base.cc revision 12730:6c2ea88bf129
1/* 2 * Copyright (c) 2012-2013, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Nikos Nikoleris 42 */ 43 44/** 45 * @file 46 * Definition of BaseCache functions. 47 */ 48 49#include "mem/cache/base.hh" 50 51#include "base/compiler.hh" 52#include "base/logging.hh" 53#include "debug/Cache.hh" 54#include "debug/CachePort.hh" 55#include "debug/CacheVerbose.hh" 56#include "mem/cache/mshr.hh" 57#include "mem/cache/prefetch/base.hh" 58#include "mem/cache/queue_entry.hh" 59#include "params/BaseCache.hh" 60#include "sim/core.hh" 61 62class BaseMasterPort; 63class BaseSlavePort; 64 65using namespace std; 66 67BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, 68 BaseCache *_cache, 69 const std::string &_label) 70 : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label), 71 blocked(false), mustSendRetry(false), 72 sendRetryEvent([this]{ processSendRetry(); }, _name) 73{ 74} 75 76BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) 77 : MemObject(p), 78 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), 79 memSidePort(p->name + ".mem_side", this, "MemSidePort"), 80 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below 81 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below 82 tags(p->tags), 83 prefetcher(p->prefetcher), 84 prefetchOnAccess(p->prefetch_on_access), 85 writebackClean(p->writeback_clean), 86 tempBlockWriteback(nullptr), 87 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 88 name(), false, 89 EventBase::Delayed_Writeback_Pri), 90 blkSize(blk_size), 91 lookupLatency(p->tag_latency), 92 dataLatency(p->data_latency), 93 forwardLatency(p->tag_latency), 94 fillLatency(p->data_latency), 95 responseLatency(p->response_latency), 96 numTarget(p->tgts_per_mshr), 97 forwardSnoops(true), 98 clusivity(p->clusivity), 99 isReadOnly(p->is_read_only), 100 blocked(0), 101 order(0), 102 noTargetMSHR(nullptr), 103 missCount(p->max_miss_count), 104 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()), 105 system(p->system) 106{ 107 // the MSHR queue has no reserve entries as we check the MSHR 108 // queue on every single allocation, whereas the write queue has 109 // as many reserve entries as we have MSHRs, since every MSHR may 110 // eventually require a writeback, and we do not check the write 111 // buffer before committing to an MSHR 112 113 // forward snoops is overridden in init() once we can query 114 // whether the connected master is actually snooping or not 115 116 tempBlock = new TempCacheBlk(); 117 tempBlock->data = new uint8_t[blkSize]; 118 119 tags->setCache(this); 120 if (prefetcher) 121 prefetcher->setCache(this); 122} 123 124BaseCache::~BaseCache() 125{ 126 delete [] tempBlock->data; 127 delete tempBlock; 128} 129 130void 131BaseCache::CacheSlavePort::setBlocked() 132{ 133 assert(!blocked); 134 DPRINTF(CachePort, "Port is blocking new requests\n"); 135 blocked = true; 136 // if we already scheduled a retry in this cycle, but it has not yet 137 // happened, cancel it 138 if (sendRetryEvent.scheduled()) { 139 owner.deschedule(sendRetryEvent); 140 DPRINTF(CachePort, "Port descheduled retry\n"); 141 mustSendRetry = true; 142 } 143} 144 145void 146BaseCache::CacheSlavePort::clearBlocked() 147{ 148 assert(blocked); 149 DPRINTF(CachePort, "Port is accepting new requests\n"); 150 blocked = false; 151 if (mustSendRetry) { 152 // @TODO: need to find a better time (next cycle?) 153 owner.schedule(sendRetryEvent, curTick() + 1); 154 } 155} 156 157void 158BaseCache::CacheSlavePort::processSendRetry() 159{ 160 DPRINTF(CachePort, "Port is sending retry\n"); 161 162 // reset the flag and call retry 163 mustSendRetry = false; 164 sendRetryReq(); 165} 166 167Addr 168BaseCache::regenerateBlkAddr(CacheBlk* blk) 169{ 170 if (blk != tempBlock) { 171 return tags->regenerateBlkAddr(blk); 172 } else { 173 return tempBlock->getAddr(); 174 } 175} 176 177void 178BaseCache::init() 179{ 180 if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) 181 fatal("Cache ports on %s are not connected\n", name()); 182 cpuSidePort.sendRangeChange(); 183 forwardSnoops = cpuSidePort.isSnooping(); 184} 185 186BaseMasterPort & 187BaseCache::getMasterPort(const std::string &if_name, PortID idx) 188{ 189 if (if_name == "mem_side") { 190 return memSidePort; 191 } else { 192 return MemObject::getMasterPort(if_name, idx); 193 } 194} 195 196BaseSlavePort & 197BaseCache::getSlavePort(const std::string &if_name, PortID idx) 198{ 199 if (if_name == "cpu_side") { 200 return cpuSidePort; 201 } else { 202 return MemObject::getSlavePort(if_name, idx); 203 } 204} 205 206bool 207BaseCache::inRange(Addr addr) const 208{ 209 for (const auto& r : addrRanges) { 210 if (r.contains(addr)) { 211 return true; 212 } 213 } 214 return false; 215} 216 217void 218BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 219{ 220 if (pkt->needsResponse()) { 221 pkt->makeTimingResponse(); 222 // @todo: Make someone pay for this 223 pkt->headerDelay = pkt->payloadDelay = 0; 224 225 // In this case we are considering request_time that takes 226 // into account the delay of the xbar, if any, and just 227 // lat, neglecting responseLatency, modelling hit latency 228 // just as lookupLatency or or the value of lat overriden 229 // by access(), that calls accessBlock() function. 230 cpuSidePort.schedTimingResp(pkt, request_time, true); 231 } else { 232 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 233 pkt->print()); 234 235 // queue the packet for deletion, as the sending cache is 236 // still relying on it; if the block is found in access(), 237 // CleanEvict and Writeback messages will be deleted 238 // here as well 239 pendingDelete.reset(pkt); 240 } 241} 242 243void 244BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 245 Tick forward_time, Tick request_time) 246{ 247 if (mshr) { 248 /// MSHR hit 249 /// @note writebacks will be checked in getNextMSHR() 250 /// for any conflicting requests to the same block 251 252 //@todo remove hw_pf here 253 254 // Coalesce unless it was a software prefetch (see above). 255 if (pkt) { 256 assert(!pkt->isWriteback()); 257 // CleanEvicts corresponding to blocks which have 258 // outstanding requests in MSHRs are simply sunk here 259 if (pkt->cmd == MemCmd::CleanEvict) { 260 pendingDelete.reset(pkt); 261 } else if (pkt->cmd == MemCmd::WriteClean) { 262 // A WriteClean should never coalesce with any 263 // outstanding cache maintenance requests. 264 265 // We use forward_time here because there is an 266 // uncached memory write, forwarded to WriteBuffer. 267 allocateWriteBuffer(pkt, forward_time); 268 } else { 269 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 270 pkt->print()); 271 272 assert(pkt->req->masterId() < system->maxMasters()); 273 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 274 275 // We use forward_time here because it is the same 276 // considering new targets. We have multiple 277 // requests for the same address here. It 278 // specifies the latency to allocate an internal 279 // buffer and to schedule an event to the queued 280 // port and also takes into account the additional 281 // delay of the xbar. 282 mshr->allocateTarget(pkt, forward_time, order++, 283 allocOnFill(pkt->cmd)); 284 if (mshr->getNumTargets() == numTarget) { 285 noTargetMSHR = mshr; 286 setBlocked(Blocked_NoTargets); 287 // need to be careful with this... if this mshr isn't 288 // ready yet (i.e. time > curTick()), we don't want to 289 // move it ahead of mshrs that are ready 290 // mshrQueue.moveToFront(mshr); 291 } 292 } 293 } 294 } else { 295 // no MSHR 296 assert(pkt->req->masterId() < system->maxMasters()); 297 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 298 299 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { 300 // We use forward_time here because there is an 301 // writeback or writeclean, forwarded to WriteBuffer. 302 allocateWriteBuffer(pkt, forward_time); 303 } else { 304 if (blk && blk->isValid()) { 305 // If we have a write miss to a valid block, we 306 // need to mark the block non-readable. Otherwise 307 // if we allow reads while there's an outstanding 308 // write miss, the read could return stale data 309 // out of the cache block... a more aggressive 310 // system could detect the overlap (if any) and 311 // forward data out of the MSHRs, but we don't do 312 // that yet. Note that we do need to leave the 313 // block valid so that it stays in the cache, in 314 // case we get an upgrade response (and hence no 315 // new data) when the write miss completes. 316 // As long as CPUs do proper store/load forwarding 317 // internally, and have a sufficiently weak memory 318 // model, this is probably unnecessary, but at some 319 // point it must have seemed like we needed it... 320 assert((pkt->needsWritable() && !blk->isWritable()) || 321 pkt->req->isCacheMaintenance()); 322 blk->status &= ~BlkReadable; 323 } 324 // Here we are using forward_time, modelling the latency of 325 // a miss (outbound) just as forwardLatency, neglecting the 326 // lookupLatency component. 327 allocateMissBuffer(pkt, forward_time); 328 } 329 } 330} 331 332void 333BaseCache::recvTimingReq(PacketPtr pkt) 334{ 335 // anything that is merely forwarded pays for the forward latency and 336 // the delay provided by the crossbar 337 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 338 339 // We use lookupLatency here because it is used to specify the latency 340 // to access. 341 Cycles lat = lookupLatency; 342 CacheBlk *blk = nullptr; 343 bool satisfied = false; 344 { 345 PacketList writebacks; 346 // Note that lat is passed by reference here. The function 347 // access() calls accessBlock() which can modify lat value. 348 satisfied = access(pkt, blk, lat, writebacks); 349 350 // copy writebacks to write buffer here to ensure they logically 351 // proceed anything happening below 352 doWritebacks(writebacks, forward_time); 353 } 354 355 // Here we charge the headerDelay that takes into account the latencies 356 // of the bus, if the packet comes from it. 357 // The latency charged it is just lat that is the value of lookupLatency 358 // modified by access() function, or if not just lookupLatency. 359 // In case of a hit we are neglecting response latency. 360 // In case of a miss we are neglecting forward latency. 361 Tick request_time = clockEdge(lat) + pkt->headerDelay; 362 // Here we reset the timing of the packet. 363 pkt->headerDelay = pkt->payloadDelay = 0; 364 // track time of availability of next prefetch, if any 365 Tick next_pf_time = MaxTick; 366 367 if (satisfied) { 368 // if need to notify the prefetcher we have to do it before 369 // anything else as later handleTimingReqHit might turn the 370 // packet in a response 371 if (prefetcher && 372 (prefetchOnAccess || (blk && blk->wasPrefetched()))) { 373 if (blk) 374 blk->status &= ~BlkHWPrefetched; 375 376 // Don't notify on SWPrefetch 377 if (!pkt->cmd.isSWPrefetch()) { 378 assert(!pkt->req->isCacheMaintenance()); 379 next_pf_time = prefetcher->notify(pkt); 380 } 381 } 382 383 handleTimingReqHit(pkt, blk, request_time); 384 } else { 385 handleTimingReqMiss(pkt, blk, forward_time, request_time); 386 387 // We should call the prefetcher reguardless if the request is 388 // satisfied or not, reguardless if the request is in the MSHR 389 // or not. The request could be a ReadReq hit, but still not 390 // satisfied (potentially because of a prior write to the same 391 // cache line. So, even when not satisfied, there is an MSHR 392 // already allocated for this, we need to let the prefetcher 393 // know about the request 394 395 // Don't notify prefetcher on SWPrefetch or cache maintenance 396 // operations 397 if (prefetcher && pkt && 398 !pkt->cmd.isSWPrefetch() && 399 !pkt->req->isCacheMaintenance()) { 400 next_pf_time = prefetcher->notify(pkt); 401 } 402 } 403 404 if (next_pf_time != MaxTick) { 405 schedMemSideSendEvent(next_pf_time); 406 } 407} 408 409void 410BaseCache::handleUncacheableWriteResp(PacketPtr pkt) 411{ 412 Tick completion_time = clockEdge(responseLatency) + 413 pkt->headerDelay + pkt->payloadDelay; 414 415 // Reset the bus additional time as it is now accounted for 416 pkt->headerDelay = pkt->payloadDelay = 0; 417 418 cpuSidePort.schedTimingResp(pkt, completion_time, true); 419} 420 421void 422BaseCache::recvTimingResp(PacketPtr pkt) 423{ 424 assert(pkt->isResponse()); 425 426 // all header delay should be paid for by the crossbar, unless 427 // this is a prefetch response from above 428 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 429 "%s saw a non-zero packet delay\n", name()); 430 431 const bool is_error = pkt->isError(); 432 433 if (is_error) { 434 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 435 pkt->print()); 436 } 437 438 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 439 pkt->print()); 440 441 // if this is a write, we should be looking at an uncacheable 442 // write 443 if (pkt->isWrite()) { 444 assert(pkt->req->isUncacheable()); 445 handleUncacheableWriteResp(pkt); 446 return; 447 } 448 449 // we have dealt with any (uncacheable) writes above, from here on 450 // we know we are dealing with an MSHR due to a miss or a prefetch 451 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 452 assert(mshr); 453 454 if (mshr == noTargetMSHR) { 455 // we always clear at least one target 456 clearBlocked(Blocked_NoTargets); 457 noTargetMSHR = nullptr; 458 } 459 460 // Initial target is used just for stats 461 MSHR::Target *initial_tgt = mshr->getTarget(); 462 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 463 Tick miss_latency = curTick() - initial_tgt->recvTime; 464 465 if (pkt->req->isUncacheable()) { 466 assert(pkt->req->masterId() < system->maxMasters()); 467 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 468 miss_latency; 469 } else { 470 assert(pkt->req->masterId() < system->maxMasters()); 471 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 472 miss_latency; 473 } 474 475 PacketList writebacks; 476 477 bool is_fill = !mshr->isForward && 478 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); 479 480 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 481 482 if (is_fill && !is_error) { 483 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 484 pkt->getAddr()); 485 486 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill()); 487 assert(blk != nullptr); 488 } 489 490 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { 491 // The block was marked not readable while there was a pending 492 // cache maintenance operation, restore its flag. 493 blk->status |= BlkReadable; 494 } 495 496 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { 497 // If at this point the referenced block is writable and the 498 // response is not a cache invalidate, we promote targets that 499 // were deferred as we couldn't guarrantee a writable copy 500 mshr->promoteWritable(); 501 } 502 503 serviceMSHRTargets(mshr, pkt, blk, writebacks); 504 505 if (mshr->promoteDeferredTargets()) { 506 // avoid later read getting stale data while write miss is 507 // outstanding.. see comment in timingAccess() 508 if (blk) { 509 blk->status &= ~BlkReadable; 510 } 511 mshrQueue.markPending(mshr); 512 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 513 } else { 514 // while we deallocate an mshr from the queue we still have to 515 // check the isFull condition before and after as we might 516 // have been using the reserved entries already 517 const bool was_full = mshrQueue.isFull(); 518 mshrQueue.deallocate(mshr); 519 if (was_full && !mshrQueue.isFull()) { 520 clearBlocked(Blocked_NoMSHRs); 521 } 522 523 // Request the bus for a prefetch if this deallocation freed enough 524 // MSHRs for a prefetch to take place 525 if (prefetcher && mshrQueue.canPrefetch()) { 526 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 527 clockEdge()); 528 if (next_pf_time != MaxTick) 529 schedMemSideSendEvent(next_pf_time); 530 } 531 } 532 533 // if we used temp block, check to see if its valid and then clear it out 534 if (blk == tempBlock && tempBlock->isValid()) { 535 evictBlock(blk, writebacks); 536 } 537 538 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 539 // copy writebacks to write buffer 540 doWritebacks(writebacks, forward_time); 541 542 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 543 delete pkt; 544} 545 546 547Tick 548BaseCache::recvAtomic(PacketPtr pkt) 549{ 550 // We are in atomic mode so we pay just for lookupLatency here. 551 Cycles lat = lookupLatency; 552 553 // follow the same flow as in recvTimingReq, and check if a cache 554 // above us is responding 555 if (pkt->cacheResponding() && !pkt->isClean()) { 556 assert(!pkt->req->isCacheInvalidate()); 557 DPRINTF(Cache, "Cache above responding to %s: not responding\n", 558 pkt->print()); 559 560 // if a cache is responding, and it had the line in Owned 561 // rather than Modified state, we need to invalidate any 562 // copies that are not on the same path to memory 563 assert(pkt->needsWritable() && !pkt->responderHadWritable()); 564 lat += ticksToCycles(memSidePort.sendAtomic(pkt)); 565 566 return lat * clockPeriod(); 567 } 568 569 // should assert here that there are no outstanding MSHRs or 570 // writebacks... that would mean that someone used an atomic 571 // access in timing mode 572 573 CacheBlk *blk = nullptr; 574 PacketList writebacks; 575 bool satisfied = access(pkt, blk, lat, writebacks); 576 577 if (pkt->isClean() && blk && blk->isDirty()) { 578 // A cache clean opearation is looking for a dirty 579 // block. If a dirty block is encountered a WriteClean 580 // will update any copies to the path to the memory 581 // until the point of reference. 582 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 583 __func__, pkt->print(), blk->print()); 584 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 585 writebacks.push_back(wb_pkt); 586 pkt->setSatisfied(); 587 } 588 589 // handle writebacks resulting from the access here to ensure they 590 // logically proceed anything happening below 591 doWritebacksAtomic(writebacks); 592 assert(writebacks.empty()); 593 594 if (!satisfied) { 595 lat += handleAtomicReqMiss(pkt, blk, writebacks); 596 } 597 598 // Note that we don't invoke the prefetcher at all in atomic mode. 599 // It's not clear how to do it properly, particularly for 600 // prefetchers that aggressively generate prefetch candidates and 601 // rely on bandwidth contention to throttle them; these will tend 602 // to pollute the cache in atomic mode since there is no bandwidth 603 // contention. If we ever do want to enable prefetching in atomic 604 // mode, though, this is the place to do it... see timingAccess() 605 // for an example (though we'd want to issue the prefetch(es) 606 // immediately rather than calling requestMemSideBus() as we do 607 // there). 608 609 // do any writebacks resulting from the response handling 610 doWritebacksAtomic(writebacks); 611 612 // if we used temp block, check to see if its valid and if so 613 // clear it out, but only do so after the call to recvAtomic is 614 // finished so that any downstream observers (such as a snoop 615 // filter), first see the fill, and only then see the eviction 616 if (blk == tempBlock && tempBlock->isValid()) { 617 // the atomic CPU calls recvAtomic for fetch and load/store 618 // sequentuially, and we may already have a tempBlock 619 // writeback from the fetch that we have not yet sent 620 if (tempBlockWriteback) { 621 // if that is the case, write the prevoius one back, and 622 // do not schedule any new event 623 writebackTempBlockAtomic(); 624 } else { 625 // the writeback/clean eviction happens after the call to 626 // recvAtomic has finished (but before any successive 627 // calls), so that the response handling from the fill is 628 // allowed to happen first 629 schedule(writebackTempBlockAtomicEvent, curTick()); 630 } 631 632 tempBlockWriteback = evictBlock(blk); 633 } 634 635 if (pkt->needsResponse()) { 636 pkt->makeAtomicResponse(); 637 } 638 639 return lat * clockPeriod(); 640} 641 642void 643BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) 644{ 645 Addr blk_addr = pkt->getBlockAddr(blkSize); 646 bool is_secure = pkt->isSecure(); 647 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 648 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 649 650 pkt->pushLabel(name()); 651 652 CacheBlkPrintWrapper cbpw(blk); 653 654 // Note that just because an L2/L3 has valid data doesn't mean an 655 // L1 doesn't have a more up-to-date modified copy that still 656 // needs to be found. As a result we always update the request if 657 // we have it, but only declare it satisfied if we are the owner. 658 659 // see if we have data at all (owned or otherwise) 660 bool have_data = blk && blk->isValid() 661 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, 662 blk->data); 663 664 // data we have is dirty if marked as such or if we have an 665 // in-service MSHR that is pending a modified line 666 bool have_dirty = 667 have_data && (blk->isDirty() || 668 (mshr && mshr->inService && mshr->isPendingModified())); 669 670 bool done = have_dirty || 671 cpuSidePort.checkFunctional(pkt) || 672 mshrQueue.checkFunctional(pkt, blk_addr) || 673 writeBuffer.checkFunctional(pkt, blk_addr) || 674 memSidePort.checkFunctional(pkt); 675 676 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 677 (blk && blk->isValid()) ? "valid " : "", 678 have_data ? "data " : "", done ? "done " : ""); 679 680 // We're leaving the cache, so pop cache->name() label 681 pkt->popLabel(); 682 683 if (done) { 684 pkt->makeResponse(); 685 } else { 686 // if it came as a request from the CPU side then make sure it 687 // continues towards the memory side 688 if (from_cpu_side) { 689 memSidePort.sendFunctional(pkt); 690 } else if (cpuSidePort.isSnooping()) { 691 // if it came from the memory side, it must be a snoop request 692 // and we should only forward it if we are forwarding snoops 693 cpuSidePort.sendFunctionalSnoop(pkt); 694 } 695 } 696} 697 698 699void 700BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 701{ 702 assert(pkt->isRequest()); 703 704 uint64_t overwrite_val; 705 bool overwrite_mem; 706 uint64_t condition_val64; 707 uint32_t condition_val32; 708 709 int offset = pkt->getOffset(blkSize); 710 uint8_t *blk_data = blk->data + offset; 711 712 assert(sizeof(uint64_t) >= pkt->getSize()); 713 714 overwrite_mem = true; 715 // keep a copy of our possible write value, and copy what is at the 716 // memory address into the packet 717 pkt->writeData((uint8_t *)&overwrite_val); 718 pkt->setData(blk_data); 719 720 if (pkt->req->isCondSwap()) { 721 if (pkt->getSize() == sizeof(uint64_t)) { 722 condition_val64 = pkt->req->getExtraData(); 723 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 724 sizeof(uint64_t)); 725 } else if (pkt->getSize() == sizeof(uint32_t)) { 726 condition_val32 = (uint32_t)pkt->req->getExtraData(); 727 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 728 sizeof(uint32_t)); 729 } else 730 panic("Invalid size for conditional read/write\n"); 731 } 732 733 if (overwrite_mem) { 734 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 735 blk->status |= BlkDirty; 736 } 737} 738 739QueueEntry* 740BaseCache::getNextQueueEntry() 741{ 742 // Check both MSHR queue and write buffer for potential requests, 743 // note that null does not mean there is no request, it could 744 // simply be that it is not ready 745 MSHR *miss_mshr = mshrQueue.getNext(); 746 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 747 748 // If we got a write buffer request ready, first priority is a 749 // full write buffer, otherwise we favour the miss requests 750 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 751 // need to search MSHR queue for conflicting earlier miss. 752 MSHR *conflict_mshr = 753 mshrQueue.findPending(wq_entry->blkAddr, 754 wq_entry->isSecure); 755 756 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 757 // Service misses in order until conflict is cleared. 758 return conflict_mshr; 759 760 // @todo Note that we ignore the ready time of the conflict here 761 } 762 763 // No conflicts; issue write 764 return wq_entry; 765 } else if (miss_mshr) { 766 // need to check for conflicting earlier writeback 767 WriteQueueEntry *conflict_mshr = 768 writeBuffer.findPending(miss_mshr->blkAddr, 769 miss_mshr->isSecure); 770 if (conflict_mshr) { 771 // not sure why we don't check order here... it was in the 772 // original code but commented out. 773 774 // The only way this happens is if we are 775 // doing a write and we didn't have permissions 776 // then subsequently saw a writeback (owned got evicted) 777 // We need to make sure to perform the writeback first 778 // To preserve the dirty data, then we can issue the write 779 780 // should we return wq_entry here instead? I.e. do we 781 // have to flush writes in order? I don't think so... not 782 // for Alpha anyway. Maybe for x86? 783 return conflict_mshr; 784 785 // @todo Note that we ignore the ready time of the conflict here 786 } 787 788 // No conflicts; issue read 789 return miss_mshr; 790 } 791 792 // fall through... no pending requests. Try a prefetch. 793 assert(!miss_mshr && !wq_entry); 794 if (prefetcher && mshrQueue.canPrefetch()) { 795 // If we have a miss queue slot, we can try a prefetch 796 PacketPtr pkt = prefetcher->getPacket(); 797 if (pkt) { 798 Addr pf_addr = pkt->getBlockAddr(blkSize); 799 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 800 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 801 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 802 // Update statistic on number of prefetches issued 803 // (hwpf_mshr_misses) 804 assert(pkt->req->masterId() < system->maxMasters()); 805 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 806 807 // allocate an MSHR and return it, note 808 // that we send the packet straight away, so do not 809 // schedule the send 810 return allocateMissBuffer(pkt, curTick(), false); 811 } else { 812 // free the request and packet 813 delete pkt->req; 814 delete pkt; 815 } 816 } 817 } 818 819 return nullptr; 820} 821 822void 823BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) 824{ 825 assert(pkt->isRequest()); 826 827 assert(blk && blk->isValid()); 828 // Occasionally this is not true... if we are a lower-level cache 829 // satisfying a string of Read and ReadEx requests from 830 // upper-level caches, a Read will mark the block as shared but we 831 // can satisfy a following ReadEx anyway since we can rely on the 832 // Read requester(s) to have buffered the ReadEx snoop and to 833 // invalidate their blocks after receiving them. 834 // assert(!pkt->needsWritable() || blk->isWritable()); 835 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 836 837 // Check RMW operations first since both isRead() and 838 // isWrite() will be true for them 839 if (pkt->cmd == MemCmd::SwapReq) { 840 cmpAndSwap(blk, pkt); 841 } else if (pkt->isWrite()) { 842 // we have the block in a writable state and can go ahead, 843 // note that the line may be also be considered writable in 844 // downstream caches along the path to memory, but always 845 // Exclusive, and never Modified 846 assert(blk->isWritable()); 847 // Write or WriteLine at the first cache with block in writable state 848 if (blk->checkWrite(pkt)) { 849 pkt->writeDataToBlock(blk->data, blkSize); 850 } 851 // Always mark the line as dirty (and thus transition to the 852 // Modified state) even if we are a failed StoreCond so we 853 // supply data to any snoops that have appended themselves to 854 // this cache before knowing the store will fail. 855 blk->status |= BlkDirty; 856 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 857 } else if (pkt->isRead()) { 858 if (pkt->isLLSC()) { 859 blk->trackLoadLocked(pkt); 860 } 861 862 // all read responses have a data payload 863 assert(pkt->hasRespData()); 864 pkt->setDataFromBlock(blk->data, blkSize); 865 } else if (pkt->isUpgrade()) { 866 // sanity check 867 assert(!pkt->hasSharers()); 868 869 if (blk->isDirty()) { 870 // we were in the Owned state, and a cache above us that 871 // has the line in Shared state needs to be made aware 872 // that the data it already has is in fact dirty 873 pkt->setCacheResponding(); 874 blk->status &= ~BlkDirty; 875 } 876 } else { 877 assert(pkt->isInvalidate()); 878 invalidateBlock(blk); 879 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 880 pkt->print()); 881 } 882} 883 884///////////////////////////////////////////////////// 885// 886// Access path: requests coming in from the CPU side 887// 888///////////////////////////////////////////////////// 889 890bool 891BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 892 PacketList &writebacks) 893{ 894 // sanity check 895 assert(pkt->isRequest()); 896 897 chatty_assert(!(isReadOnly && pkt->isWrite()), 898 "Should never see a write in a read-only cache %s\n", 899 name()); 900 901 // Here lat is the value passed as parameter to accessBlock() function 902 // that can modify its value. 903 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat); 904 905 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), 906 blk ? "hit " + blk->print() : "miss"); 907 908 if (pkt->req->isCacheMaintenance()) { 909 // A cache maintenance operation is always forwarded to the 910 // memory below even if the block is found in dirty state. 911 912 // We defer any changes to the state of the block until we 913 // create and mark as in service the mshr for the downstream 914 // packet. 915 return false; 916 } 917 918 if (pkt->isEviction()) { 919 // We check for presence of block in above caches before issuing 920 // Writeback or CleanEvict to write buffer. Therefore the only 921 // possible cases can be of a CleanEvict packet coming from above 922 // encountering a Writeback generated in this cache peer cache and 923 // waiting in the write buffer. Cases of upper level peer caches 924 // generating CleanEvict and Writeback or simply CleanEvict and 925 // CleanEvict almost simultaneously will be caught by snoops sent out 926 // by crossbar. 927 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 928 pkt->isSecure()); 929 if (wb_entry) { 930 assert(wb_entry->getNumTargets() == 1); 931 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 932 assert(wbPkt->isWriteback()); 933 934 if (pkt->isCleanEviction()) { 935 // The CleanEvict and WritebackClean snoops into other 936 // peer caches of the same level while traversing the 937 // crossbar. If a copy of the block is found, the 938 // packet is deleted in the crossbar. Hence, none of 939 // the other upper level caches connected to this 940 // cache have the block, so we can clear the 941 // BLOCK_CACHED flag in the Writeback if set and 942 // discard the CleanEvict by returning true. 943 wbPkt->clearBlockCached(); 944 return true; 945 } else { 946 assert(pkt->cmd == MemCmd::WritebackDirty); 947 // Dirty writeback from above trumps our clean 948 // writeback... discard here 949 // Note: markInService will remove entry from writeback buffer. 950 markInService(wb_entry); 951 delete wbPkt; 952 } 953 } 954 } 955 956 // Writeback handling is special case. We can write the block into 957 // the cache without having a writeable copy (or any copy at all). 958 if (pkt->isWriteback()) { 959 assert(blkSize == pkt->getSize()); 960 961 // we could get a clean writeback while we are having 962 // outstanding accesses to a block, do the simple thing for 963 // now and drop the clean writeback so that we do not upset 964 // any ordering/decisions about ownership already taken 965 if (pkt->cmd == MemCmd::WritebackClean && 966 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 967 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 968 "dropping\n", pkt->getAddr()); 969 return true; 970 } 971 972 if (!blk) { 973 // need to do a replacement 974 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); 975 if (!blk) { 976 // no replaceable block available: give up, fwd to next level. 977 incMissCount(pkt); 978 return false; 979 } 980 tags->insertBlock(pkt, blk); 981 982 blk->status |= (BlkValid | BlkReadable); 983 } 984 // only mark the block dirty if we got a writeback command, 985 // and leave it as is for a clean writeback 986 if (pkt->cmd == MemCmd::WritebackDirty) { 987 // TODO: the coherent cache can assert(!blk->isDirty()); 988 blk->status |= BlkDirty; 989 } 990 // if the packet does not have sharers, it is passing 991 // writable, and we got the writeback in Modified or Exclusive 992 // state, if not we are in the Owned or Shared state 993 if (!pkt->hasSharers()) { 994 blk->status |= BlkWritable; 995 } 996 // nothing else to do; writeback doesn't expect response 997 assert(!pkt->needsResponse()); 998 pkt->writeDataToBlock(blk->data, blkSize); 999 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1000 incHitCount(pkt); 1001 // populate the time when the block will be ready to access. 1002 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1003 pkt->payloadDelay; 1004 return true; 1005 } else if (pkt->cmd == MemCmd::CleanEvict) { 1006 if (blk) { 1007 // Found the block in the tags, need to stop CleanEvict from 1008 // propagating further down the hierarchy. Returning true will 1009 // treat the CleanEvict like a satisfied write request and delete 1010 // it. 1011 return true; 1012 } 1013 // We didn't find the block here, propagate the CleanEvict further 1014 // down the memory hierarchy. Returning false will treat the CleanEvict 1015 // like a Writeback which could not find a replaceable block so has to 1016 // go to next level. 1017 return false; 1018 } else if (pkt->cmd == MemCmd::WriteClean) { 1019 // WriteClean handling is a special case. We can allocate a 1020 // block directly if it doesn't exist and we can update the 1021 // block immediately. The WriteClean transfers the ownership 1022 // of the block as well. 1023 assert(blkSize == pkt->getSize()); 1024 1025 if (!blk) { 1026 if (pkt->writeThrough()) { 1027 // if this is a write through packet, we don't try to 1028 // allocate if the block is not present 1029 return false; 1030 } else { 1031 // a writeback that misses needs to allocate a new block 1032 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), 1033 writebacks); 1034 if (!blk) { 1035 // no replaceable block available: give up, fwd to 1036 // next level. 1037 incMissCount(pkt); 1038 return false; 1039 } 1040 tags->insertBlock(pkt, blk); 1041 1042 blk->status |= (BlkValid | BlkReadable); 1043 } 1044 } 1045 1046 // at this point either this is a writeback or a write-through 1047 // write clean operation and the block is already in this 1048 // cache, we need to update the data and the block flags 1049 assert(blk); 1050 // TODO: the coherent cache can assert(!blk->isDirty()); 1051 if (!pkt->writeThrough()) { 1052 blk->status |= BlkDirty; 1053 } 1054 // nothing else to do; writeback doesn't expect response 1055 assert(!pkt->needsResponse()); 1056 pkt->writeDataToBlock(blk->data, blkSize); 1057 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1058 1059 incHitCount(pkt); 1060 // populate the time when the block will be ready to access. 1061 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + 1062 pkt->payloadDelay; 1063 // if this a write-through packet it will be sent to cache 1064 // below 1065 return !pkt->writeThrough(); 1066 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 1067 blk->isReadable())) { 1068 // OK to satisfy access 1069 incHitCount(pkt); 1070 satisfyRequest(pkt, blk); 1071 maintainClusivity(pkt->fromCache(), blk); 1072 1073 return true; 1074 } 1075 1076 // Can't satisfy access normally... either no block (blk == nullptr) 1077 // or have block but need writable 1078 1079 incMissCount(pkt); 1080 1081 if (!blk && pkt->isLLSC() && pkt->isWrite()) { 1082 // complete miss on store conditional... just give up now 1083 pkt->req->setExtraData(0); 1084 return true; 1085 } 1086 1087 return false; 1088} 1089 1090void 1091BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) 1092{ 1093 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 1094 clusivity == Enums::mostly_excl) { 1095 // if we have responded to a cache, and our block is still 1096 // valid, but not dirty, and this cache is mostly exclusive 1097 // with respect to the cache above, drop the block 1098 invalidateBlock(blk); 1099 } 1100} 1101 1102CacheBlk* 1103BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1104 bool allocate) 1105{ 1106 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); 1107 Addr addr = pkt->getAddr(); 1108 bool is_secure = pkt->isSecure(); 1109#if TRACING_ON 1110 CacheBlk::State old_state = blk ? blk->status : 0; 1111#endif 1112 1113 // When handling a fill, we should have no writes to this line. 1114 assert(addr == pkt->getBlockAddr(blkSize)); 1115 assert(!writeBuffer.findMatch(addr, is_secure)); 1116 1117 if (!blk) { 1118 // better have read new data... 1119 assert(pkt->hasData()); 1120 1121 // only read responses and write-line requests have data; 1122 // note that we don't write the data here for write-line - that 1123 // happens in the subsequent call to satisfyRequest 1124 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); 1125 1126 // need to do a replacement if allocating, otherwise we stick 1127 // with the temporary storage 1128 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr; 1129 1130 if (!blk) { 1131 // No replaceable block or a mostly exclusive 1132 // cache... just use temporary storage to complete the 1133 // current request and then get rid of it 1134 assert(!tempBlock->isValid()); 1135 blk = tempBlock; 1136 tempBlock->insert(addr, is_secure); 1137 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1138 is_secure ? "s" : "ns"); 1139 } else { 1140 tags->insertBlock(pkt, blk); 1141 } 1142 1143 // we should never be overwriting a valid block 1144 assert(!blk->isValid()); 1145 } else { 1146 // existing block... probably an upgrade 1147 assert(blk->tag == tags->extractTag(addr)); 1148 assert(blk->isSecure() == is_secure); 1149 // either we're getting new data or the block should already be valid 1150 assert(pkt->hasData() || blk->isValid()); 1151 // don't clear block status... if block is already dirty we 1152 // don't want to lose that 1153 } 1154 1155 blk->status |= BlkValid | BlkReadable; 1156 1157 // sanity check for whole-line writes, which should always be 1158 // marked as writable as part of the fill, and then later marked 1159 // dirty as part of satisfyRequest 1160 if (pkt->cmd == MemCmd::WriteLineReq) { 1161 assert(!pkt->hasSharers()); 1162 } 1163 1164 // here we deal with setting the appropriate state of the line, 1165 // and we start by looking at the hasSharers flag, and ignore the 1166 // cacheResponding flag (normally signalling dirty data) if the 1167 // packet has sharers, thus the line is never allocated as Owned 1168 // (dirty but not writable), and always ends up being either 1169 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1170 // for more details 1171 if (!pkt->hasSharers()) { 1172 // we could get a writable line from memory (rather than a 1173 // cache) even in a read-only cache, note that we set this bit 1174 // even for a read-only cache, possibly revisit this decision 1175 blk->status |= BlkWritable; 1176 1177 // check if we got this via cache-to-cache transfer (i.e., from a 1178 // cache that had the block in Modified or Owned state) 1179 if (pkt->cacheResponding()) { 1180 // we got the block in Modified state, and invalidated the 1181 // owners copy 1182 blk->status |= BlkDirty; 1183 1184 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1185 "in read-only cache %s\n", name()); 1186 } 1187 } 1188 1189 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1190 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1191 1192 // if we got new data, copy it in (checking for a read response 1193 // and a response that has data is the same in the end) 1194 if (pkt->isRead()) { 1195 // sanity checks 1196 assert(pkt->hasData()); 1197 assert(pkt->getSize() == blkSize); 1198 1199 pkt->writeDataToBlock(blk->data, blkSize); 1200 } 1201 // We pay for fillLatency here. 1202 blk->whenReady = clockEdge() + fillLatency * clockPeriod() + 1203 pkt->payloadDelay; 1204 1205 return blk; 1206} 1207 1208CacheBlk* 1209BaseCache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) 1210{ 1211 // Find replacement victim 1212 CacheBlk *blk = tags->findVictim(addr); 1213 1214 // It is valid to return nullptr if there is no victim 1215 if (!blk) 1216 return nullptr; 1217 1218 if (blk->isValid()) { 1219 Addr repl_addr = regenerateBlkAddr(blk); 1220 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1221 if (repl_mshr) { 1222 // must be an outstanding upgrade or clean request 1223 // on a block we're about to replace... 1224 assert((!blk->isWritable() && repl_mshr->needsWritable()) || 1225 repl_mshr->isCleaning()); 1226 // too hard to replace block with transient state 1227 // allocation failed, block not inserted 1228 return nullptr; 1229 } else { 1230 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1231 "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns", 1232 addr, is_secure ? "s" : "ns", 1233 blk->isDirty() ? "writeback" : "clean"); 1234 1235 if (blk->wasPrefetched()) { 1236 unusedPrefetches++; 1237 } 1238 evictBlock(blk, writebacks); 1239 replacements++; 1240 } 1241 } 1242 1243 return blk; 1244} 1245 1246void 1247BaseCache::invalidateBlock(CacheBlk *blk) 1248{ 1249 if (blk != tempBlock) 1250 tags->invalidate(blk); 1251 blk->invalidate(); 1252} 1253 1254PacketPtr 1255BaseCache::writebackBlk(CacheBlk *blk) 1256{ 1257 chatty_assert(!isReadOnly || writebackClean, 1258 "Writeback from read-only cache"); 1259 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1260 1261 writebacks[Request::wbMasterId]++; 1262 1263 Request *req = new Request(regenerateBlkAddr(blk), blkSize, 0, 1264 Request::wbMasterId); 1265 if (blk->isSecure()) 1266 req->setFlags(Request::SECURE); 1267 1268 req->taskId(blk->task_id); 1269 1270 PacketPtr pkt = 1271 new Packet(req, blk->isDirty() ? 1272 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1273 1274 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1275 pkt->print(), blk->isWritable(), blk->isDirty()); 1276 1277 if (blk->isWritable()) { 1278 // not asserting shared means we pass the block in modified 1279 // state, mark our own block non-writeable 1280 blk->status &= ~BlkWritable; 1281 } else { 1282 // we are in the Owned state, tell the receiver 1283 pkt->setHasSharers(); 1284 } 1285 1286 // make sure the block is not marked dirty 1287 blk->status &= ~BlkDirty; 1288 1289 pkt->allocate(); 1290 pkt->setDataFromBlock(blk->data, blkSize); 1291 1292 return pkt; 1293} 1294 1295PacketPtr 1296BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1297{ 1298 Request *req = new Request(regenerateBlkAddr(blk), blkSize, 0, 1299 Request::wbMasterId); 1300 if (blk->isSecure()) { 1301 req->setFlags(Request::SECURE); 1302 } 1303 req->taskId(blk->task_id); 1304 1305 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1306 1307 if (dest) { 1308 req->setFlags(dest); 1309 pkt->setWriteThrough(); 1310 } 1311 1312 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1313 blk->isWritable(), blk->isDirty()); 1314 1315 if (blk->isWritable()) { 1316 // not asserting shared means we pass the block in modified 1317 // state, mark our own block non-writeable 1318 blk->status &= ~BlkWritable; 1319 } else { 1320 // we are in the Owned state, tell the receiver 1321 pkt->setHasSharers(); 1322 } 1323 1324 // make sure the block is not marked dirty 1325 blk->status &= ~BlkDirty; 1326 1327 pkt->allocate(); 1328 pkt->setDataFromBlock(blk->data, blkSize); 1329 1330 return pkt; 1331} 1332 1333 1334void 1335BaseCache::memWriteback() 1336{ 1337 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); }); 1338} 1339 1340void 1341BaseCache::memInvalidate() 1342{ 1343 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); }); 1344} 1345 1346bool 1347BaseCache::isDirty() const 1348{ 1349 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); }); 1350} 1351 1352void 1353BaseCache::writebackVisitor(CacheBlk &blk) 1354{ 1355 if (blk.isDirty()) { 1356 assert(blk.isValid()); 1357 1358 Request request(regenerateBlkAddr(&blk), 1359 blkSize, 0, Request::funcMasterId); 1360 request.taskId(blk.task_id); 1361 if (blk.isSecure()) { 1362 request.setFlags(Request::SECURE); 1363 } 1364 1365 Packet packet(&request, MemCmd::WriteReq); 1366 packet.dataStatic(blk.data); 1367 1368 memSidePort.sendFunctional(&packet); 1369 1370 blk.status &= ~BlkDirty; 1371 } 1372} 1373 1374void 1375BaseCache::invalidateVisitor(CacheBlk &blk) 1376{ 1377 if (blk.isDirty()) 1378 warn_once("Invalidating dirty cache lines. " \ 1379 "Expect things to break.\n"); 1380 1381 if (blk.isValid()) { 1382 assert(!blk.isDirty()); 1383 invalidateBlock(&blk); 1384 } 1385} 1386 1387Tick 1388BaseCache::nextQueueReadyTime() const 1389{ 1390 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 1391 writeBuffer.nextReadyTime()); 1392 1393 // Don't signal prefetch ready time if no MSHRs available 1394 // Will signal once enoguh MSHRs are deallocated 1395 if (prefetcher && mshrQueue.canPrefetch()) { 1396 nextReady = std::min(nextReady, 1397 prefetcher->nextPrefetchReadyTime()); 1398 } 1399 1400 return nextReady; 1401} 1402 1403 1404bool 1405BaseCache::sendMSHRQueuePacket(MSHR* mshr) 1406{ 1407 assert(mshr); 1408 1409 // use request from 1st target 1410 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1411 1412 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1413 1414 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 1415 1416 // either a prefetch that is not present upstream, or a normal 1417 // MSHR request, proceed to get the packet to send downstream 1418 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable()); 1419 1420 mshr->isForward = (pkt == nullptr); 1421 1422 if (mshr->isForward) { 1423 // not a cache block request, but a response is expected 1424 // make copy of current packet to forward, keep current 1425 // copy for response handling 1426 pkt = new Packet(tgt_pkt, false, true); 1427 assert(!pkt->isWrite()); 1428 } 1429 1430 // play it safe and append (rather than set) the sender state, 1431 // as forwarded packets may already have existing state 1432 pkt->pushSenderState(mshr); 1433 1434 if (pkt->isClean() && blk && blk->isDirty()) { 1435 // A cache clean opearation is looking for a dirty block. Mark 1436 // the packet so that the destination xbar can determine that 1437 // there will be a follow-up write packet as well. 1438 pkt->setSatisfied(); 1439 } 1440 1441 if (!memSidePort.sendTimingReq(pkt)) { 1442 // we are awaiting a retry, but we 1443 // delete the packet and will be creating a new packet 1444 // when we get the opportunity 1445 delete pkt; 1446 1447 // note that we have now masked any requestBus and 1448 // schedSendEvent (we will wait for a retry before 1449 // doing anything), and this is so even if we do not 1450 // care about this packet and might override it before 1451 // it gets retried 1452 return true; 1453 } else { 1454 // As part of the call to sendTimingReq the packet is 1455 // forwarded to all neighbouring caches (and any caches 1456 // above them) as a snoop. Thus at this point we know if 1457 // any of the neighbouring caches are responding, and if 1458 // so, we know it is dirty, and we can determine if it is 1459 // being passed as Modified, making our MSHR the ordering 1460 // point 1461 bool pending_modified_resp = !pkt->hasSharers() && 1462 pkt->cacheResponding(); 1463 markInService(mshr, pending_modified_resp); 1464 1465 if (pkt->isClean() && blk && blk->isDirty()) { 1466 // A cache clean opearation is looking for a dirty 1467 // block. If a dirty block is encountered a WriteClean 1468 // will update any copies to the path to the memory 1469 // until the point of reference. 1470 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1471 __func__, pkt->print(), blk->print()); 1472 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 1473 pkt->id); 1474 PacketList writebacks; 1475 writebacks.push_back(wb_pkt); 1476 doWritebacks(writebacks, 0); 1477 } 1478 1479 return false; 1480 } 1481} 1482 1483bool 1484BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 1485{ 1486 assert(wq_entry); 1487 1488 // always a single target for write queue entries 1489 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 1490 1491 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 1492 1493 // forward as is, both for evictions and uncacheable writes 1494 if (!memSidePort.sendTimingReq(tgt_pkt)) { 1495 // note that we have now masked any requestBus and 1496 // schedSendEvent (we will wait for a retry before 1497 // doing anything), and this is so even if we do not 1498 // care about this packet and might override it before 1499 // it gets retried 1500 return true; 1501 } else { 1502 markInService(wq_entry); 1503 return false; 1504 } 1505} 1506 1507void 1508BaseCache::serialize(CheckpointOut &cp) const 1509{ 1510 bool dirty(isDirty()); 1511 1512 if (dirty) { 1513 warn("*** The cache still contains dirty data. ***\n"); 1514 warn(" Make sure to drain the system using the correct flags.\n"); 1515 warn(" This checkpoint will not restore correctly " \ 1516 "and dirty data in the cache will be lost!\n"); 1517 } 1518 1519 // Since we don't checkpoint the data in the cache, any dirty data 1520 // will be lost when restoring from a checkpoint of a system that 1521 // wasn't drained properly. Flag the checkpoint as invalid if the 1522 // cache contains dirty data. 1523 bool bad_checkpoint(dirty); 1524 SERIALIZE_SCALAR(bad_checkpoint); 1525} 1526 1527void 1528BaseCache::unserialize(CheckpointIn &cp) 1529{ 1530 bool bad_checkpoint; 1531 UNSERIALIZE_SCALAR(bad_checkpoint); 1532 if (bad_checkpoint) { 1533 fatal("Restoring from checkpoints with dirty caches is not " 1534 "supported in the classic memory system. Please remove any " 1535 "caches or drain them properly before taking checkpoints.\n"); 1536 } 1537} 1538 1539void 1540BaseCache::regStats() 1541{ 1542 MemObject::regStats(); 1543 1544 using namespace Stats; 1545 1546 // Hit statistics 1547 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1548 MemCmd cmd(access_idx); 1549 const string &cstr = cmd.toString(); 1550 1551 hits[access_idx] 1552 .init(system->maxMasters()) 1553 .name(name() + "." + cstr + "_hits") 1554 .desc("number of " + cstr + " hits") 1555 .flags(total | nozero | nonan) 1556 ; 1557 for (int i = 0; i < system->maxMasters(); i++) { 1558 hits[access_idx].subname(i, system->getMasterName(i)); 1559 } 1560 } 1561 1562// These macros make it easier to sum the right subset of commands and 1563// to change the subset of commands that are considered "demand" vs 1564// "non-demand" 1565#define SUM_DEMAND(s) \ 1566 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \ 1567 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq]) 1568 1569// should writebacks be included here? prior code was inconsistent... 1570#define SUM_NON_DEMAND(s) \ 1571 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq]) 1572 1573 demandHits 1574 .name(name() + ".demand_hits") 1575 .desc("number of demand (read+write) hits") 1576 .flags(total | nozero | nonan) 1577 ; 1578 demandHits = SUM_DEMAND(hits); 1579 for (int i = 0; i < system->maxMasters(); i++) { 1580 demandHits.subname(i, system->getMasterName(i)); 1581 } 1582 1583 overallHits 1584 .name(name() + ".overall_hits") 1585 .desc("number of overall hits") 1586 .flags(total | nozero | nonan) 1587 ; 1588 overallHits = demandHits + SUM_NON_DEMAND(hits); 1589 for (int i = 0; i < system->maxMasters(); i++) { 1590 overallHits.subname(i, system->getMasterName(i)); 1591 } 1592 1593 // Miss statistics 1594 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1595 MemCmd cmd(access_idx); 1596 const string &cstr = cmd.toString(); 1597 1598 misses[access_idx] 1599 .init(system->maxMasters()) 1600 .name(name() + "." + cstr + "_misses") 1601 .desc("number of " + cstr + " misses") 1602 .flags(total | nozero | nonan) 1603 ; 1604 for (int i = 0; i < system->maxMasters(); i++) { 1605 misses[access_idx].subname(i, system->getMasterName(i)); 1606 } 1607 } 1608 1609 demandMisses 1610 .name(name() + ".demand_misses") 1611 .desc("number of demand (read+write) misses") 1612 .flags(total | nozero | nonan) 1613 ; 1614 demandMisses = SUM_DEMAND(misses); 1615 for (int i = 0; i < system->maxMasters(); i++) { 1616 demandMisses.subname(i, system->getMasterName(i)); 1617 } 1618 1619 overallMisses 1620 .name(name() + ".overall_misses") 1621 .desc("number of overall misses") 1622 .flags(total | nozero | nonan) 1623 ; 1624 overallMisses = demandMisses + SUM_NON_DEMAND(misses); 1625 for (int i = 0; i < system->maxMasters(); i++) { 1626 overallMisses.subname(i, system->getMasterName(i)); 1627 } 1628 1629 // Miss latency statistics 1630 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1631 MemCmd cmd(access_idx); 1632 const string &cstr = cmd.toString(); 1633 1634 missLatency[access_idx] 1635 .init(system->maxMasters()) 1636 .name(name() + "." + cstr + "_miss_latency") 1637 .desc("number of " + cstr + " miss cycles") 1638 .flags(total | nozero | nonan) 1639 ; 1640 for (int i = 0; i < system->maxMasters(); i++) { 1641 missLatency[access_idx].subname(i, system->getMasterName(i)); 1642 } 1643 } 1644 1645 demandMissLatency 1646 .name(name() + ".demand_miss_latency") 1647 .desc("number of demand (read+write) miss cycles") 1648 .flags(total | nozero | nonan) 1649 ; 1650 demandMissLatency = SUM_DEMAND(missLatency); 1651 for (int i = 0; i < system->maxMasters(); i++) { 1652 demandMissLatency.subname(i, system->getMasterName(i)); 1653 } 1654 1655 overallMissLatency 1656 .name(name() + ".overall_miss_latency") 1657 .desc("number of overall miss cycles") 1658 .flags(total | nozero | nonan) 1659 ; 1660 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency); 1661 for (int i = 0; i < system->maxMasters(); i++) { 1662 overallMissLatency.subname(i, system->getMasterName(i)); 1663 } 1664 1665 // access formulas 1666 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1667 MemCmd cmd(access_idx); 1668 const string &cstr = cmd.toString(); 1669 1670 accesses[access_idx] 1671 .name(name() + "." + cstr + "_accesses") 1672 .desc("number of " + cstr + " accesses(hits+misses)") 1673 .flags(total | nozero | nonan) 1674 ; 1675 accesses[access_idx] = hits[access_idx] + misses[access_idx]; 1676 1677 for (int i = 0; i < system->maxMasters(); i++) { 1678 accesses[access_idx].subname(i, system->getMasterName(i)); 1679 } 1680 } 1681 1682 demandAccesses 1683 .name(name() + ".demand_accesses") 1684 .desc("number of demand (read+write) accesses") 1685 .flags(total | nozero | nonan) 1686 ; 1687 demandAccesses = demandHits + demandMisses; 1688 for (int i = 0; i < system->maxMasters(); i++) { 1689 demandAccesses.subname(i, system->getMasterName(i)); 1690 } 1691 1692 overallAccesses 1693 .name(name() + ".overall_accesses") 1694 .desc("number of overall (read+write) accesses") 1695 .flags(total | nozero | nonan) 1696 ; 1697 overallAccesses = overallHits + overallMisses; 1698 for (int i = 0; i < system->maxMasters(); i++) { 1699 overallAccesses.subname(i, system->getMasterName(i)); 1700 } 1701 1702 // miss rate formulas 1703 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1704 MemCmd cmd(access_idx); 1705 const string &cstr = cmd.toString(); 1706 1707 missRate[access_idx] 1708 .name(name() + "." + cstr + "_miss_rate") 1709 .desc("miss rate for " + cstr + " accesses") 1710 .flags(total | nozero | nonan) 1711 ; 1712 missRate[access_idx] = misses[access_idx] / accesses[access_idx]; 1713 1714 for (int i = 0; i < system->maxMasters(); i++) { 1715 missRate[access_idx].subname(i, system->getMasterName(i)); 1716 } 1717 } 1718 1719 demandMissRate 1720 .name(name() + ".demand_miss_rate") 1721 .desc("miss rate for demand accesses") 1722 .flags(total | nozero | nonan) 1723 ; 1724 demandMissRate = demandMisses / demandAccesses; 1725 for (int i = 0; i < system->maxMasters(); i++) { 1726 demandMissRate.subname(i, system->getMasterName(i)); 1727 } 1728 1729 overallMissRate 1730 .name(name() + ".overall_miss_rate") 1731 .desc("miss rate for overall accesses") 1732 .flags(total | nozero | nonan) 1733 ; 1734 overallMissRate = overallMisses / overallAccesses; 1735 for (int i = 0; i < system->maxMasters(); i++) { 1736 overallMissRate.subname(i, system->getMasterName(i)); 1737 } 1738 1739 // miss latency formulas 1740 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1741 MemCmd cmd(access_idx); 1742 const string &cstr = cmd.toString(); 1743 1744 avgMissLatency[access_idx] 1745 .name(name() + "." + cstr + "_avg_miss_latency") 1746 .desc("average " + cstr + " miss latency") 1747 .flags(total | nozero | nonan) 1748 ; 1749 avgMissLatency[access_idx] = 1750 missLatency[access_idx] / misses[access_idx]; 1751 1752 for (int i = 0; i < system->maxMasters(); i++) { 1753 avgMissLatency[access_idx].subname(i, system->getMasterName(i)); 1754 } 1755 } 1756 1757 demandAvgMissLatency 1758 .name(name() + ".demand_avg_miss_latency") 1759 .desc("average overall miss latency") 1760 .flags(total | nozero | nonan) 1761 ; 1762 demandAvgMissLatency = demandMissLatency / demandMisses; 1763 for (int i = 0; i < system->maxMasters(); i++) { 1764 demandAvgMissLatency.subname(i, system->getMasterName(i)); 1765 } 1766 1767 overallAvgMissLatency 1768 .name(name() + ".overall_avg_miss_latency") 1769 .desc("average overall miss latency") 1770 .flags(total | nozero | nonan) 1771 ; 1772 overallAvgMissLatency = overallMissLatency / overallMisses; 1773 for (int i = 0; i < system->maxMasters(); i++) { 1774 overallAvgMissLatency.subname(i, system->getMasterName(i)); 1775 } 1776 1777 blocked_cycles.init(NUM_BLOCKED_CAUSES); 1778 blocked_cycles 1779 .name(name() + ".blocked_cycles") 1780 .desc("number of cycles access was blocked") 1781 .subname(Blocked_NoMSHRs, "no_mshrs") 1782 .subname(Blocked_NoTargets, "no_targets") 1783 ; 1784 1785 1786 blocked_causes.init(NUM_BLOCKED_CAUSES); 1787 blocked_causes 1788 .name(name() + ".blocked") 1789 .desc("number of cycles access was blocked") 1790 .subname(Blocked_NoMSHRs, "no_mshrs") 1791 .subname(Blocked_NoTargets, "no_targets") 1792 ; 1793 1794 avg_blocked 1795 .name(name() + ".avg_blocked_cycles") 1796 .desc("average number of cycles each access was blocked") 1797 .subname(Blocked_NoMSHRs, "no_mshrs") 1798 .subname(Blocked_NoTargets, "no_targets") 1799 ; 1800 1801 avg_blocked = blocked_cycles / blocked_causes; 1802 1803 unusedPrefetches 1804 .name(name() + ".unused_prefetches") 1805 .desc("number of HardPF blocks evicted w/o reference") 1806 .flags(nozero) 1807 ; 1808 1809 writebacks 1810 .init(system->maxMasters()) 1811 .name(name() + ".writebacks") 1812 .desc("number of writebacks") 1813 .flags(total | nozero | nonan) 1814 ; 1815 for (int i = 0; i < system->maxMasters(); i++) { 1816 writebacks.subname(i, system->getMasterName(i)); 1817 } 1818 1819 // MSHR statistics 1820 // MSHR hit statistics 1821 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1822 MemCmd cmd(access_idx); 1823 const string &cstr = cmd.toString(); 1824 1825 mshr_hits[access_idx] 1826 .init(system->maxMasters()) 1827 .name(name() + "." + cstr + "_mshr_hits") 1828 .desc("number of " + cstr + " MSHR hits") 1829 .flags(total | nozero | nonan) 1830 ; 1831 for (int i = 0; i < system->maxMasters(); i++) { 1832 mshr_hits[access_idx].subname(i, system->getMasterName(i)); 1833 } 1834 } 1835 1836 demandMshrHits 1837 .name(name() + ".demand_mshr_hits") 1838 .desc("number of demand (read+write) MSHR hits") 1839 .flags(total | nozero | nonan) 1840 ; 1841 demandMshrHits = SUM_DEMAND(mshr_hits); 1842 for (int i = 0; i < system->maxMasters(); i++) { 1843 demandMshrHits.subname(i, system->getMasterName(i)); 1844 } 1845 1846 overallMshrHits 1847 .name(name() + ".overall_mshr_hits") 1848 .desc("number of overall MSHR hits") 1849 .flags(total | nozero | nonan) 1850 ; 1851 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits); 1852 for (int i = 0; i < system->maxMasters(); i++) { 1853 overallMshrHits.subname(i, system->getMasterName(i)); 1854 } 1855 1856 // MSHR miss statistics 1857 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1858 MemCmd cmd(access_idx); 1859 const string &cstr = cmd.toString(); 1860 1861 mshr_misses[access_idx] 1862 .init(system->maxMasters()) 1863 .name(name() + "." + cstr + "_mshr_misses") 1864 .desc("number of " + cstr + " MSHR misses") 1865 .flags(total | nozero | nonan) 1866 ; 1867 for (int i = 0; i < system->maxMasters(); i++) { 1868 mshr_misses[access_idx].subname(i, system->getMasterName(i)); 1869 } 1870 } 1871 1872 demandMshrMisses 1873 .name(name() + ".demand_mshr_misses") 1874 .desc("number of demand (read+write) MSHR misses") 1875 .flags(total | nozero | nonan) 1876 ; 1877 demandMshrMisses = SUM_DEMAND(mshr_misses); 1878 for (int i = 0; i < system->maxMasters(); i++) { 1879 demandMshrMisses.subname(i, system->getMasterName(i)); 1880 } 1881 1882 overallMshrMisses 1883 .name(name() + ".overall_mshr_misses") 1884 .desc("number of overall MSHR misses") 1885 .flags(total | nozero | nonan) 1886 ; 1887 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses); 1888 for (int i = 0; i < system->maxMasters(); i++) { 1889 overallMshrMisses.subname(i, system->getMasterName(i)); 1890 } 1891 1892 // MSHR miss latency statistics 1893 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1894 MemCmd cmd(access_idx); 1895 const string &cstr = cmd.toString(); 1896 1897 mshr_miss_latency[access_idx] 1898 .init(system->maxMasters()) 1899 .name(name() + "." + cstr + "_mshr_miss_latency") 1900 .desc("number of " + cstr + " MSHR miss cycles") 1901 .flags(total | nozero | nonan) 1902 ; 1903 for (int i = 0; i < system->maxMasters(); i++) { 1904 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i)); 1905 } 1906 } 1907 1908 demandMshrMissLatency 1909 .name(name() + ".demand_mshr_miss_latency") 1910 .desc("number of demand (read+write) MSHR miss cycles") 1911 .flags(total | nozero | nonan) 1912 ; 1913 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency); 1914 for (int i = 0; i < system->maxMasters(); i++) { 1915 demandMshrMissLatency.subname(i, system->getMasterName(i)); 1916 } 1917 1918 overallMshrMissLatency 1919 .name(name() + ".overall_mshr_miss_latency") 1920 .desc("number of overall MSHR miss cycles") 1921 .flags(total | nozero | nonan) 1922 ; 1923 overallMshrMissLatency = 1924 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency); 1925 for (int i = 0; i < system->maxMasters(); i++) { 1926 overallMshrMissLatency.subname(i, system->getMasterName(i)); 1927 } 1928 1929 // MSHR uncacheable statistics 1930 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1931 MemCmd cmd(access_idx); 1932 const string &cstr = cmd.toString(); 1933 1934 mshr_uncacheable[access_idx] 1935 .init(system->maxMasters()) 1936 .name(name() + "." + cstr + "_mshr_uncacheable") 1937 .desc("number of " + cstr + " MSHR uncacheable") 1938 .flags(total | nozero | nonan) 1939 ; 1940 for (int i = 0; i < system->maxMasters(); i++) { 1941 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i)); 1942 } 1943 } 1944 1945 overallMshrUncacheable 1946 .name(name() + ".overall_mshr_uncacheable_misses") 1947 .desc("number of overall MSHR uncacheable misses") 1948 .flags(total | nozero | nonan) 1949 ; 1950 overallMshrUncacheable = 1951 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable); 1952 for (int i = 0; i < system->maxMasters(); i++) { 1953 overallMshrUncacheable.subname(i, system->getMasterName(i)); 1954 } 1955 1956 // MSHR miss latency statistics 1957 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1958 MemCmd cmd(access_idx); 1959 const string &cstr = cmd.toString(); 1960 1961 mshr_uncacheable_lat[access_idx] 1962 .init(system->maxMasters()) 1963 .name(name() + "." + cstr + "_mshr_uncacheable_latency") 1964 .desc("number of " + cstr + " MSHR uncacheable cycles") 1965 .flags(total | nozero | nonan) 1966 ; 1967 for (int i = 0; i < system->maxMasters(); i++) { 1968 mshr_uncacheable_lat[access_idx].subname( 1969 i, system->getMasterName(i)); 1970 } 1971 } 1972 1973 overallMshrUncacheableLatency 1974 .name(name() + ".overall_mshr_uncacheable_latency") 1975 .desc("number of overall MSHR uncacheable cycles") 1976 .flags(total | nozero | nonan) 1977 ; 1978 overallMshrUncacheableLatency = 1979 SUM_DEMAND(mshr_uncacheable_lat) + 1980 SUM_NON_DEMAND(mshr_uncacheable_lat); 1981 for (int i = 0; i < system->maxMasters(); i++) { 1982 overallMshrUncacheableLatency.subname(i, system->getMasterName(i)); 1983 } 1984 1985#if 0 1986 // MSHR access formulas 1987 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1988 MemCmd cmd(access_idx); 1989 const string &cstr = cmd.toString(); 1990 1991 mshrAccesses[access_idx] 1992 .name(name() + "." + cstr + "_mshr_accesses") 1993 .desc("number of " + cstr + " mshr accesses(hits+misses)") 1994 .flags(total | nozero | nonan) 1995 ; 1996 mshrAccesses[access_idx] = 1997 mshr_hits[access_idx] + mshr_misses[access_idx] 1998 + mshr_uncacheable[access_idx]; 1999 } 2000 2001 demandMshrAccesses 2002 .name(name() + ".demand_mshr_accesses") 2003 .desc("number of demand (read+write) mshr accesses") 2004 .flags(total | nozero | nonan) 2005 ; 2006 demandMshrAccesses = demandMshrHits + demandMshrMisses; 2007 2008 overallMshrAccesses 2009 .name(name() + ".overall_mshr_accesses") 2010 .desc("number of overall (read+write) mshr accesses") 2011 .flags(total | nozero | nonan) 2012 ; 2013 overallMshrAccesses = overallMshrHits + overallMshrMisses 2014 + overallMshrUncacheable; 2015#endif 2016 2017 // MSHR miss rate formulas 2018 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2019 MemCmd cmd(access_idx); 2020 const string &cstr = cmd.toString(); 2021 2022 mshrMissRate[access_idx] 2023 .name(name() + "." + cstr + "_mshr_miss_rate") 2024 .desc("mshr miss rate for " + cstr + " accesses") 2025 .flags(total | nozero | nonan) 2026 ; 2027 mshrMissRate[access_idx] = 2028 mshr_misses[access_idx] / accesses[access_idx]; 2029 2030 for (int i = 0; i < system->maxMasters(); i++) { 2031 mshrMissRate[access_idx].subname(i, system->getMasterName(i)); 2032 } 2033 } 2034 2035 demandMshrMissRate 2036 .name(name() + ".demand_mshr_miss_rate") 2037 .desc("mshr miss rate for demand accesses") 2038 .flags(total | nozero | nonan) 2039 ; 2040 demandMshrMissRate = demandMshrMisses / demandAccesses; 2041 for (int i = 0; i < system->maxMasters(); i++) { 2042 demandMshrMissRate.subname(i, system->getMasterName(i)); 2043 } 2044 2045 overallMshrMissRate 2046 .name(name() + ".overall_mshr_miss_rate") 2047 .desc("mshr miss rate for overall accesses") 2048 .flags(total | nozero | nonan) 2049 ; 2050 overallMshrMissRate = overallMshrMisses / overallAccesses; 2051 for (int i = 0; i < system->maxMasters(); i++) { 2052 overallMshrMissRate.subname(i, system->getMasterName(i)); 2053 } 2054 2055 // mshrMiss latency formulas 2056 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2057 MemCmd cmd(access_idx); 2058 const string &cstr = cmd.toString(); 2059 2060 avgMshrMissLatency[access_idx] 2061 .name(name() + "." + cstr + "_avg_mshr_miss_latency") 2062 .desc("average " + cstr + " mshr miss latency") 2063 .flags(total | nozero | nonan) 2064 ; 2065 avgMshrMissLatency[access_idx] = 2066 mshr_miss_latency[access_idx] / mshr_misses[access_idx]; 2067 2068 for (int i = 0; i < system->maxMasters(); i++) { 2069 avgMshrMissLatency[access_idx].subname( 2070 i, system->getMasterName(i)); 2071 } 2072 } 2073 2074 demandAvgMshrMissLatency 2075 .name(name() + ".demand_avg_mshr_miss_latency") 2076 .desc("average overall mshr miss latency") 2077 .flags(total | nozero | nonan) 2078 ; 2079 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses; 2080 for (int i = 0; i < system->maxMasters(); i++) { 2081 demandAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2082 } 2083 2084 overallAvgMshrMissLatency 2085 .name(name() + ".overall_avg_mshr_miss_latency") 2086 .desc("average overall mshr miss latency") 2087 .flags(total | nozero | nonan) 2088 ; 2089 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses; 2090 for (int i = 0; i < system->maxMasters(); i++) { 2091 overallAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2092 } 2093 2094 // mshrUncacheable latency formulas 2095 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2096 MemCmd cmd(access_idx); 2097 const string &cstr = cmd.toString(); 2098 2099 avgMshrUncacheableLatency[access_idx] 2100 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency") 2101 .desc("average " + cstr + " mshr uncacheable latency") 2102 .flags(total | nozero | nonan) 2103 ; 2104 avgMshrUncacheableLatency[access_idx] = 2105 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx]; 2106 2107 for (int i = 0; i < system->maxMasters(); i++) { 2108 avgMshrUncacheableLatency[access_idx].subname( 2109 i, system->getMasterName(i)); 2110 } 2111 } 2112 2113 overallAvgMshrUncacheableLatency 2114 .name(name() + ".overall_avg_mshr_uncacheable_latency") 2115 .desc("average overall mshr uncacheable latency") 2116 .flags(total | nozero | nonan) 2117 ; 2118 overallAvgMshrUncacheableLatency = 2119 overallMshrUncacheableLatency / overallMshrUncacheable; 2120 for (int i = 0; i < system->maxMasters(); i++) { 2121 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2122 } 2123 2124 replacements 2125 .name(name() + ".replacements") 2126 .desc("number of replacements") 2127 ; 2128} 2129 2130/////////////// 2131// 2132// CpuSidePort 2133// 2134/////////////// 2135bool 2136BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2137{ 2138 // Snoops shouldn't happen when bypassing caches 2139 assert(!cache->system->bypassCaches()); 2140 2141 assert(pkt->isResponse()); 2142 2143 // Express snoop responses from master to slave, e.g., from L1 to L2 2144 cache->recvTimingSnoopResp(pkt); 2145 return true; 2146} 2147 2148 2149bool 2150BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) 2151{ 2152 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) { 2153 // always let express snoop packets through even if blocked 2154 return true; 2155 } else if (blocked || mustSendRetry) { 2156 // either already committed to send a retry, or blocked 2157 mustSendRetry = true; 2158 return false; 2159 } 2160 mustSendRetry = false; 2161 return true; 2162} 2163 2164bool 2165BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2166{ 2167 assert(pkt->isRequest()); 2168 2169 if (cache->system->bypassCaches()) { 2170 // Just forward the packet if caches are disabled. 2171 // @todo This should really enqueue the packet rather 2172 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt); 2173 assert(success); 2174 return true; 2175 } else if (tryTiming(pkt)) { 2176 cache->recvTimingReq(pkt); 2177 return true; 2178 } 2179 return false; 2180} 2181 2182Tick 2183BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) 2184{ 2185 if (cache->system->bypassCaches()) { 2186 // Forward the request if the system is in cache bypass mode. 2187 return cache->memSidePort.sendAtomic(pkt); 2188 } else { 2189 return cache->recvAtomic(pkt); 2190 } 2191} 2192 2193void 2194BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) 2195{ 2196 if (cache->system->bypassCaches()) { 2197 // The cache should be flushed if we are in cache bypass mode, 2198 // so we don't need to check if we need to update anything. 2199 cache->memSidePort.sendFunctional(pkt); 2200 return; 2201 } 2202 2203 // functional request 2204 cache->functionalAccess(pkt, true); 2205} 2206 2207AddrRangeList 2208BaseCache::CpuSidePort::getAddrRanges() const 2209{ 2210 return cache->getAddrRanges(); 2211} 2212 2213 2214BaseCache:: 2215CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, 2216 const std::string &_label) 2217 : CacheSlavePort(_name, _cache, _label), cache(_cache) 2218{ 2219} 2220 2221/////////////// 2222// 2223// MemSidePort 2224// 2225/////////////// 2226bool 2227BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) 2228{ 2229 cache->recvTimingResp(pkt); 2230 return true; 2231} 2232 2233// Express snooping requests to memside port 2234void 2235BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2236{ 2237 // Snoops shouldn't happen when bypassing caches 2238 assert(!cache->system->bypassCaches()); 2239 2240 // handle snooping requests 2241 cache->recvTimingSnoopReq(pkt); 2242} 2243 2244Tick 2245BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2246{ 2247 // Snoops shouldn't happen when bypassing caches 2248 assert(!cache->system->bypassCaches()); 2249 2250 return cache->recvAtomicSnoop(pkt); 2251} 2252 2253void 2254BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2255{ 2256 // Snoops shouldn't happen when bypassing caches 2257 assert(!cache->system->bypassCaches()); 2258 2259 // functional snoop (note that in contrast to atomic we don't have 2260 // a specific functionalSnoop method, as they have the same 2261 // behaviour regardless) 2262 cache->functionalAccess(pkt, false); 2263} 2264 2265void 2266BaseCache::CacheReqPacketQueue::sendDeferredPacket() 2267{ 2268 // sanity check 2269 assert(!waitingOnRetry); 2270 2271 // there should never be any deferred request packets in the 2272 // queue, instead we resly on the cache to provide the packets 2273 // from the MSHR queue or write queue 2274 assert(deferredPacketReadyTime() == MaxTick); 2275 2276 // check for request packets (requests & writebacks) 2277 QueueEntry* entry = cache.getNextQueueEntry(); 2278 2279 if (!entry) { 2280 // can happen if e.g. we attempt a writeback and fail, but 2281 // before the retry, the writeback is eliminated because 2282 // we snoop another cache's ReadEx. 2283 } else { 2284 // let our snoop responses go first if there are responses to 2285 // the same addresses 2286 if (checkConflictingSnoop(entry->blkAddr)) { 2287 return; 2288 } 2289 waitingOnRetry = entry->sendPacket(cache); 2290 } 2291 2292 // if we succeeded and are not waiting for a retry, schedule the 2293 // next send considering when the next queue is ready, note that 2294 // snoop responses have their own packet queue and thus schedule 2295 // their own events 2296 if (!waitingOnRetry) { 2297 schedSendEvent(cache.nextQueueReadyTime()); 2298 } 2299} 2300 2301BaseCache::MemSidePort::MemSidePort(const std::string &_name, 2302 BaseCache *_cache, 2303 const std::string &_label) 2304 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2305 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2306 _snoopRespQueue(*_cache, *this, _label), cache(_cache) 2307{ 2308} 2309