); 518 mshrQueue.deallocate(mshr); 519 if (was_full && !mshrQueue.isFull()) { 520 clearBlocked(Blocked_NoMSHRs); 521 } 522 523 // Request the bus for a prefetch if this deallocation freed enough 524 // MSHRs for a prefetch to take place 525 if (prefetcher && mshrQueue.canPrefetch()) { 526 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 527 clockEdge()); 528 if (next_pf_time != MaxTick) 529 schedMemSideSendEvent(next_pf_time); 530 } 531 } 532 533 // if we used temp block, check to see if its valid and then clear it out 534 if (blk == tempBlock && tempBlock->isValid()) { 535 evictBlock(blk, writebacks); 536 } 537 538 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 539 // copy writebacks to write buffer 540 doWritebacks(writebacks, forward_time); 541 542 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 543 delete pkt; 544} 545 546 547Tick 548BaseCache::recvAtomic(PacketPtr pkt) 549{ 550 // We are in atomic mode so we pay just for lookupLatency here. 551 Cycles lat = lookupLatency; 552 553 // follow the same flow as in recvTimingReq, and check if a cache 554 // above us is responding 555 if (pkt->cacheResponding() && !pkt->isClean()) { 556 assert(!pkt->req->isCacheInvalidate()); 557 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 558 pkt->print()); 559 560 // if a cache is responding, and it had the line in Owned 561 // rather than Modified state, we need to invalidate any 562 // copies that are not on the same path to memory 563 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 564 lat += ticksToCycles(memSidePort.sendAtomic(pkt)); 565 566 return lat * clockPeriod(); 567 } 568 569 // should assert here that there are no outstanding MSHRs or 570 // writebacks... that would mean that someone used an atomic 571 // access in timing mode 572 573 CacheBlk *blk = nullptr; 574 PacketList writebacks; 575 bool satisfied = access(pkt, blk, lat, writebacks); 576 577 if (pkt->isClean() && blk && blk->isDirty()) { 578 // A cache clean opearation is looking for a dirty 579 // block. If a dirty block is encountered a WriteClean 580 // will update any copies to the path to the memory 581 // until the point of reference. 582 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 583 __func__, pkt->print(), blk->print()); 584 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 585 writebacks.push_back(wb_pkt); 586 pkt->setSatisfied(); 587 } 588 589 // handle writebacks resulting from the access here to ensure they 590 // logically proceed anything happening below 591 doWritebacksAtomic(writebacks); 592 assert(writebacks.empty()); 593 594 if (!satisfied) { 595 lat += handleAtomicReqMiss(pkt, blk, writebacks); 596 } 597 598 // Note that we don't invoke the prefetcher at all in atomic mode. 599 // It's not clear how to do it properly, particularly for 600 // prefetchers that aggressively generate prefetch candidates and 601 // rely on bandwidth contention to throttle them; these will tend 602 // to pollute the cache in atomic mode since there is no bandwidth 603 // contention. If we ever do want to enable prefetching in atomic 604 // mode, though, this is the place to do it... see timingAccess() 605 // for an example (though we'd want to issue the prefetch(es) 606 // immediately rather than calling requestMemSideBus() as we do 607 // there). 608 609 // do any writebacks resulting from the response handling 610 doWritebacksAtomic(writebacks); 611 612 // if we used temp block, check to see if its valid and if so 613 // clear it out, but only do so after the call to recvAtomic is 614 // finished so that any downstream observers (such as a snoop 615 // filter), first see the fill, and only then see the eviction 616 if (blk == tempBlock && tempBlock->isValid()) { 617 // the atomic CPU calls recvAtomic for fetch and load/store 618 // sequentuially, and we may already have a tempBlock 619 // writeback from the fetch that we have not yet sent 620 if (tempBlockWriteback) { 621 // if that is the case, write the prevoius one back, and 622 // do not schedule any new event 623 writebackTempBlockAtomic(); 624 } else { 625 // the writeback/clean eviction happens after the call to 626 // recvAtomic has finished (but before any successive 627 // calls), so that the response handling from the fill is 628 // allowed to happen first 629 schedule(writebackTempBlockAtomicEvent, curTick()); 630 } 631 632 tempBlockWriteback = evictBlock(blk); 633 } 634 635 if (pkt->needsResponse()) { 636 pkt->makeAtomicResponse(); 637 } 638 639 return lat * clockPeriod(); 640} 641 642void 643BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) 644{ 645 Addr blk_addr = pkt->getBlockAddr(blkSize); 646 bool is_secure = pkt->isSecure(); 647 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 648 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 649 650 pkt->pushLabel(name()); 651 652 CacheBlkPrintWrapper cbpw(blk); 653 654 // Note that just because an L2/L3 has valid data doesn't mean an 655 // L1 doesn't have a more up-to-date modified copy that still 656 // needs to be found. As a result we always update the request if 657 // we have it, but only declare it satisfied if we are the owner. 658 659 // see if we have data at all (owned or otherwise) 660 bool have_data = blk && blk->isValid() 661 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 662 blk->data); 663 664 // data we have is dirty if marked as such or if we have an 665 // in-service MSHR that is pending a modified line 666 bool have_dirty = 667 have_data && (blk->isDirty() || 668 (mshr && mshr->inService && mshr->isPendingModified())); 669 670 bool done = have_dirty || 671 cpuSidePort.checkFunctional(pkt) || 672 mshrQueue.checkFunctional(pkt, blk_addr) || 673 writeBuffer.checkFunctional(pkt, blk_addr) || 674 memSidePort.checkFunctional(pkt); 675 676 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 677 (blk && blk->isValid()) ? "valid " : "", 678 have_data ? "data " : "", done ? "done " : ""); 679 680 // We're leaving the cache, so pop cache->name() label 681 pkt->popLabel(); 682 683 if (done) { 684 pkt->makeResponse(); 685 } else { 686 // if it came as a request from the CPU side then make sure it 687 // continues towards the memory side 688 if (from_cpu_side) { 689 memSidePort.sendFunctional(pkt); 690 } else if (cpuSidePort.isSnooping()) { 691 // if it came from the memory side, it must be a snoop request 692 // and we should only forward it if we are forwarding snoops 693 cpuSidePort.sendFunctionalSnoop(pkt); 694 } 695 } 696} 697 698 699void 700BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 701{ 702 assert(pkt->isRequest()); 703 704 uint64_t overwrite_val; 705 bool overwrite_mem; 706 uint64_t condition_val64; 707 uint32_t condition_val32; 708 709 int offset = pkt->getOffset(blkSize); 710 uint8_t *blk_data = blk->data + offset; 711 712 assert(sizeof(uint64_t) >= pkt->getSize()); 713 714 overwrite_mem = true; 715 // keep a copy of our possible write value, and copy what is at the 716 // memory address into the packet 717 pkt->writeData((uint8_t *)&overwrite_val); 718 pkt->setData(blk_data); 719 720 if (pkt->req->isCondSwap()) { 721 if (pkt->getSize() == sizeof(uint64_t)) { 722 condition_val64 = pkt->req->getExtraData(); 723 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 724 sizeof(uint64_t)); 725 } else if (pkt->getSize() == sizeof(uint32_t)) { 726 condition_val32 = (uint32_t)pkt->req->getExtraData(); 727 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 728 sizeof(uint32_t)); 729 } else 730 panic("Invalid size for conditional read/write\n"); 731 } 732 733 if (overwrite_mem) { 734 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 735 blk->status |= BlkDirty; 736 } 737} 738 739QueueEntry* 740BaseCache::getNextQueueEntry() 741{ 742 // Check both MSHR queue and write buffer for potential requests, 743 // note that null does not mean there is no request, it could 744 // simply be that it is not ready 745 MSHR *miss_mshr = mshrQueue.getNext(); 746 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 747 748 // If we got a write buffer request ready, first priority is a 749 // full write buffer, otherwise we favour the miss requests 750 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 751 // need to search MSHR queue for conflicting earlier miss. 752 MSHR *conflict_mshr = 753 mshrQueue.findPending(wq_entry->blkAddr, 754 wq_entry->isSecure); 755 756 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 757 // Service misses in order until conflict is cleared. 758 return conflict_mshr; 759 760 // @todo Note that we ignore the ready time of the conflict here 761 } 762 763 // No conflicts; issue write 764 return wq_entry; 765 } else if (miss_mshr) { 766 // need to check for conflicting earlier writeback 767 WriteQueueEntry *conflict_mshr = 768 writeBuffer.findPending(miss_mshr->blkAddr, 769 miss_mshr->isSecure); 770 if (conflict_mshr) { 771 // not sure why we don't check order here... it was in the 772 // original code but commented out. 773 774 // The only way this happens is if we are 775 // doing a write and we didn't have permissions 776 // then subsequently saw a writeback (owned got evicted) 777 // We need to make sure to perform the writeback first 778 // To preserve the dirty data, then we can issue the write 779 780 // should we return wq_entry here instead? I.e. do we 781 // have to flush writes in order? I don't think so... not 782 // for Alpha anyway. Maybe for x86? 783 return conflict_mshr; 784 785 // @todo Note that we ignore the ready time of the conflict here 786 } 787 788 // No conflicts; issue read 789 return miss_mshr; 790 } 791 792 // fall through... no pending requests. Try a prefetch. 793 assert(!miss_mshr && !wq_entry); 794 if (prefetcher && mshrQueue.canPrefetch()) { 795 // If we have a miss queue slot, we can try a prefetch 796 PacketPtr pkt = prefetcher->getPacket(); 797 if (pkt) { 798 Addr pf_addr = pkt->getBlockAddr(blkSize); 799 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 800 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 801 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 802 // Update statistic on number of prefetches issued 803 // (hwpf_mshr_misses) 804 assert(pkt->req->masterId() < system->maxMasters()); 805 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 806 807 // allocate an MSHR and return it, note 808 // that we send the packet straight away, so do not 809 // schedule the send 810 return allocateMissBuffer(pkt, curTick(), false); 811 } else { 812 // free the request and packet 813 delete pkt->req; 814 delete pkt; 815 } 816 } 817 } 818 819 return nullptr; 820} 821 822void 823BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) 824{ 825 assert(pkt->isRequest()); 826 827 assert(blk && blk->isValid()); 828 // Occasionally this is not true... if we are a lower-level cache 829 // satisfying a string of Read and ReadEx requests from 830 // upper-level caches, a Read will mark the block as shared but we 831 // can satisfy a following ReadEx anyway since we can rely on the 832 // Read requester(s) to have buffered the ReadEx snoop and to 833 // invalidate their blocks after receiving them. 834 // assert(!pkt->needsWritable() || blk->isWritable()); 835 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 836 837 // Check RMW operations first since both isRead() and 838 // isWrite() will be true for them 839 if (pkt->cmd == MemCmd::SwapReq) { 840 cmpAndSwap(blk, pkt); 841 } else if (pkt->isWrite()) { 842 // we have the block in a writable state and can go ahead, 843 // note that the line may be also be considered writable in 844 // downstream caches along the path to memory, but always 845 // Exclusive, and never Modified 846 assert(blk->isWritable()); 847 // Write or WriteLine at the first cache with block in writable state 848 if (blk->checkWrite(pkt)) { 849 pkt->writeDataToBlock(blk->data, blkSize); 850 } 851 // Always mark the line as dirty (and thus transition to the 852 // Modified state) even if we are a failed StoreCond so we 853 // supply data to any snoops that have appended themselves to 854 // this cache before knowing the store will fail. 855 blk->status |= BlkDirty; 856 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 857 } else if (pkt->isRead()) { 858 if (pkt->isLLSC()) { 859 blk->trackLoadLocked(pkt); 860 } 861 862 // all read responses have a data payload 863 assert(pkt->hasRespData()); 864 pkt->setDataFromBlock(blk->data, blkSize); 865 } else if (pkt->isUpgrade()) { 866 // sanity check 867 assert(!pkt->hasSharers()); 868 869 if (blk->isDirty()) { 870 // we were in the Owned state, and a cache above us that 871 // has the line in Shared state needs to be made aware 872 // that the data it already has is in fact dirty 873 pkt->setCacheResponding(); 874 blk->status &= ~BlkDirty; 875 } 876 } else { 877 assert(pkt->isInvalidate()); 878 invalidateBlock(blk); 879 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 880 pkt->print()); 881 } 882} 883 884///////////////////////////////////////////////////// 885// 886// Access path: requests coming in from the CPU side 887// 888///////////////////////////////////////////////////// 889 890bool 891BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 892 PacketList &writebacks) 893{ 894 // sanity check 895 assert(pkt->isRequest()); 896 897 chatty_assert(!(isReadOnly && pkt->isWrite()), 898 "Should never see a write in a read-only cache %s\n", 899 name()); 900 901 // Here lat is the value passed as parameter to accessBlock() function 902 // that can modify its value. 903 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat); 904 905 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), 906 blk ? "hit " + blk->print() : "miss"); 907 908 if (pkt->req->isCacheMaintenance()) { 909 // A cache maintenance operation is always forwarded to the 910 // memory below even if the block is found in dirty state. 911 912 // We defer any changes to the state of the block until we 913 // create and mark as in service the mshr for the downstream 914 // packet. 915 return false; 916 } 917 918 if (pkt->isEviction()) { 919 // We check for presence of block in above caches before issuing 920 // Writeback or CleanEvict to write buffer. Therefore the only 921 // possible cases can be of a CleanEvict packet coming from above 922 // encountering a Writeback generated in this cache peer cache and 923 // waiting in the write buffer. Cases of upper level peer caches 924 // generating CleanEvict and Writeback or simply CleanEvict and 925 // CleanEvict almost simultaneously will be caught by snoops sent out 926 // by crossbar. 927 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 928 pkt->isSecure()); 929 if (wb_entry) { 930 assert(wb_entry->getNumTargets() == 1); 931 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 932 assert(wbPkt->isWriteback()); 933 934 if (pkt->isCleanEviction()) { 935 // The CleanEvict and WritebackClean snoops into other 936 // peer caches of the same level while traversing the 937 // crossbar. If a copy of the block is found, the 938 // packet is deleted in the crossbar. Hence, none of 939 // the other upper level caches connected to this 940 // cache have the block, so we can clear the 941 // BLOCK_CACHED flag in the Writeback if set and 942 // discard the CleanEvict by returning true. 943 wbPkt->clearBlockCached(); 944 return true; 945 } else { 946 assert(pkt->cmd == MemCmd::WritebackDirty); 947 // Dirty writeback from above trumps our clean 948 // writeback... discard here 949 // Note: markInService will remove entry from writeback buffer. 950 markInService(wb_entry); 951 delete wbPkt; 952 } 953 } 954 } 955 956 // Writeback handling is special case. We can write the block into 957 // the cache without having a writeable copy (or any copy at all). 958 if (pkt->isWriteback()) { 959 assert(blkSize == pkt->getSize()); 960 961 // we could get a clean writeback while we are having 962 // outstanding accesses to a block, do the simple thing for 963 // now and drop the clean writeback so that we do not upset 964 // any ordering/decisions about ownership already taken 965 if (pkt->cmd == MemCmd::WritebackClean && 966 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 967 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 968 "dropping\n", pkt->getAddr()); 969 return true; 970 } 971 972 if (!blk) { 973 // need to do a replacement 974 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 975 if (!blk) { 976 // no replaceable block available: give up, fwd to next level. 977 incMissCount(pkt); 978 return false; 979 } 980 tags->insertBlock(pkt, blk); 981 982 blk->status |= (BlkValid | BlkReadable); 983 } 984 // only mark the block dirty if we got a writeback command, 985 // and leave it as is for a clean writeback 986 if (pkt->cmd == MemCmd::WritebackDirty) { 987 // TODO: the coherent cache can assert(!blk->isDirty()); 988 blk->status |= BlkDirty; 989 } 990 // if the packet does not have sharers, it is passing 991 // writable, and we got the writeback in Modified or Exclusive 992 // state, if not we are in the Owned or Shared state 993 if (!pkt->hasSharers()) { 994 blk->status |= BlkWritable; 995 } 996 // nothing else to do; writeback doesn't expect response 997 assert(!pkt->needsResponse()); 998 pkt->writeDataToBlock(blk->data, blkSize); 999 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1000 incHitCount(pkt); 1001 // populate the time when the block will be ready to access. 1002 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1003 pkt->payloadDelay; 1004 return true; 1005 } else if (pkt->cmd == MemCmd::CleanEvict) { 1006 if (blk) { 1007 // Found the block in the tags, need to stop CleanEvict from 1008 // propagating further down the hierarchy. Returning true will 1009 // treat the CleanEvict like a satisfied write request and delete 1010 // it. 1011 return true; 1012 } 1013 // We didn't find the block here, propagate the CleanEvict further 1014 // down the memory hierarchy. Returning false will treat the CleanEvict 1015 // like a Writeback which could not find a replaceable block so has to 1016 // go to next level. 1017 return false; 1018 } else if (pkt->cmd == MemCmd::WriteClean) { 1019 // WriteClean handling is a special case. We can allocate a 1020 // block directly if it doesn't exist and we can update the 1021 // block immediately. The WriteClean transfers the ownership 1022 // of the block as well. 1023 assert(blkSize == pkt->getSize()); 1024 1025 if (!blk) { 1026 if (pkt->writeThrough()) { 1027 // if this is a write through packet, we don't try to 1028 // allocate if the block is not present 1029 return false; 1030 } else { 1031 // a writeback that misses needs to allocate a new block 1032 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), 1033 writebacks); 1034 if (!blk) { 1035 // no replaceable block available: give up, fwd to 1036 // next level. 1037 incMissCount(pkt); 1038 return false; 1039 } 1040 tags->insertBlock(pkt, blk); 1041 1042 blk->status |= (BlkValid | BlkReadable); 1043 } 1044 } 1045 1046 // at this point either this is a writeback or a write-through 1047 // write clean operation and the block is already in this 1048 // cache, we need to update the data and the block flags 1049 assert(blk); 1050 // TODO: the coherent cache can assert(!blk->isDirty()); 1051 if (!pkt->writeThrough()) { 1052 blk->status |= BlkDirty; 1053 } 1054 // nothing else to do; writeback doesn't expect response 1055 assert(!pkt->needsResponse()); 1056 pkt->writeDataToBlock(blk->data, blkSize); 1057 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1058 1059 incHitCount(pkt); 1060 // populate the time when the block will be ready to access. 1061 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1062 pkt->payloadDelay; 1063 // if this a write-through packet it will be sent to cache 1064 // below 1065 return !pkt->writeThrough(); 1066 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 1067 blk->isReadable())) { 1068 // OK to satisfy access 1069 incHitCount(pkt); 1070 satisfyRequest(pkt, blk); 1071 maintainClusivity(pkt->fromCache(), blk); 1072 1073 return true; 1074 } 1075 1076 // Can't satisfy access normally... either no block (blk == nullptr) 1077 // or have block but need writable 1078 1079 incMissCount(pkt); 1080 1081 if (!blk && pkt->isLLSC() && pkt->isWrite()) { 1082 // complete miss on store conditional... just give up now 1083 pkt->req->setExtraData(0); 1084 return true; 1085 } 1086 1087 return false; 1088} 1089 1090void 1091BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) 1092{ 1093 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 1094 clusivity == Enums::mostly_excl) { 1095 // if we have responded to a cache, and our block is still 1096 // valid, but not dirty, and this cache is mostly exclusive 1097 // with respect to the cache above, drop the block 1098 invalidateBlock(blk); 1099 } 1100} 1101 1102CacheBlk* 1103BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1104 bool allocate) 1105{ 1106 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1107 Addr addr = pkt->getAddr(); 1108 bool is_secure = pkt->isSecure(); 1109#if TRACING_ON 1110 CacheBlk::State old_state = blk ? blk->status : 0; 1111#endif 1112 1113 // When handling a fill, we should have no writes to this line. 1114 assert(addr == pkt->getBlockAddr(blkSize)); 1115 assert(!writeBuffer.findMatch(addr, is_secure)); 1116 1117 if (!blk) { 1118 // better have read new data... 1119 assert(pkt->hasData()); 1120 1121 // only read responses and write-line requests have data; 1122 // note that we don't write the data here for write-line - that 1123 // happens in the subsequent call to satisfyRequest 1124 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1125 1126 // need to do a replacement if allocating, otherwise we stick 1127 // with the temporary storage 1128 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr; 1129 1130 if (!blk) { 1131 // No replaceable block or a mostly exclusive 1132 // cache... just use temporary storage to complete the 1133 // current request and then get rid of it 1134 assert(!tempBlock->isValid()); 1135 blk = tempBlock; 1136 tempBlock->insert(addr, is_secure); 1137 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1138 is_secure ? "s" : "ns"); 1139 } else { 1140 tags->insertBlock(pkt, blk); 1141 } 1142 1143 // we should never be overwriting a valid block 1144 assert(!blk->isValid()); 1145 } else { 1146 // existing block... probably an upgrade 1147 assert(blk->tag == tags->extractTag(addr)); 1148 assert(blk->isSecure() == is_secure); 1149 // either we're getting new data or the block should already be valid 1150 assert(pkt->hasData() || blk->isValid()); 1151 // don't clear block status... if block is already dirty we 1152 // don't want to lose that 1153 } 1154 1155 blk->status |= BlkValid | BlkReadable; 1156 1157 // sanity check for whole-line writes, which should always be 1158 // marked as writable as part of the fill, and then later marked 1159 // dirty as part of satisfyRequest 1160 if (pkt->cmd == MemCmd::WriteLineReq) { 1161 assert(!pkt->hasSharers()); 1162 } 1163 1164 // here we deal with setting the appropriate state of the line, 1165 // and we start by looking at the hasSharers flag, and ignore the 1166 // cacheResponding flag (normally signalling dirty data) if the 1167 // packet has sharers, thus the line is never allocated as Owned 1168 // (dirty but not writable), and always ends up being either 1169 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1170 // for more details 1171 if (!pkt->hasSharers()) { 1172 // we could get a writable line from memory (rather than a 1173 // cache) even in a read-only cache, note that we set this bit 1174 // even for a read-only cache, possibly revisit this decision 1175 blk->status |= BlkWritable; 1176 1177 // check if we got this via cache-to-cache transfer (i.e., from a 1178 // cache that had the block in Modified or Owned state) 1179 if (pkt->cacheResponding()) { 1180 // we got the block in Modified state, and invalidated the 1181 // owners copy 1182 blk->status |= BlkDirty; 1183 1184 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1185 "in read-only cache %s\n", name()); 1186 } 1187 } 1188 1189 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1190 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1191 1192 // if we got new data, copy it in (checking for a read response 1193 // and a response that has data is the same in the end) 1194 if (pkt->isRead()) { 1195 // sanity checks 1196 assert(pkt->hasData()); 1197 assert(pkt->getSize() == blkSize); 1198 1199 pkt->writeDataToBlock(blk->data, blkSize); 1200 } 1201 // We pay for fillLatency here. 1202 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1203 pkt->payloadDelay; 1204 1205 return blk; 1206} 1207 1208CacheBlk* 1209BaseCache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1210{ 1211 // Find replacement victim 1212 std::vector<CacheBlk*> evict_blks; 1213 CacheBlk *victim = tags->findVictim(addr, evict_blks); 1214 1215 // It is valid to return nullptr if there is no victim 1216 if (!victim) 1217 return nullptr; 1218 1219 // Check for transient state allocations. If any of the entries listed 1220 // for eviction has a transient state, the allocation fails 1221 for (const auto& blk : evict_blks) { 1222 if (blk->isValid()) { 1223 Addr repl_addr = regenerateBlkAddr(blk); 1224 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1225 if (repl_mshr) { 1226 // must be an outstanding upgrade or clean request 1227 // on a block we're about to replace... 1228 assert((!blk->isWritable() && repl_mshr->needsWritable()) || 1229 repl_mshr->isCleaning()); 1230 1231 // too hard to replace block with transient state 1232 // allocation failed, block not inserted 1233 return nullptr; 1234 } 1235 } 1236 } 1237 1238 // The victim will be replaced by a new entry, so increase the replacement 1239 // counter if a valid block is being replaced 1240 if (victim->isValid()) { 1241 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1242 "(%s): %s\n", regenerateBlkAddr(victim), 1243 victim->isSecure() ? "s" : "ns", 1244 addr, is_secure ? "s" : "ns", 1245 victim->isDirty() ? "writeback" : "clean"); 1246 1247 replacements++; 1248 } 1249 1250 // Evict valid blocks associated to this victim block 1251 for (const auto& blk : evict_blks) { 1252 if (blk->isValid()) { 1253 if (blk->wasPrefetched()) { 1254 unusedPrefetches++; 1255 } 1256 1257 evictBlock(blk, writebacks); 1258 } 1259 } 1260 1261 return victim; 1262} 1263 1264void 1265BaseCache::invalidateBlock(CacheBlk *blk) 1266{ 1267 if (blk != tempBlock) 1268 tags->invalidate(blk); 1269 blk->invalidate(); 1270} 1271 1272PacketPtr 1273BaseCache::writebackBlk(CacheBlk *blk) 1274{ 1275 chatty_assert(!isReadOnly || writebackClean, 1276 "Writeback from read-only cache"); 1277 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1278 1279 writebacks[Request::wbMasterId]++; 1280 1281 Request *req = new Request(regenerateBlkAddr(blk), blkSize, 0, 1282 Request::wbMasterId); 1283 if (blk->isSecure()) 1284 req->setFlags(Request::SECURE); 1285 1286 req->taskId(blk->task_id); 1287 1288 PacketPtr pkt = 1289 new Packet(req, blk->isDirty() ? 1290 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1291 1292 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1293 pkt->print(), blk->isWritable(), blk->isDirty()); 1294 1295 if (blk->isWritable()) { 1296 // not asserting shared means we pass the block in modified 1297 // state, mark our own block non-writeable 1298 blk->status &= ~BlkWritable; 1299 } else { 1300 // we are in the Owned state, tell the receiver 1301 pkt->setHasSharers(); 1302 } 1303 1304 // make sure the block is not marked dirty 1305 blk->status &= ~BlkDirty; 1306 1307 pkt->allocate(); 1308 pkt->setDataFromBlock(blk->data, blkSize); 1309 1310 return pkt; 1311} 1312 1313PacketPtr 1314BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1315{ 1316 Request *req = new Request(regenerateBlkAddr(blk), blkSize, 0, 1317 Request::wbMasterId); 1318 if (blk->isSecure()) { 1319 req->setFlags(Request::SECURE); 1320 } 1321 req->taskId(blk->task_id); 1322 1323 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1324 1325 if (dest) { 1326 req->setFlags(dest); 1327 pkt->setWriteThrough(); 1328 } 1329 1330 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1331 blk->isWritable(), blk->isDirty()); 1332 1333 if (blk->isWritable()) { 1334 // not asserting shared means we pass the block in modified 1335 // state, mark our own block non-writeable 1336 blk->status &= ~BlkWritable; 1337 } else { 1338 // we are in the Owned state, tell the receiver 1339 pkt->setHasSharers(); 1340 } 1341 1342 // make sure the block is not marked dirty 1343 blk->status &= ~BlkDirty; 1344 1345 pkt->allocate(); 1346 pkt->setDataFromBlock(blk->data, blkSize); 1347 1348 return pkt; 1349} 1350 1351 1352void 1353BaseCache::memWriteback() 1354{ 1355 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); }); 1356} 1357 1358void 1359BaseCache::memInvalidate() 1360{ 1361 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); }); 1362} 1363 1364bool 1365BaseCache::isDirty() const 1366{ 1367 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); }); 1368} 1369 1370void 1371BaseCache::writebackVisitor(CacheBlk &blk) 1372{ 1373 if (blk.isDirty()) { 1374 assert(blk.isValid()); 1375 1376 Request request(regenerateBlkAddr(&blk), 1377 blkSize, 0, Request::funcMasterId); 1378 request.taskId(blk.task_id); 1379 if (blk.isSecure()) { 1380 request.setFlags(Request::SECURE); 1381 } 1382 1383 Packet packet(&request, MemCmd::WriteReq); 1384 packet.dataStatic(blk.data); 1385 1386 memSidePort.sendFunctional(&packet); 1387 1388 blk.status &= ~BlkDirty; 1389 } 1390} 1391 1392void 1393BaseCache::invalidateVisitor(CacheBlk &blk) 1394{ 1395 if (blk.isDirty()) 1396 warn_once("Invalidating dirty cache lines. " \ 1397 "Expect things to break.\n"); 1398 1399 if (blk.isValid()) { 1400 assert(!blk.isDirty()); 1401 invalidateBlock(&blk); 1402 } 1403} 1404 1405Tick 1406BaseCache::nextQueueReadyTime() const 1407{ 1408 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 1409 writeBuffer.nextReadyTime()); 1410 1411 // Don't signal prefetch ready time if no MSHRs available 1412 // Will signal once enoguh MSHRs are deallocated 1413 if (prefetcher && mshrQueue.canPrefetch()) { 1414 nextReady = std::min(nextReady, 1415 prefetcher->nextPrefetchReadyTime()); 1416 } 1417 1418 return nextReady; 1419} 1420 1421 1422bool 1423BaseCache::sendMSHRQueuePacket(MSHR* mshr) 1424{ 1425 assert(mshr); 1426 1427 // use request from 1st target 1428 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1429 1430 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1431 1432 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 1433 1434 // either a prefetch that is not present upstream, or a normal 1435 // MSHR request, proceed to get the packet to send downstream 1436 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable()); 1437 1438 mshr->isForward = (pkt == nullptr); 1439 1440 if (mshr->isForward) { 1441 // not a cache block request, but a response is expected 1442 // make copy of current packet to forward, keep current 1443 // copy for response handling 1444 pkt = new Packet(tgt_pkt, false, true); 1445 assert(!pkt->isWrite()); 1446 } 1447 1448 // play it safe and append (rather than set) the sender state, 1449 // as forwarded packets may already have existing state 1450 pkt->pushSenderState(mshr); 1451 1452 if (pkt->isClean() && blk && blk->isDirty()) { 1453 // A cache clean opearation is looking for a dirty block. Mark 1454 // the packet so that the destination xbar can determine that 1455 // there will be a follow-up write packet as well. 1456 pkt->setSatisfied(); 1457 } 1458 1459 if (!memSidePort.sendTimingReq(pkt)) { 1460 // we are awaiting a retry, but we 1461 // delete the packet and will be creating a new packet 1462 // when we get the opportunity 1463 delete pkt; 1464 1465 // note that we have now masked any requestBus and 1466 // schedSendEvent (we will wait for a retry before 1467 // doing anything), and this is so even if we do not 1468 // care about this packet and might override it before 1469 // it gets retried 1470 return true; 1471 } else { 1472 // As part of the call to sendTimingReq the packet is 1473 // forwarded to all neighbouring caches (and any caches 1474 // above them) as a snoop. Thus at this point we know if 1475 // any of the neighbouring caches are responding, and if 1476 // so, we know it is dirty, and we can determine if it is 1477 // being passed as Modified, making our MSHR the ordering 1478 // point 1479 bool pending_modified_resp = !pkt->hasSharers() && 1480 pkt->cacheResponding(); 1481 markInService(mshr, pending_modified_resp); 1482 1483 if (pkt->isClean() && blk && blk->isDirty()) { 1484 // A cache clean opearation is looking for a dirty 1485 // block. If a dirty block is encountered a WriteClean 1486 // will update any copies to the path to the memory 1487 // until the point of reference. 1488 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1489 __func__, pkt->print(), blk->print()); 1490 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 1491 pkt->id); 1492 PacketList writebacks; 1493 writebacks.push_back(wb_pkt); 1494 doWritebacks(writebacks, 0); 1495 } 1496 1497 return false; 1498 } 1499} 1500 1501bool 1502BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 1503{ 1504 assert(wq_entry); 1505 1506 // always a single target for write queue entries 1507 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 1508 1509 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 1510 1511 // forward as is, both for evictions and uncacheable writes 1512 if (!memSidePort.sendTimingReq(tgt_pkt)) { 1513 // note that we have now masked any requestBus and 1514 // schedSendEvent (we will wait for a retry before 1515 // doing anything), and this is so even if we do not 1516 // care about this packet and might override it before 1517 // it gets retried 1518 return true; 1519 } else { 1520 markInService(wq_entry); 1521 return false; 1522 } 1523} 1524 1525void 1526BaseCache::serialize(CheckpointOut &cp) const 1527{ 1528 bool dirty(isDirty()); 1529 1530 if (dirty) { 1531 warn("*** The cache still contains dirty data. ***\n"); 1532 warn(" Make sure to drain the system using the correct flags.\n"); 1533 warn(" This checkpoint will not restore correctly " \ 1534 "and dirty data in the cache will be lost!\n"); 1535 } 1536 1537 // Since we don't checkpoint the data in the cache, any dirty data 1538 // will be lost when restoring from a checkpoint of a system that 1539 // wasn't drained properly. Flag the checkpoint as invalid if the 1540 // cache contains dirty data. 1541 bool bad_checkpoint(dirty); 1542 SERIALIZE_SCALAR(bad_checkpoint); 1543} 1544 1545void 1546BaseCache::unserialize(CheckpointIn &cp) 1547{ 1548 bool bad_checkpoint; 1549 UNSERIALIZE_SCALAR(bad_checkpoint); 1550 if (bad_checkpoint) { 1551 fatal("Restoring from checkpoints with dirty caches is not " 1552 "supported in the classic memory system. Please remove any " 1553 "caches or drain them properly before taking checkpoints.\n"); 1554 } 1555} 1556 1557void 1558BaseCache::regStats() 1559{ 1560 MemObject::regStats(); 1561 1562 using namespace Stats; 1563 1564 // Hit statistics 1565 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1566 MemCmd cmd(access_idx); 1567 const string &cstr = cmd.toString(); 1568 1569 hits[access_idx] 1570 .init(system->maxMasters()) 1571 .name(name() + "." + cstr + "_hits") 1572 .desc("number of " + cstr + " hits") 1573 .flags(total | nozero | nonan) 1574 ; 1575 for (int i = 0; i < system->maxMasters(); i++) { 1576 hits[access_idx].subname(i, system->getMasterName(i)); 1577 } 1578 } 1579 1580// These macros make it easier to sum the right subset of commands and 1581// to change the subset of commands that are considered "demand" vs 1582// "non-demand" 1583#define SUM_DEMAND(s) \ 1584 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \ 1585 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq]) 1586 1587// should writebacks be included here? prior code was inconsistent... 1588#define SUM_NON_DEMAND(s) \ 1589 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq]) 1590 1591 demandHits 1592 .name(name() + ".demand_hits") 1593 .desc("number of demand (read+write) hits") 1594 .flags(total | nozero | nonan) 1595 ; 1596 demandHits = SUM_DEMAND(hits); 1597 for (int i = 0; i < system->maxMasters(); i++) { 1598 demandHits.subname(i, system->getMasterName(i)); 1599 } 1600 1601 overallHits 1602 .name(name() + ".overall_hits") 1603 .desc("number of overall hits") 1604 .flags(total | nozero | nonan) 1605 ; 1606 overallHits = demandHits + SUM_NON_DEMAND(hits); 1607 for (int i = 0; i < system->maxMasters(); i++) { 1608 overallHits.subname(i, system->getMasterName(i)); 1609 } 1610 1611 // Miss statistics 1612 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1613 MemCmd cmd(access_idx); 1614 const string &cstr = cmd.toString(); 1615 1616 misses[access_idx] 1617 .init(system->maxMasters()) 1618 .name(name() + "." + cstr + "_misses") 1619 .desc("number of " + cstr + " misses") 1620 .flags(total | nozero | nonan) 1621 ; 1622 for (int i = 0; i < system->maxMasters(); i++) { 1623 misses[access_idx].subname(i, system->getMasterName(i)); 1624 } 1625 } 1626 1627 demandMisses 1628 .name(name() + ".demand_misses") 1629 .desc("number of demand (read+write) misses") 1630 .flags(total | nozero | nonan) 1631 ; 1632 demandMisses = SUM_DEMAND(misses); 1633 for (int i = 0; i < system->maxMasters(); i++) { 1634 demandMisses.subname(i, system->getMasterName(i)); 1635 } 1636 1637 overallMisses 1638 .name(name() + ".overall_misses") 1639 .desc("number of overall misses") 1640 .flags(total | nozero | nonan) 1641 ; 1642 overallMisses = demandMisses + SUM_NON_DEMAND(misses); 1643 for (int i = 0; i < system->maxMasters(); i++) { 1644 overallMisses.subname(i, system->getMasterName(i)); 1645 } 1646 1647 // Miss latency statistics 1648 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1649 MemCmd cmd(access_idx); 1650 const string &cstr = cmd.toString(); 1651 1652 missLatency[access_idx] 1653 .init(system->maxMasters()) 1654 .name(name() + "." + cstr + "_miss_latency") 1655 .desc("number of " + cstr + " miss cycles") 1656 .flags(total | nozero | nonan) 1657 ; 1658 for (int i = 0; i < system->maxMasters(); i++) { 1659 missLatency[access_idx].subname(i, system->getMasterName(i)); 1660 } 1661 } 1662 1663 demandMissLatency 1664 .name(name() + ".demand_miss_latency") 1665 .desc("number of demand (read+write) miss cycles") 1666 .flags(total | nozero | nonan) 1667 ; 1668 demandMissLatency = SUM_DEMAND(missLatency); 1669 for (int i = 0; i < system->maxMasters(); i++) { 1670 demandMissLatency.subname(i, system->getMasterName(i)); 1671 } 1672 1673 overallMissLatency 1674 .name(name() + ".overall_miss_latency") 1675 .desc("number of overall miss cycles") 1676 .flags(total | nozero | nonan) 1677 ; 1678 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency); 1679 for (int i = 0; i < system->maxMasters(); i++) { 1680 overallMissLatency.subname(i, system->getMasterName(i)); 1681 } 1682 1683 // access formulas 1684 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1685 MemCmd cmd(access_idx); 1686 const string &cstr = cmd.toString(); 1687 1688 accesses[access_idx] 1689 .name(name() + "." + cstr + "_accesses") 1690 .desc("number of " + cstr + " accesses(hits+misses)") 1691 .flags(total | nozero | nonan) 1692 ; 1693 accesses[access_idx] = hits[access_idx] + misses[access_idx]; 1694 1695 for (int i = 0; i < system->maxMasters(); i++) { 1696 accesses[access_idx].subname(i, system->getMasterName(i)); 1697 } 1698 } 1699 1700 demandAccesses 1701 .name(name() + ".demand_accesses") 1702 .desc("number of demand (read+write) accesses") 1703 .flags(total | nozero | nonan) 1704 ; 1705 demandAccesses = demandHits + demandMisses; 1706 for (int i = 0; i < system->maxMasters(); i++) { 1707 demandAccesses.subname(i, system->getMasterName(i)); 1708 } 1709 1710 overallAccesses 1711 .name(name() + ".overall_accesses") 1712 .desc("number of overall (read+write) accesses") 1713 .flags(total | nozero | nonan) 1714 ; 1715 overallAccesses = overallHits + overallMisses; 1716 for (int i = 0; i < system->maxMasters(); i++) { 1717 overallAccesses.subname(i, system->getMasterName(i)); 1718 } 1719 1720 // miss rate formulas 1721 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1722 MemCmd cmd(access_idx); 1723 const string &cstr = cmd.toString(); 1724 1725 missRate[access_idx] 1726 .name(name() + "." + cstr + "_miss_rate") 1727 .desc("miss rate for " + cstr + " accesses") 1728 .flags(total | nozero | nonan) 1729 ; 1730 missRate[access_idx] = misses[access_idx] / accesses[access_idx]; 1731 1732 for (int i = 0; i < system->maxMasters(); i++) { 1733 missRate[access_idx].subname(i, system->getMasterName(i)); 1734 } 1735 } 1736 1737 demandMissRate 1738 .name(name() + ".demand_miss_rate") 1739 .desc("miss rate for demand accesses") 1740 .flags(total | nozero | nonan) 1741 ; 1742 demandMissRate = demandMisses / demandAccesses; 1743 for (int i = 0; i < system->maxMasters(); i++) { 1744 demandMissRate.subname(i, system->getMasterName(i)); 1745 } 1746 1747 overallMissRate 1748 .name(name() + ".overall_miss_rate") 1749 .desc("miss rate for overall accesses") 1750 .flags(total | nozero | nonan) 1751 ; 1752 overallMissRate = overallMisses / overallAccesses; 1753 for (int i = 0; i < system->maxMasters(); i++) { 1754 overallMissRate.subname(i, system->getMasterName(i)); 1755 } 1756 1757 // miss latency formulas 1758 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1759 MemCmd cmd(access_idx); 1760 const string &cstr = cmd.toString(); 1761 1762 avgMissLatency[access_idx] 1763 .name(name() + "." + cstr + "_avg_miss_latency") 1764 .desc("average " + cstr + " miss latency") 1765 .flags(total | nozero | nonan) 1766 ; 1767 avgMissLatency[access_idx] = 1768 missLatency[access_idx] / misses[access_idx]; 1769 1770 for (int i = 0; i < system->maxMasters(); i++) { 1771 avgMissLatency[access_idx].subname(i, system->getMasterName(i)); 1772 } 1773 } 1774 1775 demandAvgMissLatency 1776 .name(name() + ".demand_avg_miss_latency") 1777 .desc("average overall miss latency") 1778 .flags(total | nozero | nonan) 1779 ; 1780 demandAvgMissLatency = demandMissLatency / demandMisses; 1781 for (int i = 0; i < system->maxMasters(); i++) { 1782 demandAvgMissLatency.subname(i, system->getMasterName(i)); 1783 } 1784 1785 overallAvgMissLatency 1786 .name(name() + ".overall_avg_miss_latency") 1787 .desc("average overall miss latency") 1788 .flags(total | nozero | nonan) 1789 ; 1790 overallAvgMissLatency = overallMissLatency / overallMisses; 1791 for (int i = 0; i < system->maxMasters(); i++) { 1792 overallAvgMissLatency.subname(i, system->getMasterName(i)); 1793 } 1794 1795 blocked_cycles.init(NUM_BLOCKED_CAUSES); 1796 blocked_cycles 1797 .name(name() + ".blocked_cycles") 1798 .desc("number of cycles access was blocked") 1799 .subname(Blocked_NoMSHRs, "no_mshrs") 1800 .subname(Blocked_NoTargets, "no_targets") 1801 ; 1802 1803 1804 blocked_causes.init(NUM_BLOCKED_CAUSES); 1805 blocked_causes 1806 .name(name() + ".blocked") 1807 .desc("number of cycles access was blocked") 1808 .subname(Blocked_NoMSHRs, "no_mshrs") 1809 .subname(Blocked_NoTargets, "no_targets") 1810 ; 1811 1812 avg_blocked 1813 .name(name() + ".avg_blocked_cycles") 1814 .desc("average number of cycles each access was blocked") 1815 .subname(Blocked_NoMSHRs, "no_mshrs") 1816 .subname(Blocked_NoTargets, "no_targets") 1817 ; 1818 1819 avg_blocked = blocked_cycles / blocked_causes; 1820 1821 unusedPrefetches 1822 .name(name() + ".unused_prefetches") 1823 .desc("number of HardPF blocks evicted w/o reference") 1824 .flags(nozero) 1825 ; 1826 1827 writebacks 1828 .init(system->maxMasters()) 1829 .name(name() + ".writebacks") 1830 .desc("number of writebacks") 1831 .flags(total | nozero | nonan) 1832 ; 1833 for (int i = 0; i < system->maxMasters(); i++) { 1834 writebacks.subname(i, system->getMasterName(i)); 1835 } 1836 1837 // MSHR statistics 1838 // MSHR hit statistics 1839 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1840 MemCmd cmd(access_idx); 1841 const string &cstr = cmd.toString(); 1842 1843 mshr_hits[access_idx] 1844 .init(system->maxMasters()) 1845 .name(name() + "." + cstr + "_mshr_hits") 1846 .desc("number of " + cstr + " MSHR hits") 1847 .flags(total | nozero | nonan) 1848 ; 1849 for (int i = 0; i < system->maxMasters(); i++) { 1850 mshr_hits[access_idx].subname(i, system->getMasterName(i)); 1851 } 1852 } 1853 1854 demandMshrHits 1855 .name(name() + ".demand_mshr_hits") 1856 .desc("number of demand (read+write) MSHR hits") 1857 .flags(total | nozero | nonan) 1858 ; 1859 demandMshrHits = SUM_DEMAND(mshr_hits); 1860 for (int i = 0; i < system->maxMasters(); i++) { 1861 demandMshrHits.subname(i, system->getMasterName(i)); 1862 } 1863 1864 overallMshrHits 1865 .name(name() + ".overall_mshr_hits") 1866 .desc("number of overall MSHR hits") 1867 .flags(total | nozero | nonan) 1868 ; 1869 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits); 1870 for (int i = 0; i < system->maxMasters(); i++) { 1871 overallMshrHits.subname(i, system->getMasterName(i)); 1872 } 1873 1874 // MSHR miss statistics 1875 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1876 MemCmd cmd(access_idx); 1877 const string &cstr = cmd.toString(); 1878 1879 mshr_misses[access_idx] 1880 .init(system->maxMasters()) 1881 .name(name() + "." + cstr + "_mshr_misses") 1882 .desc("number of " + cstr + " MSHR misses") 1883 .flags(total | nozero | nonan) 1884 ; 1885 for (int i = 0; i < system->maxMasters(); i++) { 1886 mshr_misses[access_idx].subname(i, system->getMasterName(i)); 1887 } 1888 } 1889 1890 demandMshrMisses 1891 .name(name() + ".demand_mshr_misses") 1892 .desc("number of demand (read+write) MSHR misses") 1893 .flags(total | nozero | nonan) 1894 ; 1895 demandMshrMisses = SUM_DEMAND(mshr_misses); 1896 for (int i = 0; i < system->maxMasters(); i++) { 1897 demandMshrMisses.subname(i, system->getMasterName(i)); 1898 } 1899 1900 overallMshrMisses 1901 .name(name() + ".overall_mshr_misses") 1902 .desc("number of overall MSHR misses") 1903 .flags(total | nozero | nonan) 1904 ; 1905 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses); 1906 for (int i = 0; i < system->maxMasters(); i++) { 1907 overallMshrMisses.subname(i, system->getMasterName(i)); 1908 } 1909 1910 // MSHR miss latency statistics 1911 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1912 MemCmd cmd(access_idx); 1913 const string &cstr = cmd.toString(); 1914 1915 mshr_miss_latency[access_idx] 1916 .init(system->maxMasters()) 1917 .name(name() + "." + cstr + "_mshr_miss_latency") 1918 .desc("number of " + cstr + " MSHR miss cycles") 1919 .flags(total | nozero | nonan) 1920 ; 1921 for (int i = 0; i < system->maxMasters(); i++) { 1922 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i)); 1923 } 1924 } 1925 1926 demandMshrMissLatency 1927 .name(name() + ".demand_mshr_miss_latency") 1928 .desc("number of demand (read+write) MSHR miss cycles") 1929 .flags(total | nozero | nonan) 1930 ; 1931 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency); 1932 for (int i = 0; i < system->maxMasters(); i++) { 1933 demandMshrMissLatency.subname(i, system->getMasterName(i)); 1934 } 1935 1936 overallMshrMissLatency 1937 .name(name() + ".overall_mshr_miss_latency") 1938 .desc("number of overall MSHR miss cycles") 1939 .flags(total | nozero | nonan) 1940 ; 1941 overallMshrMissLatency = 1942 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency); 1943 for (int i = 0; i < system->maxMasters(); i++) { 1944 overallMshrMissLatency.subname(i, system->getMasterName(i)); 1945 } 1946 1947 // MSHR uncacheable statistics 1948 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1949 MemCmd cmd(access_idx); 1950 const string &cstr = cmd.toString(); 1951 1952 mshr_uncacheable[access_idx] 1953 .init(system->maxMasters()) 1954 .name(name() + "." + cstr + "_mshr_uncacheable") 1955 .desc("number of " + cstr + " MSHR uncacheable") 1956 .flags(total | nozero | nonan) 1957 ; 1958 for (int i = 0; i < system->maxMasters(); i++) { 1959 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i)); 1960 } 1961 } 1962 1963 overallMshrUncacheable 1964 .name(name() + ".overall_mshr_uncacheable_misses") 1965 .desc("number of overall MSHR uncacheable misses") 1966 .flags(total | nozero | nonan) 1967 ; 1968 overallMshrUncacheable = 1969 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable); 1970 for (int i = 0; i < system->maxMasters(); i++) { 1971 overallMshrUncacheable.subname(i, system->getMasterName(i)); 1972 } 1973 1974 // MSHR miss latency statistics 1975 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1976 MemCmd cmd(access_idx); 1977 const string &cstr = cmd.toString(); 1978 1979 mshr_uncacheable_lat[access_idx] 1980 .init(system->maxMasters()) 1981 .name(name() + "." + cstr + "_mshr_uncacheable_latency") 1982 .desc("number of " + cstr + " MSHR uncacheable cycles") 1983 .flags(total | nozero | nonan) 1984 ; 1985 for (int i = 0; i < system->maxMasters(); i++) { 1986 mshr_uncacheable_lat[access_idx].subname( 1987 i, system->getMasterName(i)); 1988 } 1989 } 1990 1991 overallMshrUncacheableLatency 1992 .name(name() + ".overall_mshr_uncacheable_latency") 1993 .desc("number of overall MSHR uncacheable cycles") 1994 .flags(total | nozero | nonan) 1995 ; 1996 overallMshrUncacheableLatency = 1997 SUM_DEMAND(mshr_uncacheable_lat) + 1998 SUM_NON_DEMAND(mshr_uncacheable_lat); 1999 for (int i = 0; i < system->maxMasters(); i++) { 2000 overallMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2001 } 2002 2003#if 0 2004 // MSHR access formulas 2005 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2006 MemCmd cmd(access_idx); 2007 const string &cstr = cmd.toString(); 2008 2009 mshrAccesses[access_idx] 2010 .name(name() + "." + cstr + "_mshr_accesses") 2011 .desc("number of " + cstr + " mshr accesses(hits+misses)") 2012 .flags(total | nozero | nonan) 2013 ; 2014 mshrAccesses[access_idx] = 2015 mshr_hits[access_idx] + mshr_misses[access_idx] 2016 + mshr_uncacheable[access_idx]; 2017 } 2018 2019 demandMshrAccesses 2020 .name(name() + ".demand_mshr_accesses") 2021 .desc("number of demand (read+write) mshr accesses") 2022 .flags(total | nozero | nonan) 2023 ; 2024 demandMshrAccesses = demandMshrHits + demandMshrMisses; 2025 2026 overallMshrAccesses 2027 .name(name() + ".overall_mshr_accesses") 2028 .desc("number of overall (read+write) mshr accesses") 2029 .flags(total | nozero | nonan) 2030 ; 2031 overallMshrAccesses = overallMshrHits + overallMshrMisses 2032 + overallMshrUncacheable; 2033#endif 2034 2035 // MSHR miss rate formulas 2036 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2037 MemCmd cmd(access_idx); 2038 const string &cstr = cmd.toString(); 2039 2040 mshrMissRate[access_idx] 2041 .name(name() + "." + cstr + "_mshr_miss_rate") 2042 .desc("mshr miss rate for " + cstr + " accesses") 2043 .flags(total | nozero | nonan) 2044 ; 2045 mshrMissRate[access_idx] = 2046 mshr_misses[access_idx] / accesses[access_idx]; 2047 2048 for (int i = 0; i < system->maxMasters(); i++) { 2049 mshrMissRate[access_idx].subname(i, system->getMasterName(i)); 2050 } 2051 } 2052 2053 demandMshrMissRate 2054 .name(name() + ".demand_mshr_miss_rate") 2055 .desc("mshr miss rate for demand accesses") 2056 .flags(total | nozero | nonan) 2057 ; 2058 demandMshrMissRate = demandMshrMisses / demandAccesses; 2059 for (int i = 0; i < system->maxMasters(); i++) { 2060 demandMshrMissRate.subname(i, system->getMasterName(i)); 2061 } 2062 2063 overallMshrMissRate 2064 .name(name() + ".overall_mshr_miss_rate") 2065 .desc("mshr miss rate for overall accesses") 2066 .flags(total | nozero | nonan) 2067 ; 2068 overallMshrMissRate = overallMshrMisses / overallAccesses; 2069 for (int i = 0; i < system->maxMasters(); i++) { 2070 overallMshrMissRate.subname(i, system->getMasterName(i)); 2071 } 2072 2073 // mshrMiss latency formulas 2074 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2075 MemCmd cmd(access_idx); 2076 const string &cstr = cmd.toString(); 2077 2078 avgMshrMissLatency[access_idx] 2079 .name(name() + "." + cstr + "_avg_mshr_miss_latency") 2080 .desc("average " + cstr + " mshr miss latency") 2081 .flags(total | nozero | nonan) 2082 ; 2083 avgMshrMissLatency[access_idx] = 2084 mshr_miss_latency[access_idx] / mshr_misses[access_idx]; 2085 2086 for (int i = 0; i < system->maxMasters(); i++) { 2087 avgMshrMissLatency[access_idx].subname( 2088 i, system->getMasterName(i)); 2089 } 2090 } 2091 2092 demandAvgMshrMissLatency 2093 .name(name() + ".demand_avg_mshr_miss_latency") 2094 .desc("average overall mshr miss latency") 2095 .flags(total | nozero | nonan) 2096 ; 2097 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses; 2098 for (int i = 0; i < system->maxMasters(); i++) { 2099 demandAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2100 } 2101 2102 overallAvgMshrMissLatency 2103 .name(name() + ".overall_avg_mshr_miss_latency") 2104 .desc("average overall mshr miss latency") 2105 .flags(total | nozero | nonan) 2106 ; 2107 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses; 2108 for (int i = 0; i < system->maxMasters(); i++) { 2109 overallAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2110 } 2111 2112 // mshrUncacheable latency formulas 2113 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2114 MemCmd cmd(access_idx); 2115 const string &cstr = cmd.toString(); 2116 2117 avgMshrUncacheableLatency[access_idx] 2118 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency") 2119 .desc("average " + cstr + " mshr uncacheable latency") 2120 .flags(total | nozero | nonan) 2121 ; 2122 avgMshrUncacheableLatency[access_idx] = 2123 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx]; 2124 2125 for (int i = 0; i < system->maxMasters(); i++) { 2126 avgMshrUncacheableLatency[access_idx].subname( 2127 i, system->getMasterName(i)); 2128 } 2129 } 2130 2131 overallAvgMshrUncacheableLatency 2132 .name(name() + ".overall_avg_mshr_uncacheable_latency") 2133 .desc("average overall mshr uncacheable latency") 2134 .flags(total | nozero | nonan) 2135 ; 2136 overallAvgMshrUncacheableLatency = 2137 overallMshrUncacheableLatency / overallMshrUncacheable; 2138 for (int i = 0; i < system->maxMasters(); i++) { 2139 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2140 } 2141 2142 replacements 2143 .name(name() + ".replacements") 2144 .desc("number of replacements") 2145 ; 2146} 2147 2148/////////////// 2149// 2150// CpuSidePort 2151// 2152/////////////// 2153bool 2154BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2155{ 2156 // Snoops shouldn't happen when bypassing caches 2157 assert(!cache->system->bypassCaches()); 2158 2159 assert(pkt->isResponse()); 2160 2161 // Express snoop responses from master to slave, e.g., from L1 to L2 2162 cache->recvTimingSnoopResp(pkt); 2163 return true; 2164} 2165 2166 2167bool 2168BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) 2169{ 2170 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) { 2171 // always let express snoop packets through even if blocked 2172 return true; 2173 } else if (blocked || mustSendRetry) { 2174 // either already committed to send a retry, or blocked 2175 mustSendRetry = true; 2176 return false; 2177 } 2178 mustSendRetry = false; 2179 return true; 2180} 2181 2182bool 2183BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2184{ 2185 assert(pkt->isRequest()); 2186 2187 if (cache->system->bypassCaches()) { 2188 // Just forward the packet if caches are disabled. 2189 // @todo This should really enqueue the packet rather 2190 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt); 2191 assert(success); 2192 return true; 2193 } else if (tryTiming(pkt)) { 2194 cache->recvTimingReq(pkt); 2195 return true; 2196 } 2197 return false; 2198} 2199 2200Tick 2201BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) 2202{ 2203 if (cache->system->bypassCaches()) { 2204 // Forward the request if the system is in cache bypass mode. 2205 return cache->memSidePort.sendAtomic(pkt); 2206 } else { 2207 return cache->recvAtomic(pkt); 2208 } 2209} 2210 2211void 2212BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) 2213{ 2214 if (cache->system->bypassCaches()) { 2215 // The cache should be flushed if we are in cache bypass mode, 2216 // so we don't need to check if we need to update anything. 2217 cache->memSidePort.sendFunctional(pkt); 2218 return; 2219 } 2220 2221 // functional request 2222 cache->functionalAccess(pkt, true); 2223} 2224 2225AddrRangeList 2226BaseCache::CpuSidePort::getAddrRanges() const 2227{ 2228 return cache->getAddrRanges(); 2229} 2230 2231 2232BaseCache:: 2233CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, 2234 const std::string &_label) 2235 : CacheSlavePort(_name, _cache, _label), cache(_cache) 2236{ 2237} 2238 2239/////////////// 2240// 2241// MemSidePort 2242// 2243/////////////// 2244bool 2245BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) 2246{ 2247 cache->recvTimingResp(pkt); 2248 return true; 2249} 2250 2251// Express snooping requests to memside port 2252void 2253BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2254{ 2255 // Snoops shouldn't happen when bypassing caches 2256 assert(!cache->system->bypassCaches()); 2257 2258 // handle snooping requests 2259 cache->recvTimingSnoopReq(pkt); 2260} 2261 2262Tick 2263BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2264{ 2265 // Snoops shouldn't happen when bypassing caches 2266 assert(!cache->system->bypassCaches()); 2267 2268 return cache->recvAtomicSnoop(pkt); 2269} 2270 2271void 2272BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2273{ 2274 // Snoops shouldn't happen when bypassing caches 2275 assert(!cache->system->bypassCaches()); 2276 2277 // functional snoop (note that in contrast to atomic we don't have 2278 // a specific functionalSnoop method, as they have the same 2279 // behaviour regardless) 2280 cache->functionalAccess(pkt, false); 2281} 2282 2283void 2284BaseCache::CacheReqPacketQueue::sendDeferredPacket() 2285{ 2286 // sanity check 2287 assert(!waitingOnRetry); 2288 2289 // there should never be any deferred request packets in the 2290 // queue, instead we resly on the cache to provide the packets 2291 // from the MSHR queue or write queue 2292 assert(deferredPacketReadyTime() == MaxTick); 2293 2294 // check for request packets (requests & writebacks) 2295 QueueEntry* entry = cache.getNextQueueEntry(); 2296 2297 if (!entry) { 2298 // can happen if e.g. we attempt a writeback and fail, but 2299 // before the retry, the writeback is eliminated because 2300 // we snoop another cache's ReadEx. 2301 } else { 2302 // let our snoop responses go first if there are responses to 2303 // the same addresses 2304 if (checkConflictingSnoop(entry->blkAddr)) { 2305 return; 2306 } 2307 waitingOnRetry = entry->sendPacket(cache); 2308 } 2309 2310 // if we succeeded and are not waiting for a retry, schedule the 2311 // next send considering when the next queue is ready, note that 2312 // snoop responses have their own packet queue and thus schedule 2313 // their own events 2314 if (!waitingOnRetry) { 2315 schedSendEvent(cache.nextQueueReadyTime()); 2316 } 2317} 2318 2319BaseCache::MemSidePort::MemSidePort(const std::string &_name, 2320 BaseCache *_cache, 2321 const std::string &_label) 2322 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2323 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2324 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2325{ 2326} 2327