base.cc revision 12724:4f6fac3191d2
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 *          Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheVerbose.hh"
56#include "mem/cache/mshr.hh"
57#include "mem/cache/prefetch/base.hh"
58#include "mem/cache/queue_entry.hh"
59#include "params/BaseCache.hh"
60#include "sim/core.hh"
61
62class BaseMasterPort;
63class BaseSlavePort;
64
65using namespace std;
66
67BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
68                                          BaseCache *_cache,
69                                          const std::string &_label)
70    : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
71      blocked(false), mustSendRetry(false),
72      sendRetryEvent([this]{ processSendRetry(); }, _name)
73{
74}
75
76BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
77    : MemObject(p),
78      cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
79      memSidePort(p->name + ".mem_side", this, "MemSidePort"),
80      mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
81      writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
82      tags(p->tags),
83      prefetcher(p->prefetcher),
84      prefetchOnAccess(p->prefetch_on_access),
85      writebackClean(p->writeback_clean),
86      tempBlockWriteback(nullptr),
87      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
88                                    name(), false,
89                                    EventBase::Delayed_Writeback_Pri),
90      blkSize(blk_size),
91      lookupLatency(p->tag_latency),
92      dataLatency(p->data_latency),
93      forwardLatency(p->tag_latency),
94      fillLatency(p->data_latency),
95      responseLatency(p->response_latency),
96      numTarget(p->tgts_per_mshr),
97      forwardSnoops(true),
98      clusivity(p->clusivity),
99      isReadOnly(p->is_read_only),
100      blocked(0),
101      order(0),
102      noTargetMSHR(nullptr),
103      missCount(p->max_miss_count),
104      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
105      system(p->system)
106{
107    // the MSHR queue has no reserve entries as we check the MSHR
108    // queue on every single allocation, whereas the write queue has
109    // as many reserve entries as we have MSHRs, since every MSHR may
110    // eventually require a writeback, and we do not check the write
111    // buffer before committing to an MSHR
112
113    // forward snoops is overridden in init() once we can query
114    // whether the connected master is actually snooping or not
115
116    tempBlock = new CacheBlk();
117    tempBlock->data = new uint8_t[blkSize];
118
119    tags->setCache(this);
120    if (prefetcher)
121        prefetcher->setCache(this);
122}
123
124BaseCache::~BaseCache()
125{
126    delete [] tempBlock->data;
127    delete tempBlock;
128}
129
130void
131BaseCache::CacheSlavePort::setBlocked()
132{
133    assert(!blocked);
134    DPRINTF(CachePort, "Port is blocking new requests\n");
135    blocked = true;
136    // if we already scheduled a retry in this cycle, but it has not yet
137    // happened, cancel it
138    if (sendRetryEvent.scheduled()) {
139        owner.deschedule(sendRetryEvent);
140        DPRINTF(CachePort, "Port descheduled retry\n");
141        mustSendRetry = true;
142    }
143}
144
145void
146BaseCache::CacheSlavePort::clearBlocked()
147{
148    assert(blocked);
149    DPRINTF(CachePort, "Port is accepting new requests\n");
150    blocked = false;
151    if (mustSendRetry) {
152        // @TODO: need to find a better time (next cycle?)
153        owner.schedule(sendRetryEvent, curTick() + 1);
154    }
155}
156
157void
158BaseCache::CacheSlavePort::processSendRetry()
159{
160    DPRINTF(CachePort, "Port is sending retry\n");
161
162    // reset the flag and call retry
163    mustSendRetry = false;
164    sendRetryReq();
165}
166
167void
168BaseCache::init()
169{
170    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
171        fatal("Cache ports on %s are not connected\n", name());
172    cpuSidePort.sendRangeChange();
173    forwardSnoops = cpuSidePort.isSnooping();
174}
175
176BaseMasterPort &
177BaseCache::getMasterPort(const std::string &if_name, PortID idx)
178{
179    if (if_name == "mem_side") {
180        return memSidePort;
181    }  else {
182        return MemObject::getMasterPort(if_name, idx);
183    }
184}
185
186BaseSlavePort &
187BaseCache::getSlavePort(const std::string &if_name, PortID idx)
188{
189    if (if_name == "cpu_side") {
190        return cpuSidePort;
191    } else {
192        return MemObject::getSlavePort(if_name, idx);
193    }
194}
195
196bool
197BaseCache::inRange(Addr addr) const
198{
199    for (const auto& r : addrRanges) {
200        if (r.contains(addr)) {
201            return true;
202       }
203    }
204    return false;
205}
206
207void
208BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
209{
210    if (pkt->needsResponse()) {
211        pkt->makeTimingResponse();
212        // @todo: Make someone pay for this
213        pkt->headerDelay = pkt->payloadDelay = 0;
214
215        // In this case we are considering request_time that takes
216        // into account the delay of the xbar, if any, and just
217        // lat, neglecting responseLatency, modelling hit latency
218        // just as lookupLatency or or the value of lat overriden
219        // by access(), that calls accessBlock() function.
220        cpuSidePort.schedTimingResp(pkt, request_time, true);
221    } else {
222        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
223                pkt->print());
224
225        // queue the packet for deletion, as the sending cache is
226        // still relying on it; if the block is found in access(),
227        // CleanEvict and Writeback messages will be deleted
228        // here as well
229        pendingDelete.reset(pkt);
230    }
231}
232
233void
234BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
235                               Tick forward_time, Tick request_time)
236{
237    if (mshr) {
238        /// MSHR hit
239        /// @note writebacks will be checked in getNextMSHR()
240        /// for any conflicting requests to the same block
241
242        //@todo remove hw_pf here
243
244        // Coalesce unless it was a software prefetch (see above).
245        if (pkt) {
246            assert(!pkt->isWriteback());
247            // CleanEvicts corresponding to blocks which have
248            // outstanding requests in MSHRs are simply sunk here
249            if (pkt->cmd == MemCmd::CleanEvict) {
250                pendingDelete.reset(pkt);
251            } else if (pkt->cmd == MemCmd::WriteClean) {
252                // A WriteClean should never coalesce with any
253                // outstanding cache maintenance requests.
254
255                // We use forward_time here because there is an
256                // uncached memory write, forwarded to WriteBuffer.
257                allocateWriteBuffer(pkt, forward_time);
258            } else {
259                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
260                        pkt->print());
261
262                assert(pkt->req->masterId() < system->maxMasters());
263                mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
264
265                // We use forward_time here because it is the same
266                // considering new targets. We have multiple
267                // requests for the same address here. It
268                // specifies the latency to allocate an internal
269                // buffer and to schedule an event to the queued
270                // port and also takes into account the additional
271                // delay of the xbar.
272                mshr->allocateTarget(pkt, forward_time, order++,
273                                     allocOnFill(pkt->cmd));
274                if (mshr->getNumTargets() == numTarget) {
275                    noTargetMSHR = mshr;
276                    setBlocked(Blocked_NoTargets);
277                    // need to be careful with this... if this mshr isn't
278                    // ready yet (i.e. time > curTick()), we don't want to
279                    // move it ahead of mshrs that are ready
280                    // mshrQueue.moveToFront(mshr);
281                }
282            }
283        }
284    } else {
285        // no MSHR
286        assert(pkt->req->masterId() < system->maxMasters());
287        mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
288
289        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
290            // We use forward_time here because there is an
291            // writeback or writeclean, forwarded to WriteBuffer.
292            allocateWriteBuffer(pkt, forward_time);
293        } else {
294            if (blk && blk->isValid()) {
295                // If we have a write miss to a valid block, we
296                // need to mark the block non-readable.  Otherwise
297                // if we allow reads while there's an outstanding
298                // write miss, the read could return stale data
299                // out of the cache block... a more aggressive
300                // system could detect the overlap (if any) and
301                // forward data out of the MSHRs, but we don't do
302                // that yet.  Note that we do need to leave the
303                // block valid so that it stays in the cache, in
304                // case we get an upgrade response (and hence no
305                // new data) when the write miss completes.
306                // As long as CPUs do proper store/load forwarding
307                // internally, and have a sufficiently weak memory
308                // model, this is probably unnecessary, but at some
309                // point it must have seemed like we needed it...
310                assert((pkt->needsWritable() && !blk->isWritable()) ||
311                       pkt->req->isCacheMaintenance());
312                blk->status &= ~BlkReadable;
313            }
314            // Here we are using forward_time, modelling the latency of
315            // a miss (outbound) just as forwardLatency, neglecting the
316            // lookupLatency component.
317            allocateMissBuffer(pkt, forward_time);
318        }
319    }
320}
321
322void
323BaseCache::recvTimingReq(PacketPtr pkt)
324{
325    // anything that is merely forwarded pays for the forward latency and
326    // the delay provided by the crossbar
327    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
328
329    // We use lookupLatency here because it is used to specify the latency
330    // to access.
331    Cycles lat = lookupLatency;
332    CacheBlk *blk = nullptr;
333    bool satisfied = false;
334    {
335        PacketList writebacks;
336        // Note that lat is passed by reference here. The function
337        // access() calls accessBlock() which can modify lat value.
338        satisfied = access(pkt, blk, lat, writebacks);
339
340        // copy writebacks to write buffer here to ensure they logically
341        // proceed anything happening below
342        doWritebacks(writebacks, forward_time);
343    }
344
345    // Here we charge the headerDelay that takes into account the latencies
346    // of the bus, if the packet comes from it.
347    // The latency charged it is just lat that is the value of lookupLatency
348    // modified by access() function, or if not just lookupLatency.
349    // In case of a hit we are neglecting response latency.
350    // In case of a miss we are neglecting forward latency.
351    Tick request_time = clockEdge(lat) + pkt->headerDelay;
352    // Here we reset the timing of the packet.
353    pkt->headerDelay = pkt->payloadDelay = 0;
354    // track time of availability of next prefetch, if any
355    Tick next_pf_time = MaxTick;
356
357    if (satisfied) {
358        // if need to notify the prefetcher we have to do it before
359        // anything else as later handleTimingReqHit might turn the
360        // packet in a response
361        if (prefetcher &&
362            (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
363            if (blk)
364                blk->status &= ~BlkHWPrefetched;
365
366            // Don't notify on SWPrefetch
367            if (!pkt->cmd.isSWPrefetch()) {
368                assert(!pkt->req->isCacheMaintenance());
369                next_pf_time = prefetcher->notify(pkt);
370            }
371        }
372
373        handleTimingReqHit(pkt, blk, request_time);
374    } else {
375        handleTimingReqMiss(pkt, blk, forward_time, request_time);
376
377        // We should call the prefetcher reguardless if the request is
378        // satisfied or not, reguardless if the request is in the MSHR
379        // or not. The request could be a ReadReq hit, but still not
380        // satisfied (potentially because of a prior write to the same
381        // cache line. So, even when not satisfied, there is an MSHR
382        // already allocated for this, we need to let the prefetcher
383        // know about the request
384
385        // Don't notify prefetcher on SWPrefetch or cache maintenance
386        // operations
387        if (prefetcher && pkt &&
388            !pkt->cmd.isSWPrefetch() &&
389            !pkt->req->isCacheMaintenance()) {
390            next_pf_time = prefetcher->notify(pkt);
391        }
392    }
393
394    if (next_pf_time != MaxTick) {
395        schedMemSideSendEvent(next_pf_time);
396    }
397}
398
399void
400BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
401{
402    Tick completion_time = clockEdge(responseLatency) +
403        pkt->headerDelay + pkt->payloadDelay;
404
405    // Reset the bus additional time as it is now accounted for
406    pkt->headerDelay = pkt->payloadDelay = 0;
407
408    cpuSidePort.schedTimingResp(pkt, completion_time, true);
409}
410
411void
412BaseCache::recvTimingResp(PacketPtr pkt)
413{
414    assert(pkt->isResponse());
415
416    // all header delay should be paid for by the crossbar, unless
417    // this is a prefetch response from above
418    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
419             "%s saw a non-zero packet delay\n", name());
420
421    const bool is_error = pkt->isError();
422
423    if (is_error) {
424        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
425                pkt->print());
426    }
427
428    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
429            pkt->print());
430
431    // if this is a write, we should be looking at an uncacheable
432    // write
433    if (pkt->isWrite()) {
434        assert(pkt->req->isUncacheable());
435        handleUncacheableWriteResp(pkt);
436        return;
437    }
438
439    // we have dealt with any (uncacheable) writes above, from here on
440    // we know we are dealing with an MSHR due to a miss or a prefetch
441    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
442    assert(mshr);
443
444    if (mshr == noTargetMSHR) {
445        // we always clear at least one target
446        clearBlocked(Blocked_NoTargets);
447        noTargetMSHR = nullptr;
448    }
449
450    // Initial target is used just for stats
451    MSHR::Target *initial_tgt = mshr->getTarget();
452    int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
453    Tick miss_latency = curTick() - initial_tgt->recvTime;
454
455    if (pkt->req->isUncacheable()) {
456        assert(pkt->req->masterId() < system->maxMasters());
457        mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
458            miss_latency;
459    } else {
460        assert(pkt->req->masterId() < system->maxMasters());
461        mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
462            miss_latency;
463    }
464
465    PacketList writebacks;
466
467    bool is_fill = !mshr->isForward &&
468        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
469
470    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
471
472    if (is_fill && !is_error) {
473        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
474                pkt->getAddr());
475
476        blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
477        assert(blk != nullptr);
478    }
479
480    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
481        // The block was marked not readable while there was a pending
482        // cache maintenance operation, restore its flag.
483        blk->status |= BlkReadable;
484    }
485
486    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
487        // If at this point the referenced block is writable and the
488        // response is not a cache invalidate, we promote targets that
489        // were deferred as we couldn't guarrantee a writable copy
490        mshr->promoteWritable();
491    }
492
493    serviceMSHRTargets(mshr, pkt, blk, writebacks);
494
495    if (mshr->promoteDeferredTargets()) {
496        // avoid later read getting stale data while write miss is
497        // outstanding.. see comment in timingAccess()
498        if (blk) {
499            blk->status &= ~BlkReadable;
500        }
501        mshrQueue.markPending(mshr);
502        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
503    } else {
504        // while we deallocate an mshr from the queue we still have to
505        // check the isFull condition before and after as we might
506        // have been using the reserved entries already
507        const bool was_full = mshrQueue.isFull();
508        mshrQueue.deallocate(mshr);
509        if (was_full && !mshrQueue.isFull()) {
510            clearBlocked(Blocked_NoMSHRs);
511        }
512
513        // Request the bus for a prefetch if this deallocation freed enough
514        // MSHRs for a prefetch to take place
515        if (prefetcher && mshrQueue.canPrefetch()) {
516            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
517                                         clockEdge());
518            if (next_pf_time != MaxTick)
519                schedMemSideSendEvent(next_pf_time);
520        }
521    }
522
523    // if we used temp block, check to see if its valid and then clear it out
524    if (blk == tempBlock && tempBlock->isValid()) {
525        evictBlock(blk, writebacks);
526    }
527
528    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
529    // copy writebacks to write buffer
530    doWritebacks(writebacks, forward_time);
531
532    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
533    delete pkt;
534}
535
536
537Tick
538BaseCache::recvAtomic(PacketPtr pkt)
539{
540    // We are in atomic mode so we pay just for lookupLatency here.
541    Cycles lat = lookupLatency;
542
543    // follow the same flow as in recvTimingReq, and check if a cache
544    // above us is responding
545    if (pkt->cacheResponding() && !pkt->isClean()) {
546        assert(!pkt->req->isCacheInvalidate());
547        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
548                pkt->print());
549
550        // if a cache is responding, and it had the line in Owned
551        // rather than Modified state, we need to invalidate any
552        // copies that are not on the same path to memory
553        assert(pkt->needsWritable() && !pkt->responderHadWritable());
554        lat += ticksToCycles(memSidePort.sendAtomic(pkt));
555
556        return lat * clockPeriod();
557    }
558
559    // should assert here that there are no outstanding MSHRs or
560    // writebacks... that would mean that someone used an atomic
561    // access in timing mode
562
563    CacheBlk *blk = nullptr;
564    PacketList writebacks;
565    bool satisfied = access(pkt, blk, lat, writebacks);
566
567    if (pkt->isClean() && blk && blk->isDirty()) {
568        // A cache clean opearation is looking for a dirty
569        // block. If a dirty block is encountered a WriteClean
570        // will update any copies to the path to the memory
571        // until the point of reference.
572        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
573                __func__, pkt->print(), blk->print());
574        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
575        writebacks.push_back(wb_pkt);
576        pkt->setSatisfied();
577    }
578
579    // handle writebacks resulting from the access here to ensure they
580    // logically proceed anything happening below
581    doWritebacksAtomic(writebacks);
582    assert(writebacks.empty());
583
584    if (!satisfied) {
585        lat += handleAtomicReqMiss(pkt, blk, writebacks);
586    }
587
588    // Note that we don't invoke the prefetcher at all in atomic mode.
589    // It's not clear how to do it properly, particularly for
590    // prefetchers that aggressively generate prefetch candidates and
591    // rely on bandwidth contention to throttle them; these will tend
592    // to pollute the cache in atomic mode since there is no bandwidth
593    // contention.  If we ever do want to enable prefetching in atomic
594    // mode, though, this is the place to do it... see timingAccess()
595    // for an example (though we'd want to issue the prefetch(es)
596    // immediately rather than calling requestMemSideBus() as we do
597    // there).
598
599    // do any writebacks resulting from the response handling
600    doWritebacksAtomic(writebacks);
601
602    // if we used temp block, check to see if its valid and if so
603    // clear it out, but only do so after the call to recvAtomic is
604    // finished so that any downstream observers (such as a snoop
605    // filter), first see the fill, and only then see the eviction
606    if (blk == tempBlock && tempBlock->isValid()) {
607        // the atomic CPU calls recvAtomic for fetch and load/store
608        // sequentuially, and we may already have a tempBlock
609        // writeback from the fetch that we have not yet sent
610        if (tempBlockWriteback) {
611            // if that is the case, write the prevoius one back, and
612            // do not schedule any new event
613            writebackTempBlockAtomic();
614        } else {
615            // the writeback/clean eviction happens after the call to
616            // recvAtomic has finished (but before any successive
617            // calls), so that the response handling from the fill is
618            // allowed to happen first
619            schedule(writebackTempBlockAtomicEvent, curTick());
620        }
621
622        tempBlockWriteback = evictBlock(blk);
623    }
624
625    if (pkt->needsResponse()) {
626        pkt->makeAtomicResponse();
627    }
628
629    return lat * clockPeriod();
630}
631
632void
633BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
634{
635    if (system->bypassCaches()) {
636        // Packets from the memory side are snoop request and
637        // shouldn't happen in bypass mode.
638        assert(from_cpu_side);
639
640        // The cache should be flushed if we are in cache bypass mode,
641        // so we don't need to check if we need to update anything.
642        memSidePort.sendFunctional(pkt);
643        return;
644    }
645
646    Addr blk_addr = pkt->getBlockAddr(blkSize);
647    bool is_secure = pkt->isSecure();
648    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
649    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
650
651    pkt->pushLabel(name());
652
653    CacheBlkPrintWrapper cbpw(blk);
654
655    // Note that just because an L2/L3 has valid data doesn't mean an
656    // L1 doesn't have a more up-to-date modified copy that still
657    // needs to be found.  As a result we always update the request if
658    // we have it, but only declare it satisfied if we are the owner.
659
660    // see if we have data at all (owned or otherwise)
661    bool have_data = blk && blk->isValid()
662        && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
663                                blk->data);
664
665    // data we have is dirty if marked as such or if we have an
666    // in-service MSHR that is pending a modified line
667    bool have_dirty =
668        have_data && (blk->isDirty() ||
669                      (mshr && mshr->inService && mshr->isPendingModified()));
670
671    bool done = have_dirty ||
672        cpuSidePort.checkFunctional(pkt) ||
673        mshrQueue.checkFunctional(pkt, blk_addr) ||
674        writeBuffer.checkFunctional(pkt, blk_addr) ||
675        memSidePort.checkFunctional(pkt);
676
677    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
678            (blk && blk->isValid()) ? "valid " : "",
679            have_data ? "data " : "", done ? "done " : "");
680
681    // We're leaving the cache, so pop cache->name() label
682    pkt->popLabel();
683
684    if (done) {
685        pkt->makeResponse();
686    } else {
687        // if it came as a request from the CPU side then make sure it
688        // continues towards the memory side
689        if (from_cpu_side) {
690            memSidePort.sendFunctional(pkt);
691        } else if (cpuSidePort.isSnooping()) {
692            // if it came from the memory side, it must be a snoop request
693            // and we should only forward it if we are forwarding snoops
694            cpuSidePort.sendFunctionalSnoop(pkt);
695        }
696    }
697}
698
699
700void
701BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
702{
703    assert(pkt->isRequest());
704
705    uint64_t overwrite_val;
706    bool overwrite_mem;
707    uint64_t condition_val64;
708    uint32_t condition_val32;
709
710    int offset = pkt->getOffset(blkSize);
711    uint8_t *blk_data = blk->data + offset;
712
713    assert(sizeof(uint64_t) >= pkt->getSize());
714
715    overwrite_mem = true;
716    // keep a copy of our possible write value, and copy what is at the
717    // memory address into the packet
718    pkt->writeData((uint8_t *)&overwrite_val);
719    pkt->setData(blk_data);
720
721    if (pkt->req->isCondSwap()) {
722        if (pkt->getSize() == sizeof(uint64_t)) {
723            condition_val64 = pkt->req->getExtraData();
724            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
725                                         sizeof(uint64_t));
726        } else if (pkt->getSize() == sizeof(uint32_t)) {
727            condition_val32 = (uint32_t)pkt->req->getExtraData();
728            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
729                                         sizeof(uint32_t));
730        } else
731            panic("Invalid size for conditional read/write\n");
732    }
733
734    if (overwrite_mem) {
735        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
736        blk->status |= BlkDirty;
737    }
738}
739
740QueueEntry*
741BaseCache::getNextQueueEntry()
742{
743    // Check both MSHR queue and write buffer for potential requests,
744    // note that null does not mean there is no request, it could
745    // simply be that it is not ready
746    MSHR *miss_mshr  = mshrQueue.getNext();
747    WriteQueueEntry *wq_entry = writeBuffer.getNext();
748
749    // If we got a write buffer request ready, first priority is a
750    // full write buffer, otherwise we favour the miss requests
751    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
752        // need to search MSHR queue for conflicting earlier miss.
753        MSHR *conflict_mshr =
754            mshrQueue.findPending(wq_entry->blkAddr,
755                                  wq_entry->isSecure);
756
757        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
758            // Service misses in order until conflict is cleared.
759            return conflict_mshr;
760
761            // @todo Note that we ignore the ready time of the conflict here
762        }
763
764        // No conflicts; issue write
765        return wq_entry;
766    } else if (miss_mshr) {
767        // need to check for conflicting earlier writeback
768        WriteQueueEntry *conflict_mshr =
769            writeBuffer.findPending(miss_mshr->blkAddr,
770                                    miss_mshr->isSecure);
771        if (conflict_mshr) {
772            // not sure why we don't check order here... it was in the
773            // original code but commented out.
774
775            // The only way this happens is if we are
776            // doing a write and we didn't have permissions
777            // then subsequently saw a writeback (owned got evicted)
778            // We need to make sure to perform the writeback first
779            // To preserve the dirty data, then we can issue the write
780
781            // should we return wq_entry here instead?  I.e. do we
782            // have to flush writes in order?  I don't think so... not
783            // for Alpha anyway.  Maybe for x86?
784            return conflict_mshr;
785
786            // @todo Note that we ignore the ready time of the conflict here
787        }
788
789        // No conflicts; issue read
790        return miss_mshr;
791    }
792
793    // fall through... no pending requests.  Try a prefetch.
794    assert(!miss_mshr && !wq_entry);
795    if (prefetcher && mshrQueue.canPrefetch()) {
796        // If we have a miss queue slot, we can try a prefetch
797        PacketPtr pkt = prefetcher->getPacket();
798        if (pkt) {
799            Addr pf_addr = pkt->getBlockAddr(blkSize);
800            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
801                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
802                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
803                // Update statistic on number of prefetches issued
804                // (hwpf_mshr_misses)
805                assert(pkt->req->masterId() < system->maxMasters());
806                mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
807
808                // allocate an MSHR and return it, note
809                // that we send the packet straight away, so do not
810                // schedule the send
811                return allocateMissBuffer(pkt, curTick(), false);
812            } else {
813                // free the request and packet
814                delete pkt->req;
815                delete pkt;
816            }
817        }
818    }
819
820    return nullptr;
821}
822
823void
824BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
825{
826    assert(pkt->isRequest());
827
828    assert(blk && blk->isValid());
829    // Occasionally this is not true... if we are a lower-level cache
830    // satisfying a string of Read and ReadEx requests from
831    // upper-level caches, a Read will mark the block as shared but we
832    // can satisfy a following ReadEx anyway since we can rely on the
833    // Read requester(s) to have buffered the ReadEx snoop and to
834    // invalidate their blocks after receiving them.
835    // assert(!pkt->needsWritable() || blk->isWritable());
836    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
837
838    // Check RMW operations first since both isRead() and
839    // isWrite() will be true for them
840    if (pkt->cmd == MemCmd::SwapReq) {
841        cmpAndSwap(blk, pkt);
842    } else if (pkt->isWrite()) {
843        // we have the block in a writable state and can go ahead,
844        // note that the line may be also be considered writable in
845        // downstream caches along the path to memory, but always
846        // Exclusive, and never Modified
847        assert(blk->isWritable());
848        // Write or WriteLine at the first cache with block in writable state
849        if (blk->checkWrite(pkt)) {
850            pkt->writeDataToBlock(blk->data, blkSize);
851        }
852        // Always mark the line as dirty (and thus transition to the
853        // Modified state) even if we are a failed StoreCond so we
854        // supply data to any snoops that have appended themselves to
855        // this cache before knowing the store will fail.
856        blk->status |= BlkDirty;
857        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
858    } else if (pkt->isRead()) {
859        if (pkt->isLLSC()) {
860            blk->trackLoadLocked(pkt);
861        }
862
863        // all read responses have a data payload
864        assert(pkt->hasRespData());
865        pkt->setDataFromBlock(blk->data, blkSize);
866    } else if (pkt->isUpgrade()) {
867        // sanity check
868        assert(!pkt->hasSharers());
869
870        if (blk->isDirty()) {
871            // we were in the Owned state, and a cache above us that
872            // has the line in Shared state needs to be made aware
873            // that the data it already has is in fact dirty
874            pkt->setCacheResponding();
875            blk->status &= ~BlkDirty;
876        }
877    } else {
878        assert(pkt->isInvalidate());
879        invalidateBlock(blk);
880        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
881                pkt->print());
882    }
883}
884
885/////////////////////////////////////////////////////
886//
887// Access path: requests coming in from the CPU side
888//
889/////////////////////////////////////////////////////
890
891bool
892BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
893                  PacketList &writebacks)
894{
895    // sanity check
896    assert(pkt->isRequest());
897
898    chatty_assert(!(isReadOnly && pkt->isWrite()),
899                  "Should never see a write in a read-only cache %s\n",
900                  name());
901
902    // Here lat is the value passed as parameter to accessBlock() function
903    // that can modify its value.
904    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
905
906    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
907            blk ? "hit " + blk->print() : "miss");
908
909    if (pkt->req->isCacheMaintenance()) {
910        // A cache maintenance operation is always forwarded to the
911        // memory below even if the block is found in dirty state.
912
913        // We defer any changes to the state of the block until we
914        // create and mark as in service the mshr for the downstream
915        // packet.
916        return false;
917    }
918
919    if (pkt->isEviction()) {
920        // We check for presence of block in above caches before issuing
921        // Writeback or CleanEvict to write buffer. Therefore the only
922        // possible cases can be of a CleanEvict packet coming from above
923        // encountering a Writeback generated in this cache peer cache and
924        // waiting in the write buffer. Cases of upper level peer caches
925        // generating CleanEvict and Writeback or simply CleanEvict and
926        // CleanEvict almost simultaneously will be caught by snoops sent out
927        // by crossbar.
928        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
929                                                          pkt->isSecure());
930        if (wb_entry) {
931            assert(wb_entry->getNumTargets() == 1);
932            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
933            assert(wbPkt->isWriteback());
934
935            if (pkt->isCleanEviction()) {
936                // The CleanEvict and WritebackClean snoops into other
937                // peer caches of the same level while traversing the
938                // crossbar. If a copy of the block is found, the
939                // packet is deleted in the crossbar. Hence, none of
940                // the other upper level caches connected to this
941                // cache have the block, so we can clear the
942                // BLOCK_CACHED flag in the Writeback if set and
943                // discard the CleanEvict by returning true.
944                wbPkt->clearBlockCached();
945                return true;
946            } else {
947                assert(pkt->cmd == MemCmd::WritebackDirty);
948                // Dirty writeback from above trumps our clean
949                // writeback... discard here
950                // Note: markInService will remove entry from writeback buffer.
951                markInService(wb_entry);
952                delete wbPkt;
953            }
954        }
955    }
956
957    // Writeback handling is special case.  We can write the block into
958    // the cache without having a writeable copy (or any copy at all).
959    if (pkt->isWriteback()) {
960        assert(blkSize == pkt->getSize());
961
962        // we could get a clean writeback while we are having
963        // outstanding accesses to a block, do the simple thing for
964        // now and drop the clean writeback so that we do not upset
965        // any ordering/decisions about ownership already taken
966        if (pkt->cmd == MemCmd::WritebackClean &&
967            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
968            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
969                    "dropping\n", pkt->getAddr());
970            return true;
971        }
972
973        if (!blk) {
974            // need to do a replacement
975            blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
976            if (!blk) {
977                // no replaceable block available: give up, fwd to next level.
978                incMissCount(pkt);
979                return false;
980            }
981            tags->insertBlock(pkt, blk);
982
983            blk->status |= (BlkValid | BlkReadable);
984        }
985        // only mark the block dirty if we got a writeback command,
986        // and leave it as is for a clean writeback
987        if (pkt->cmd == MemCmd::WritebackDirty) {
988            // TODO: the coherent cache can assert(!blk->isDirty());
989            blk->status |= BlkDirty;
990        }
991        // if the packet does not have sharers, it is passing
992        // writable, and we got the writeback in Modified or Exclusive
993        // state, if not we are in the Owned or Shared state
994        if (!pkt->hasSharers()) {
995            blk->status |= BlkWritable;
996        }
997        // nothing else to do; writeback doesn't expect response
998        assert(!pkt->needsResponse());
999        pkt->writeDataToBlock(blk->data, blkSize);
1000        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1001        incHitCount(pkt);
1002        // populate the time when the block will be ready to access.
1003        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1004            pkt->payloadDelay;
1005        return true;
1006    } else if (pkt->cmd == MemCmd::CleanEvict) {
1007        if (blk) {
1008            // Found the block in the tags, need to stop CleanEvict from
1009            // propagating further down the hierarchy. Returning true will
1010            // treat the CleanEvict like a satisfied write request and delete
1011            // it.
1012            return true;
1013        }
1014        // We didn't find the block here, propagate the CleanEvict further
1015        // down the memory hierarchy. Returning false will treat the CleanEvict
1016        // like a Writeback which could not find a replaceable block so has to
1017        // go to next level.
1018        return false;
1019    } else if (pkt->cmd == MemCmd::WriteClean) {
1020        // WriteClean handling is a special case. We can allocate a
1021        // block directly if it doesn't exist and we can update the
1022        // block immediately. The WriteClean transfers the ownership
1023        // of the block as well.
1024        assert(blkSize == pkt->getSize());
1025
1026        if (!blk) {
1027            if (pkt->writeThrough()) {
1028                // if this is a write through packet, we don't try to
1029                // allocate if the block is not present
1030                return false;
1031            } else {
1032                // a writeback that misses needs to allocate a new block
1033                blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
1034                                    writebacks);
1035                if (!blk) {
1036                    // no replaceable block available: give up, fwd to
1037                    // next level.
1038                    incMissCount(pkt);
1039                    return false;
1040                }
1041                tags->insertBlock(pkt, blk);
1042
1043                blk->status |= (BlkValid | BlkReadable);
1044            }
1045        }
1046
1047        // at this point either this is a writeback or a write-through
1048        // write clean operation and the block is already in this
1049        // cache, we need to update the data and the block flags
1050        assert(blk);
1051        // TODO: the coherent cache can assert(!blk->isDirty());
1052        if (!pkt->writeThrough()) {
1053            blk->status |= BlkDirty;
1054        }
1055        // nothing else to do; writeback doesn't expect response
1056        assert(!pkt->needsResponse());
1057        pkt->writeDataToBlock(blk->data, blkSize);
1058        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1059
1060        incHitCount(pkt);
1061        // populate the time when the block will be ready to access.
1062        blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1063            pkt->payloadDelay;
1064        // if this a write-through packet it will be sent to cache
1065        // below
1066        return !pkt->writeThrough();
1067    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1068                       blk->isReadable())) {
1069        // OK to satisfy access
1070        incHitCount(pkt);
1071        satisfyRequest(pkt, blk);
1072        maintainClusivity(pkt->fromCache(), blk);
1073
1074        return true;
1075    }
1076
1077    // Can't satisfy access normally... either no block (blk == nullptr)
1078    // or have block but need writable
1079
1080    incMissCount(pkt);
1081
1082    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1083        // complete miss on store conditional... just give up now
1084        pkt->req->setExtraData(0);
1085        return true;
1086    }
1087
1088    return false;
1089}
1090
1091void
1092BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1093{
1094    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1095        clusivity == Enums::mostly_excl) {
1096        // if we have responded to a cache, and our block is still
1097        // valid, but not dirty, and this cache is mostly exclusive
1098        // with respect to the cache above, drop the block
1099        invalidateBlock(blk);
1100    }
1101}
1102
1103CacheBlk*
1104BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1105                      bool allocate)
1106{
1107    assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1108    Addr addr = pkt->getAddr();
1109    bool is_secure = pkt->isSecure();
1110#if TRACING_ON
1111    CacheBlk::State old_state = blk ? blk->status : 0;
1112#endif
1113
1114    // When handling a fill, we should have no writes to this line.
1115    assert(addr == pkt->getBlockAddr(blkSize));
1116    assert(!writeBuffer.findMatch(addr, is_secure));
1117
1118    if (!blk) {
1119        // better have read new data...
1120        assert(pkt->hasData());
1121
1122        // only read responses and write-line requests have data;
1123        // note that we don't write the data here for write-line - that
1124        // happens in the subsequent call to satisfyRequest
1125        assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1126
1127        // need to do a replacement if allocating, otherwise we stick
1128        // with the temporary storage
1129        blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1130
1131        if (!blk) {
1132            // No replaceable block or a mostly exclusive
1133            // cache... just use temporary storage to complete the
1134            // current request and then get rid of it
1135            assert(!tempBlock->isValid());
1136            blk = tempBlock;
1137            tempBlock->set = tags->extractSet(addr);
1138            tempBlock->tag = tags->extractTag(addr);
1139            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1140                    is_secure ? "s" : "ns");
1141        } else {
1142            tags->insertBlock(pkt, blk);
1143        }
1144
1145        // we should never be overwriting a valid block
1146        assert(!blk->isValid());
1147    } else {
1148        // existing block... probably an upgrade
1149        assert(blk->tag == tags->extractTag(addr));
1150        // either we're getting new data or the block should already be valid
1151        assert(pkt->hasData() || blk->isValid());
1152        // don't clear block status... if block is already dirty we
1153        // don't want to lose that
1154    }
1155
1156    if (is_secure)
1157        blk->status |= BlkSecure;
1158    blk->status |= BlkValid | BlkReadable;
1159
1160    // sanity check for whole-line writes, which should always be
1161    // marked as writable as part of the fill, and then later marked
1162    // dirty as part of satisfyRequest
1163    if (pkt->cmd == MemCmd::WriteLineReq) {
1164        assert(!pkt->hasSharers());
1165    }
1166
1167    // here we deal with setting the appropriate state of the line,
1168    // and we start by looking at the hasSharers flag, and ignore the
1169    // cacheResponding flag (normally signalling dirty data) if the
1170    // packet has sharers, thus the line is never allocated as Owned
1171    // (dirty but not writable), and always ends up being either
1172    // Shared, Exclusive or Modified, see Packet::setCacheResponding
1173    // for more details
1174    if (!pkt->hasSharers()) {
1175        // we could get a writable line from memory (rather than a
1176        // cache) even in a read-only cache, note that we set this bit
1177        // even for a read-only cache, possibly revisit this decision
1178        blk->status |= BlkWritable;
1179
1180        // check if we got this via cache-to-cache transfer (i.e., from a
1181        // cache that had the block in Modified or Owned state)
1182        if (pkt->cacheResponding()) {
1183            // we got the block in Modified state, and invalidated the
1184            // owners copy
1185            blk->status |= BlkDirty;
1186
1187            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1188                          "in read-only cache %s\n", name());
1189        }
1190    }
1191
1192    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1193            addr, is_secure ? "s" : "ns", old_state, blk->print());
1194
1195    // if we got new data, copy it in (checking for a read response
1196    // and a response that has data is the same in the end)
1197    if (pkt->isRead()) {
1198        // sanity checks
1199        assert(pkt->hasData());
1200        assert(pkt->getSize() == blkSize);
1201
1202        pkt->writeDataToBlock(blk->data, blkSize);
1203    }
1204    // We pay for fillLatency here.
1205    blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1206        pkt->payloadDelay;
1207
1208    return blk;
1209}
1210
1211CacheBlk*
1212BaseCache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1213{
1214    // Find replacement victim
1215    CacheBlk *blk = tags->findVictim(addr);
1216
1217    // It is valid to return nullptr if there is no victim
1218    if (!blk)
1219        return nullptr;
1220
1221    if (blk->isValid()) {
1222        Addr repl_addr = tags->regenerateBlkAddr(blk);
1223        MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1224        if (repl_mshr) {
1225            // must be an outstanding upgrade or clean request
1226            // on a block we're about to replace...
1227            assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1228                   repl_mshr->isCleaning());
1229            // too hard to replace block with transient state
1230            // allocation failed, block not inserted
1231            return nullptr;
1232        } else {
1233            DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1234                    "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1235                    addr, is_secure ? "s" : "ns",
1236                    blk->isDirty() ? "writeback" : "clean");
1237
1238            if (blk->wasPrefetched()) {
1239                unusedPrefetches++;
1240            }
1241            evictBlock(blk, writebacks);
1242            replacements++;
1243        }
1244    }
1245
1246    return blk;
1247}
1248
1249void
1250BaseCache::invalidateBlock(CacheBlk *blk)
1251{
1252    if (blk != tempBlock)
1253        tags->invalidate(blk);
1254    blk->invalidate();
1255}
1256
1257PacketPtr
1258BaseCache::writebackBlk(CacheBlk *blk)
1259{
1260    chatty_assert(!isReadOnly || writebackClean,
1261                  "Writeback from read-only cache");
1262    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1263
1264    writebacks[Request::wbMasterId]++;
1265
1266    Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1267                               Request::wbMasterId);
1268    if (blk->isSecure())
1269        req->setFlags(Request::SECURE);
1270
1271    req->taskId(blk->task_id);
1272
1273    PacketPtr pkt =
1274        new Packet(req, blk->isDirty() ?
1275                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
1276
1277    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1278            pkt->print(), blk->isWritable(), blk->isDirty());
1279
1280    if (blk->isWritable()) {
1281        // not asserting shared means we pass the block in modified
1282        // state, mark our own block non-writeable
1283        blk->status &= ~BlkWritable;
1284    } else {
1285        // we are in the Owned state, tell the receiver
1286        pkt->setHasSharers();
1287    }
1288
1289    // make sure the block is not marked dirty
1290    blk->status &= ~BlkDirty;
1291
1292    pkt->allocate();
1293    pkt->setDataFromBlock(blk->data, blkSize);
1294
1295    return pkt;
1296}
1297
1298PacketPtr
1299BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1300{
1301    Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
1302                               Request::wbMasterId);
1303    if (blk->isSecure()) {
1304        req->setFlags(Request::SECURE);
1305    }
1306    req->taskId(blk->task_id);
1307
1308    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1309
1310    if (dest) {
1311        req->setFlags(dest);
1312        pkt->setWriteThrough();
1313    }
1314
1315    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1316            blk->isWritable(), blk->isDirty());
1317
1318    if (blk->isWritable()) {
1319        // not asserting shared means we pass the block in modified
1320        // state, mark our own block non-writeable
1321        blk->status &= ~BlkWritable;
1322    } else {
1323        // we are in the Owned state, tell the receiver
1324        pkt->setHasSharers();
1325    }
1326
1327    // make sure the block is not marked dirty
1328    blk->status &= ~BlkDirty;
1329
1330    pkt->allocate();
1331    pkt->setDataFromBlock(blk->data, blkSize);
1332
1333    return pkt;
1334}
1335
1336
1337void
1338BaseCache::memWriteback()
1339{
1340    CacheBlkVisitorWrapper visitor(*this, &BaseCache::writebackVisitor);
1341    tags->forEachBlk(visitor);
1342}
1343
1344void
1345BaseCache::memInvalidate()
1346{
1347    CacheBlkVisitorWrapper visitor(*this, &BaseCache::invalidateVisitor);
1348    tags->forEachBlk(visitor);
1349}
1350
1351bool
1352BaseCache::isDirty() const
1353{
1354    CacheBlkIsDirtyVisitor visitor;
1355    tags->forEachBlk(visitor);
1356
1357    return visitor.isDirty();
1358}
1359
1360bool
1361BaseCache::writebackVisitor(CacheBlk &blk)
1362{
1363    if (blk.isDirty()) {
1364        assert(blk.isValid());
1365
1366        Request request(tags->regenerateBlkAddr(&blk),
1367                        blkSize, 0, Request::funcMasterId);
1368        request.taskId(blk.task_id);
1369        if (blk.isSecure()) {
1370            request.setFlags(Request::SECURE);
1371        }
1372
1373        Packet packet(&request, MemCmd::WriteReq);
1374        packet.dataStatic(blk.data);
1375
1376        memSidePort.sendFunctional(&packet);
1377
1378        blk.status &= ~BlkDirty;
1379    }
1380
1381    return true;
1382}
1383
1384bool
1385BaseCache::invalidateVisitor(CacheBlk &blk)
1386{
1387    if (blk.isDirty())
1388        warn_once("Invalidating dirty cache lines. " \
1389                  "Expect things to break.\n");
1390
1391    if (blk.isValid()) {
1392        assert(!blk.isDirty());
1393        invalidateBlock(&blk);
1394    }
1395
1396    return true;
1397}
1398
1399Tick
1400BaseCache::nextQueueReadyTime() const
1401{
1402    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1403                              writeBuffer.nextReadyTime());
1404
1405    // Don't signal prefetch ready time if no MSHRs available
1406    // Will signal once enoguh MSHRs are deallocated
1407    if (prefetcher && mshrQueue.canPrefetch()) {
1408        nextReady = std::min(nextReady,
1409                             prefetcher->nextPrefetchReadyTime());
1410    }
1411
1412    return nextReady;
1413}
1414
1415
1416bool
1417BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1418{
1419    assert(mshr);
1420
1421    // use request from 1st target
1422    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1423
1424    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1425
1426    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1427
1428    // either a prefetch that is not present upstream, or a normal
1429    // MSHR request, proceed to get the packet to send downstream
1430    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
1431
1432    mshr->isForward = (pkt == nullptr);
1433
1434    if (mshr->isForward) {
1435        // not a cache block request, but a response is expected
1436        // make copy of current packet to forward, keep current
1437        // copy for response handling
1438        pkt = new Packet(tgt_pkt, false, true);
1439        assert(!pkt->isWrite());
1440    }
1441
1442    // play it safe and append (rather than set) the sender state,
1443    // as forwarded packets may already have existing state
1444    pkt->pushSenderState(mshr);
1445
1446    if (pkt->isClean() && blk && blk->isDirty()) {
1447        // A cache clean opearation is looking for a dirty block. Mark
1448        // the packet so that the destination xbar can determine that
1449        // there will be a follow-up write packet as well.
1450        pkt->setSatisfied();
1451    }
1452
1453    if (!memSidePort.sendTimingReq(pkt)) {
1454        // we are awaiting a retry, but we
1455        // delete the packet and will be creating a new packet
1456        // when we get the opportunity
1457        delete pkt;
1458
1459        // note that we have now masked any requestBus and
1460        // schedSendEvent (we will wait for a retry before
1461        // doing anything), and this is so even if we do not
1462        // care about this packet and might override it before
1463        // it gets retried
1464        return true;
1465    } else {
1466        // As part of the call to sendTimingReq the packet is
1467        // forwarded to all neighbouring caches (and any caches
1468        // above them) as a snoop. Thus at this point we know if
1469        // any of the neighbouring caches are responding, and if
1470        // so, we know it is dirty, and we can determine if it is
1471        // being passed as Modified, making our MSHR the ordering
1472        // point
1473        bool pending_modified_resp = !pkt->hasSharers() &&
1474            pkt->cacheResponding();
1475        markInService(mshr, pending_modified_resp);
1476
1477        if (pkt->isClean() && blk && blk->isDirty()) {
1478            // A cache clean opearation is looking for a dirty
1479            // block. If a dirty block is encountered a WriteClean
1480            // will update any copies to the path to the memory
1481            // until the point of reference.
1482            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1483                    __func__, pkt->print(), blk->print());
1484            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1485                                             pkt->id);
1486            PacketList writebacks;
1487            writebacks.push_back(wb_pkt);
1488            doWritebacks(writebacks, 0);
1489        }
1490
1491        return false;
1492    }
1493}
1494
1495bool
1496BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1497{
1498    assert(wq_entry);
1499
1500    // always a single target for write queue entries
1501    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1502
1503    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1504
1505    // forward as is, both for evictions and uncacheable writes
1506    if (!memSidePort.sendTimingReq(tgt_pkt)) {
1507        // note that we have now masked any requestBus and
1508        // schedSendEvent (we will wait for a retry before
1509        // doing anything), and this is so even if we do not
1510        // care about this packet and might override it before
1511        // it gets retried
1512        return true;
1513    } else {
1514        markInService(wq_entry);
1515        return false;
1516    }
1517}
1518
1519void
1520BaseCache::serialize(CheckpointOut &cp) const
1521{
1522    bool dirty(isDirty());
1523
1524    if (dirty) {
1525        warn("*** The cache still contains dirty data. ***\n");
1526        warn("    Make sure to drain the system using the correct flags.\n");
1527        warn("    This checkpoint will not restore correctly " \
1528             "and dirty data in the cache will be lost!\n");
1529    }
1530
1531    // Since we don't checkpoint the data in the cache, any dirty data
1532    // will be lost when restoring from a checkpoint of a system that
1533    // wasn't drained properly. Flag the checkpoint as invalid if the
1534    // cache contains dirty data.
1535    bool bad_checkpoint(dirty);
1536    SERIALIZE_SCALAR(bad_checkpoint);
1537}
1538
1539void
1540BaseCache::unserialize(CheckpointIn &cp)
1541{
1542    bool bad_checkpoint;
1543    UNSERIALIZE_SCALAR(bad_checkpoint);
1544    if (bad_checkpoint) {
1545        fatal("Restoring from checkpoints with dirty caches is not "
1546              "supported in the classic memory system. Please remove any "
1547              "caches or drain them properly before taking checkpoints.\n");
1548    }
1549}
1550
1551void
1552BaseCache::regStats()
1553{
1554    MemObject::regStats();
1555
1556    using namespace Stats;
1557
1558    // Hit statistics
1559    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1560        MemCmd cmd(access_idx);
1561        const string &cstr = cmd.toString();
1562
1563        hits[access_idx]
1564            .init(system->maxMasters())
1565            .name(name() + "." + cstr + "_hits")
1566            .desc("number of " + cstr + " hits")
1567            .flags(total | nozero | nonan)
1568            ;
1569        for (int i = 0; i < system->maxMasters(); i++) {
1570            hits[access_idx].subname(i, system->getMasterName(i));
1571        }
1572    }
1573
1574// These macros make it easier to sum the right subset of commands and
1575// to change the subset of commands that are considered "demand" vs
1576// "non-demand"
1577#define SUM_DEMAND(s) \
1578    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1579     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1580
1581// should writebacks be included here?  prior code was inconsistent...
1582#define SUM_NON_DEMAND(s) \
1583    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
1584
1585    demandHits
1586        .name(name() + ".demand_hits")
1587        .desc("number of demand (read+write) hits")
1588        .flags(total | nozero | nonan)
1589        ;
1590    demandHits = SUM_DEMAND(hits);
1591    for (int i = 0; i < system->maxMasters(); i++) {
1592        demandHits.subname(i, system->getMasterName(i));
1593    }
1594
1595    overallHits
1596        .name(name() + ".overall_hits")
1597        .desc("number of overall hits")
1598        .flags(total | nozero | nonan)
1599        ;
1600    overallHits = demandHits + SUM_NON_DEMAND(hits);
1601    for (int i = 0; i < system->maxMasters(); i++) {
1602        overallHits.subname(i, system->getMasterName(i));
1603    }
1604
1605    // Miss statistics
1606    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1607        MemCmd cmd(access_idx);
1608        const string &cstr = cmd.toString();
1609
1610        misses[access_idx]
1611            .init(system->maxMasters())
1612            .name(name() + "." + cstr + "_misses")
1613            .desc("number of " + cstr + " misses")
1614            .flags(total | nozero | nonan)
1615            ;
1616        for (int i = 0; i < system->maxMasters(); i++) {
1617            misses[access_idx].subname(i, system->getMasterName(i));
1618        }
1619    }
1620
1621    demandMisses
1622        .name(name() + ".demand_misses")
1623        .desc("number of demand (read+write) misses")
1624        .flags(total | nozero | nonan)
1625        ;
1626    demandMisses = SUM_DEMAND(misses);
1627    for (int i = 0; i < system->maxMasters(); i++) {
1628        demandMisses.subname(i, system->getMasterName(i));
1629    }
1630
1631    overallMisses
1632        .name(name() + ".overall_misses")
1633        .desc("number of overall misses")
1634        .flags(total | nozero | nonan)
1635        ;
1636    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1637    for (int i = 0; i < system->maxMasters(); i++) {
1638        overallMisses.subname(i, system->getMasterName(i));
1639    }
1640
1641    // Miss latency statistics
1642    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1643        MemCmd cmd(access_idx);
1644        const string &cstr = cmd.toString();
1645
1646        missLatency[access_idx]
1647            .init(system->maxMasters())
1648            .name(name() + "." + cstr + "_miss_latency")
1649            .desc("number of " + cstr + " miss cycles")
1650            .flags(total | nozero | nonan)
1651            ;
1652        for (int i = 0; i < system->maxMasters(); i++) {
1653            missLatency[access_idx].subname(i, system->getMasterName(i));
1654        }
1655    }
1656
1657    demandMissLatency
1658        .name(name() + ".demand_miss_latency")
1659        .desc("number of demand (read+write) miss cycles")
1660        .flags(total | nozero | nonan)
1661        ;
1662    demandMissLatency = SUM_DEMAND(missLatency);
1663    for (int i = 0; i < system->maxMasters(); i++) {
1664        demandMissLatency.subname(i, system->getMasterName(i));
1665    }
1666
1667    overallMissLatency
1668        .name(name() + ".overall_miss_latency")
1669        .desc("number of overall miss cycles")
1670        .flags(total | nozero | nonan)
1671        ;
1672    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1673    for (int i = 0; i < system->maxMasters(); i++) {
1674        overallMissLatency.subname(i, system->getMasterName(i));
1675    }
1676
1677    // access formulas
1678    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1679        MemCmd cmd(access_idx);
1680        const string &cstr = cmd.toString();
1681
1682        accesses[access_idx]
1683            .name(name() + "." + cstr + "_accesses")
1684            .desc("number of " + cstr + " accesses(hits+misses)")
1685            .flags(total | nozero | nonan)
1686            ;
1687        accesses[access_idx] = hits[access_idx] + misses[access_idx];
1688
1689        for (int i = 0; i < system->maxMasters(); i++) {
1690            accesses[access_idx].subname(i, system->getMasterName(i));
1691        }
1692    }
1693
1694    demandAccesses
1695        .name(name() + ".demand_accesses")
1696        .desc("number of demand (read+write) accesses")
1697        .flags(total | nozero | nonan)
1698        ;
1699    demandAccesses = demandHits + demandMisses;
1700    for (int i = 0; i < system->maxMasters(); i++) {
1701        demandAccesses.subname(i, system->getMasterName(i));
1702    }
1703
1704    overallAccesses
1705        .name(name() + ".overall_accesses")
1706        .desc("number of overall (read+write) accesses")
1707        .flags(total | nozero | nonan)
1708        ;
1709    overallAccesses = overallHits + overallMisses;
1710    for (int i = 0; i < system->maxMasters(); i++) {
1711        overallAccesses.subname(i, system->getMasterName(i));
1712    }
1713
1714    // miss rate formulas
1715    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1716        MemCmd cmd(access_idx);
1717        const string &cstr = cmd.toString();
1718
1719        missRate[access_idx]
1720            .name(name() + "." + cstr + "_miss_rate")
1721            .desc("miss rate for " + cstr + " accesses")
1722            .flags(total | nozero | nonan)
1723            ;
1724        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1725
1726        for (int i = 0; i < system->maxMasters(); i++) {
1727            missRate[access_idx].subname(i, system->getMasterName(i));
1728        }
1729    }
1730
1731    demandMissRate
1732        .name(name() + ".demand_miss_rate")
1733        .desc("miss rate for demand accesses")
1734        .flags(total | nozero | nonan)
1735        ;
1736    demandMissRate = demandMisses / demandAccesses;
1737    for (int i = 0; i < system->maxMasters(); i++) {
1738        demandMissRate.subname(i, system->getMasterName(i));
1739    }
1740
1741    overallMissRate
1742        .name(name() + ".overall_miss_rate")
1743        .desc("miss rate for overall accesses")
1744        .flags(total | nozero | nonan)
1745        ;
1746    overallMissRate = overallMisses / overallAccesses;
1747    for (int i = 0; i < system->maxMasters(); i++) {
1748        overallMissRate.subname(i, system->getMasterName(i));
1749    }
1750
1751    // miss latency formulas
1752    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1753        MemCmd cmd(access_idx);
1754        const string &cstr = cmd.toString();
1755
1756        avgMissLatency[access_idx]
1757            .name(name() + "." + cstr + "_avg_miss_latency")
1758            .desc("average " + cstr + " miss latency")
1759            .flags(total | nozero | nonan)
1760            ;
1761        avgMissLatency[access_idx] =
1762            missLatency[access_idx] / misses[access_idx];
1763
1764        for (int i = 0; i < system->maxMasters(); i++) {
1765            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1766        }
1767    }
1768
1769    demandAvgMissLatency
1770        .name(name() + ".demand_avg_miss_latency")
1771        .desc("average overall miss latency")
1772        .flags(total | nozero | nonan)
1773        ;
1774    demandAvgMissLatency = demandMissLatency / demandMisses;
1775    for (int i = 0; i < system->maxMasters(); i++) {
1776        demandAvgMissLatency.subname(i, system->getMasterName(i));
1777    }
1778
1779    overallAvgMissLatency
1780        .name(name() + ".overall_avg_miss_latency")
1781        .desc("average overall miss latency")
1782        .flags(total | nozero | nonan)
1783        ;
1784    overallAvgMissLatency = overallMissLatency / overallMisses;
1785    for (int i = 0; i < system->maxMasters(); i++) {
1786        overallAvgMissLatency.subname(i, system->getMasterName(i));
1787    }
1788
1789    blocked_cycles.init(NUM_BLOCKED_CAUSES);
1790    blocked_cycles
1791        .name(name() + ".blocked_cycles")
1792        .desc("number of cycles access was blocked")
1793        .subname(Blocked_NoMSHRs, "no_mshrs")
1794        .subname(Blocked_NoTargets, "no_targets")
1795        ;
1796
1797
1798    blocked_causes.init(NUM_BLOCKED_CAUSES);
1799    blocked_causes
1800        .name(name() + ".blocked")
1801        .desc("number of cycles access was blocked")
1802        .subname(Blocked_NoMSHRs, "no_mshrs")
1803        .subname(Blocked_NoTargets, "no_targets")
1804        ;
1805
1806    avg_blocked
1807        .name(name() + ".avg_blocked_cycles")
1808        .desc("average number of cycles each access was blocked")
1809        .subname(Blocked_NoMSHRs, "no_mshrs")
1810        .subname(Blocked_NoTargets, "no_targets")
1811        ;
1812
1813    avg_blocked = blocked_cycles / blocked_causes;
1814
1815    unusedPrefetches
1816        .name(name() + ".unused_prefetches")
1817        .desc("number of HardPF blocks evicted w/o reference")
1818        .flags(nozero)
1819        ;
1820
1821    writebacks
1822        .init(system->maxMasters())
1823        .name(name() + ".writebacks")
1824        .desc("number of writebacks")
1825        .flags(total | nozero | nonan)
1826        ;
1827    for (int i = 0; i < system->maxMasters(); i++) {
1828        writebacks.subname(i, system->getMasterName(i));
1829    }
1830
1831    // MSHR statistics
1832    // MSHR hit statistics
1833    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1834        MemCmd cmd(access_idx);
1835        const string &cstr = cmd.toString();
1836
1837        mshr_hits[access_idx]
1838            .init(system->maxMasters())
1839            .name(name() + "." + cstr + "_mshr_hits")
1840            .desc("number of " + cstr + " MSHR hits")
1841            .flags(total | nozero | nonan)
1842            ;
1843        for (int i = 0; i < system->maxMasters(); i++) {
1844            mshr_hits[access_idx].subname(i, system->getMasterName(i));
1845        }
1846    }
1847
1848    demandMshrHits
1849        .name(name() + ".demand_mshr_hits")
1850        .desc("number of demand (read+write) MSHR hits")
1851        .flags(total | nozero | nonan)
1852        ;
1853    demandMshrHits = SUM_DEMAND(mshr_hits);
1854    for (int i = 0; i < system->maxMasters(); i++) {
1855        demandMshrHits.subname(i, system->getMasterName(i));
1856    }
1857
1858    overallMshrHits
1859        .name(name() + ".overall_mshr_hits")
1860        .desc("number of overall MSHR hits")
1861        .flags(total | nozero | nonan)
1862        ;
1863    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1864    for (int i = 0; i < system->maxMasters(); i++) {
1865        overallMshrHits.subname(i, system->getMasterName(i));
1866    }
1867
1868    // MSHR miss statistics
1869    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1870        MemCmd cmd(access_idx);
1871        const string &cstr = cmd.toString();
1872
1873        mshr_misses[access_idx]
1874            .init(system->maxMasters())
1875            .name(name() + "." + cstr + "_mshr_misses")
1876            .desc("number of " + cstr + " MSHR misses")
1877            .flags(total | nozero | nonan)
1878            ;
1879        for (int i = 0; i < system->maxMasters(); i++) {
1880            mshr_misses[access_idx].subname(i, system->getMasterName(i));
1881        }
1882    }
1883
1884    demandMshrMisses
1885        .name(name() + ".demand_mshr_misses")
1886        .desc("number of demand (read+write) MSHR misses")
1887        .flags(total | nozero | nonan)
1888        ;
1889    demandMshrMisses = SUM_DEMAND(mshr_misses);
1890    for (int i = 0; i < system->maxMasters(); i++) {
1891        demandMshrMisses.subname(i, system->getMasterName(i));
1892    }
1893
1894    overallMshrMisses
1895        .name(name() + ".overall_mshr_misses")
1896        .desc("number of overall MSHR misses")
1897        .flags(total | nozero | nonan)
1898        ;
1899    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1900    for (int i = 0; i < system->maxMasters(); i++) {
1901        overallMshrMisses.subname(i, system->getMasterName(i));
1902    }
1903
1904    // MSHR miss latency statistics
1905    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1906        MemCmd cmd(access_idx);
1907        const string &cstr = cmd.toString();
1908
1909        mshr_miss_latency[access_idx]
1910            .init(system->maxMasters())
1911            .name(name() + "." + cstr + "_mshr_miss_latency")
1912            .desc("number of " + cstr + " MSHR miss cycles")
1913            .flags(total | nozero | nonan)
1914            ;
1915        for (int i = 0; i < system->maxMasters(); i++) {
1916            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1917        }
1918    }
1919
1920    demandMshrMissLatency
1921        .name(name() + ".demand_mshr_miss_latency")
1922        .desc("number of demand (read+write) MSHR miss cycles")
1923        .flags(total | nozero | nonan)
1924        ;
1925    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
1926    for (int i = 0; i < system->maxMasters(); i++) {
1927        demandMshrMissLatency.subname(i, system->getMasterName(i));
1928    }
1929
1930    overallMshrMissLatency
1931        .name(name() + ".overall_mshr_miss_latency")
1932        .desc("number of overall MSHR miss cycles")
1933        .flags(total | nozero | nonan)
1934        ;
1935    overallMshrMissLatency =
1936        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
1937    for (int i = 0; i < system->maxMasters(); i++) {
1938        overallMshrMissLatency.subname(i, system->getMasterName(i));
1939    }
1940
1941    // MSHR uncacheable statistics
1942    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1943        MemCmd cmd(access_idx);
1944        const string &cstr = cmd.toString();
1945
1946        mshr_uncacheable[access_idx]
1947            .init(system->maxMasters())
1948            .name(name() + "." + cstr + "_mshr_uncacheable")
1949            .desc("number of " + cstr + " MSHR uncacheable")
1950            .flags(total | nozero | nonan)
1951            ;
1952        for (int i = 0; i < system->maxMasters(); i++) {
1953            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
1954        }
1955    }
1956
1957    overallMshrUncacheable
1958        .name(name() + ".overall_mshr_uncacheable_misses")
1959        .desc("number of overall MSHR uncacheable misses")
1960        .flags(total | nozero | nonan)
1961        ;
1962    overallMshrUncacheable =
1963        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
1964    for (int i = 0; i < system->maxMasters(); i++) {
1965        overallMshrUncacheable.subname(i, system->getMasterName(i));
1966    }
1967
1968    // MSHR miss latency statistics
1969    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1970        MemCmd cmd(access_idx);
1971        const string &cstr = cmd.toString();
1972
1973        mshr_uncacheable_lat[access_idx]
1974            .init(system->maxMasters())
1975            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
1976            .desc("number of " + cstr + " MSHR uncacheable cycles")
1977            .flags(total | nozero | nonan)
1978            ;
1979        for (int i = 0; i < system->maxMasters(); i++) {
1980            mshr_uncacheable_lat[access_idx].subname(
1981                i, system->getMasterName(i));
1982        }
1983    }
1984
1985    overallMshrUncacheableLatency
1986        .name(name() + ".overall_mshr_uncacheable_latency")
1987        .desc("number of overall MSHR uncacheable cycles")
1988        .flags(total | nozero | nonan)
1989        ;
1990    overallMshrUncacheableLatency =
1991        SUM_DEMAND(mshr_uncacheable_lat) +
1992        SUM_NON_DEMAND(mshr_uncacheable_lat);
1993    for (int i = 0; i < system->maxMasters(); i++) {
1994        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
1995    }
1996
1997#if 0
1998    // MSHR access formulas
1999    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2000        MemCmd cmd(access_idx);
2001        const string &cstr = cmd.toString();
2002
2003        mshrAccesses[access_idx]
2004            .name(name() + "." + cstr + "_mshr_accesses")
2005            .desc("number of " + cstr + " mshr accesses(hits+misses)")
2006            .flags(total | nozero | nonan)
2007            ;
2008        mshrAccesses[access_idx] =
2009            mshr_hits[access_idx] + mshr_misses[access_idx]
2010            + mshr_uncacheable[access_idx];
2011    }
2012
2013    demandMshrAccesses
2014        .name(name() + ".demand_mshr_accesses")
2015        .desc("number of demand (read+write) mshr accesses")
2016        .flags(total | nozero | nonan)
2017        ;
2018    demandMshrAccesses = demandMshrHits + demandMshrMisses;
2019
2020    overallMshrAccesses
2021        .name(name() + ".overall_mshr_accesses")
2022        .desc("number of overall (read+write) mshr accesses")
2023        .flags(total | nozero | nonan)
2024        ;
2025    overallMshrAccesses = overallMshrHits + overallMshrMisses
2026        + overallMshrUncacheable;
2027#endif
2028
2029    // MSHR miss rate formulas
2030    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2031        MemCmd cmd(access_idx);
2032        const string &cstr = cmd.toString();
2033
2034        mshrMissRate[access_idx]
2035            .name(name() + "." + cstr + "_mshr_miss_rate")
2036            .desc("mshr miss rate for " + cstr + " accesses")
2037            .flags(total | nozero | nonan)
2038            ;
2039        mshrMissRate[access_idx] =
2040            mshr_misses[access_idx] / accesses[access_idx];
2041
2042        for (int i = 0; i < system->maxMasters(); i++) {
2043            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2044        }
2045    }
2046
2047    demandMshrMissRate
2048        .name(name() + ".demand_mshr_miss_rate")
2049        .desc("mshr miss rate for demand accesses")
2050        .flags(total | nozero | nonan)
2051        ;
2052    demandMshrMissRate = demandMshrMisses / demandAccesses;
2053    for (int i = 0; i < system->maxMasters(); i++) {
2054        demandMshrMissRate.subname(i, system->getMasterName(i));
2055    }
2056
2057    overallMshrMissRate
2058        .name(name() + ".overall_mshr_miss_rate")
2059        .desc("mshr miss rate for overall accesses")
2060        .flags(total | nozero | nonan)
2061        ;
2062    overallMshrMissRate = overallMshrMisses / overallAccesses;
2063    for (int i = 0; i < system->maxMasters(); i++) {
2064        overallMshrMissRate.subname(i, system->getMasterName(i));
2065    }
2066
2067    // mshrMiss latency formulas
2068    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2069        MemCmd cmd(access_idx);
2070        const string &cstr = cmd.toString();
2071
2072        avgMshrMissLatency[access_idx]
2073            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2074            .desc("average " + cstr + " mshr miss latency")
2075            .flags(total | nozero | nonan)
2076            ;
2077        avgMshrMissLatency[access_idx] =
2078            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2079
2080        for (int i = 0; i < system->maxMasters(); i++) {
2081            avgMshrMissLatency[access_idx].subname(
2082                i, system->getMasterName(i));
2083        }
2084    }
2085
2086    demandAvgMshrMissLatency
2087        .name(name() + ".demand_avg_mshr_miss_latency")
2088        .desc("average overall mshr miss latency")
2089        .flags(total | nozero | nonan)
2090        ;
2091    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2092    for (int i = 0; i < system->maxMasters(); i++) {
2093        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2094    }
2095
2096    overallAvgMshrMissLatency
2097        .name(name() + ".overall_avg_mshr_miss_latency")
2098        .desc("average overall mshr miss latency")
2099        .flags(total | nozero | nonan)
2100        ;
2101    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2102    for (int i = 0; i < system->maxMasters(); i++) {
2103        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2104    }
2105
2106    // mshrUncacheable latency formulas
2107    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2108        MemCmd cmd(access_idx);
2109        const string &cstr = cmd.toString();
2110
2111        avgMshrUncacheableLatency[access_idx]
2112            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2113            .desc("average " + cstr + " mshr uncacheable latency")
2114            .flags(total | nozero | nonan)
2115            ;
2116        avgMshrUncacheableLatency[access_idx] =
2117            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2118
2119        for (int i = 0; i < system->maxMasters(); i++) {
2120            avgMshrUncacheableLatency[access_idx].subname(
2121                i, system->getMasterName(i));
2122        }
2123    }
2124
2125    overallAvgMshrUncacheableLatency
2126        .name(name() + ".overall_avg_mshr_uncacheable_latency")
2127        .desc("average overall mshr uncacheable latency")
2128        .flags(total | nozero | nonan)
2129        ;
2130    overallAvgMshrUncacheableLatency =
2131        overallMshrUncacheableLatency / overallMshrUncacheable;
2132    for (int i = 0; i < system->maxMasters(); i++) {
2133        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2134    }
2135
2136    replacements
2137        .name(name() + ".replacements")
2138        .desc("number of replacements")
2139        ;
2140}
2141
2142///////////////
2143//
2144// CpuSidePort
2145//
2146///////////////
2147bool
2148BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2149{
2150    // Express snoop responses from master to slave, e.g., from L1 to L2
2151    cache->recvTimingSnoopResp(pkt);
2152    return true;
2153}
2154
2155
2156bool
2157BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2158{
2159    if (pkt->isExpressSnoop()) {
2160        // always let express snoop packets through even if blocked
2161        return true;
2162    } else if (blocked || mustSendRetry) {
2163        // either already committed to send a retry, or blocked
2164        mustSendRetry = true;
2165        return false;
2166    }
2167    mustSendRetry = false;
2168    return true;
2169}
2170
2171bool
2172BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2173{
2174    if (tryTiming(pkt)) {
2175        cache->recvTimingReq(pkt);
2176        return true;
2177    }
2178    return false;
2179}
2180
2181Tick
2182BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2183{
2184    return cache->recvAtomic(pkt);
2185}
2186
2187void
2188BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2189{
2190    // functional request
2191    cache->functionalAccess(pkt, true);
2192}
2193
2194AddrRangeList
2195BaseCache::CpuSidePort::getAddrRanges() const
2196{
2197    return cache->getAddrRanges();
2198}
2199
2200
2201BaseCache::
2202CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2203                         const std::string &_label)
2204    : CacheSlavePort(_name, _cache, _label), cache(_cache)
2205{
2206}
2207
2208///////////////
2209//
2210// MemSidePort
2211//
2212///////////////
2213bool
2214BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2215{
2216    cache->recvTimingResp(pkt);
2217    return true;
2218}
2219
2220// Express snooping requests to memside port
2221void
2222BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2223{
2224    // handle snooping requests
2225    cache->recvTimingSnoopReq(pkt);
2226}
2227
2228Tick
2229BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2230{
2231    return cache->recvAtomicSnoop(pkt);
2232}
2233
2234void
2235BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2236{
2237    // functional snoop (note that in contrast to atomic we don't have
2238    // a specific functionalSnoop method, as they have the same
2239    // behaviour regardless)
2240    cache->functionalAccess(pkt, false);
2241}
2242
2243void
2244BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2245{
2246    // sanity check
2247    assert(!waitingOnRetry);
2248
2249    // there should never be any deferred request packets in the
2250    // queue, instead we resly on the cache to provide the packets
2251    // from the MSHR queue or write queue
2252    assert(deferredPacketReadyTime() == MaxTick);
2253
2254    // check for request packets (requests & writebacks)
2255    QueueEntry* entry = cache.getNextQueueEntry();
2256
2257    if (!entry) {
2258        // can happen if e.g. we attempt a writeback and fail, but
2259        // before the retry, the writeback is eliminated because
2260        // we snoop another cache's ReadEx.
2261    } else {
2262        // let our snoop responses go first if there are responses to
2263        // the same addresses
2264        if (checkConflictingSnoop(entry->blkAddr)) {
2265            return;
2266        }
2267        waitingOnRetry = entry->sendPacket(cache);
2268    }
2269
2270    // if we succeeded and are not waiting for a retry, schedule the
2271    // next send considering when the next queue is ready, note that
2272    // snoop responses have their own packet queue and thus schedule
2273    // their own events
2274    if (!waitingOnRetry) {
2275        schedSendEvent(cache.nextQueueReadyTime());
2276    }
2277}
2278
2279BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2280                                    BaseCache *_cache,
2281                                    const std::string &_label)
2282    : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2283      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2284      _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2285{
2286}
2287