base.cc revision 13784
1/* 2 * Copyright (c) 2012-2013, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Nikos Nikoleris 42 */ 43 44/** 45 * @file 46 * Definition of BaseCache functions. 47 */ 48 49#include "mem/cache/base.hh" 50 51#include "base/compiler.hh" 52#include "base/logging.hh" 53#include "debug/Cache.hh" 54#include "debug/CachePort.hh" 55#include "debug/CacheRepl.hh" 56#include "debug/CacheVerbose.hh" 57#include "mem/cache/mshr.hh" 58#include "mem/cache/prefetch/base.hh" 59#include "mem/cache/queue_entry.hh" 60#include "params/BaseCache.hh" 61#include "params/WriteAllocator.hh" 62#include "sim/core.hh" 63 64class BaseMasterPort; 65class BaseSlavePort; 66 67using namespace std; 68 69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, 70 BaseCache *_cache, 71 const std::string &_label) 72 : QueuedSlavePort(_name, _cache, queue), 73 queue(*_cache, *this, true, _label), 74 blocked(false), mustSendRetry(false), 75 sendRetryEvent([this]{ processSendRetry(); }, _name) 76{ 77} 78 79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) 80 : MemObject(p), 81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), 82 memSidePort(p->name + ".mem_side", this, "MemSidePort"), 83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below 84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below 85 tags(p->tags), 86 prefetcher(p->prefetcher), 87 writeAllocator(p->write_allocator), 88 writebackClean(p->writeback_clean), 89 tempBlockWriteback(nullptr), 90 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 91 name(), false, 92 EventBase::Delayed_Writeback_Pri), 93 blkSize(blk_size), 94 lookupLatency(p->tag_latency), 95 dataLatency(p->data_latency), 96 forwardLatency(p->tag_latency), 97 fillLatency(p->data_latency), 98 responseLatency(p->response_latency), 99 sequentialAccess(p->sequential_access), 100 numTarget(p->tgts_per_mshr), 101 forwardSnoops(true), 102 clusivity(p->clusivity), 103 isReadOnly(p->is_read_only), 104 blocked(0), 105 order(0), 106 noTargetMSHR(nullptr), 107 missCount(p->max_miss_count), 108 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()), 109 system(p->system) 110{ 111 // the MSHR queue has no reserve entries as we check the MSHR 112 // queue on every single allocation, whereas the write queue has 113 // as many reserve entries as we have MSHRs, since every MSHR may 114 // eventually require a writeback, and we do not check the write 115 // buffer before committing to an MSHR 116 117 // forward snoops is overridden in init() once we can query 118 // whether the connected master is actually snooping or not 119 120 tempBlock = new TempCacheBlk(blkSize); 121 122 tags->tagsInit(); 123 if (prefetcher) 124 prefetcher->setCache(this); 125} 126 127BaseCache::~BaseCache() 128{ 129 delete tempBlock; 130} 131 132void 133BaseCache::CacheSlavePort::setBlocked() 134{ 135 assert(!blocked); 136 DPRINTF(CachePort, "Port is blocking new requests\n"); 137 blocked = true; 138 // if we already scheduled a retry in this cycle, but it has not yet 139 // happened, cancel it 140 if (sendRetryEvent.scheduled()) { 141 owner.deschedule(sendRetryEvent); 142 DPRINTF(CachePort, "Port descheduled retry\n"); 143 mustSendRetry = true; 144 } 145} 146 147void 148BaseCache::CacheSlavePort::clearBlocked() 149{ 150 assert(blocked); 151 DPRINTF(CachePort, "Port is accepting new requests\n"); 152 blocked = false; 153 if (mustSendRetry) { 154 // @TODO: need to find a better time (next cycle?) 155 owner.schedule(sendRetryEvent, curTick() + 1); 156 } 157} 158 159void 160BaseCache::CacheSlavePort::processSendRetry() 161{ 162 DPRINTF(CachePort, "Port is sending retry\n"); 163 164 // reset the flag and call retry 165 mustSendRetry = false; 166 sendRetryReq(); 167} 168 169Addr 170BaseCache::regenerateBlkAddr(CacheBlk* blk) 171{ 172 if (blk != tempBlock) { 173 return tags->regenerateBlkAddr(blk); 174 } else { 175 return tempBlock->getAddr(); 176 } 177} 178 179void 180BaseCache::init() 181{ 182 if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) 183 fatal("Cache ports on %s are not connected\n", name()); 184 cpuSidePort.sendRangeChange(); 185 forwardSnoops = cpuSidePort.isSnooping(); 186} 187 188Port & 189BaseCache::getPort(const std::string &if_name, PortID idx) 190{ 191 if (if_name == "mem_side") { 192 return memSidePort; 193 } else if (if_name == "cpu_side") { 194 return cpuSidePort; 195 } else { 196 return MemObject::getPort(if_name, idx); 197 } 198} 199 200bool 201BaseCache::inRange(Addr addr) const 202{ 203 for (const auto& r : addrRanges) { 204 if (r.contains(addr)) { 205 return true; 206 } 207 } 208 return false; 209} 210 211void 212BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 213{ 214 if (pkt->needsResponse()) { 215 // These delays should have been consumed by now 216 assert(pkt->headerDelay == 0); 217 assert(pkt->payloadDelay == 0); 218 219 pkt->makeTimingResponse(); 220 221 // In this case we are considering request_time that takes 222 // into account the delay of the xbar, if any, and just 223 // lat, neglecting responseLatency, modelling hit latency 224 // just as the value of lat overriden by access(), which calls 225 // the calculateAccessLatency() function. 226 cpuSidePort.schedTimingResp(pkt, request_time); 227 } else { 228 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 229 pkt->print()); 230 231 // queue the packet for deletion, as the sending cache is 232 // still relying on it; if the block is found in access(), 233 // CleanEvict and Writeback messages will be deleted 234 // here as well 235 pendingDelete.reset(pkt); 236 } 237} 238 239void 240BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 241 Tick forward_time, Tick request_time) 242{ 243 if (writeAllocator && 244 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) { 245 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(), 246 pkt->getBlockAddr(blkSize)); 247 } 248 249 if (mshr) { 250 /// MSHR hit 251 /// @note writebacks will be checked in getNextMSHR() 252 /// for any conflicting requests to the same block 253 254 //@todo remove hw_pf here 255 256 // Coalesce unless it was a software prefetch (see above). 257 if (pkt) { 258 assert(!pkt->isWriteback()); 259 // CleanEvicts corresponding to blocks which have 260 // outstanding requests in MSHRs are simply sunk here 261 if (pkt->cmd == MemCmd::CleanEvict) { 262 pendingDelete.reset(pkt); 263 } else if (pkt->cmd == MemCmd::WriteClean) { 264 // A WriteClean should never coalesce with any 265 // outstanding cache maintenance requests. 266 267 // We use forward_time here because there is an 268 // uncached memory write, forwarded to WriteBuffer. 269 allocateWriteBuffer(pkt, forward_time); 270 } else { 271 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 272 pkt->print()); 273 274 assert(pkt->req->masterId() < system->maxMasters()); 275 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 276 277 // We use forward_time here because it is the same 278 // considering new targets. We have multiple 279 // requests for the same address here. It 280 // specifies the latency to allocate an internal 281 // buffer and to schedule an event to the queued 282 // port and also takes into account the additional 283 // delay of the xbar. 284 mshr->allocateTarget(pkt, forward_time, order++, 285 allocOnFill(pkt->cmd)); 286 if (mshr->getNumTargets() == numTarget) { 287 noTargetMSHR = mshr; 288 setBlocked(Blocked_NoTargets); 289 // need to be careful with this... if this mshr isn't 290 // ready yet (i.e. time > curTick()), we don't want to 291 // move it ahead of mshrs that are ready 292 // mshrQueue.moveToFront(mshr); 293 } 294 } 295 } 296 } else { 297 // no MSHR 298 assert(pkt->req->masterId() < system->maxMasters()); 299 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 300 301 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { 302 // We use forward_time here because there is an 303 // writeback or writeclean, forwarded to WriteBuffer. 304 allocateWriteBuffer(pkt, forward_time); 305 } else { 306 if (blk && blk->isValid()) { 307 // If we have a write miss to a valid block, we 308 // need to mark the block non-readable. Otherwise 309 // if we allow reads while there's an outstanding 310 // write miss, the read could return stale data 311 // out of the cache block... a more aggressive 312 // system could detect the overlap (if any) and 313 // forward data out of the MSHRs, but we don't do 314 // that yet. Note that we do need to leave the 315 // block valid so that it stays in the cache, in 316 // case we get an upgrade response (and hence no 317 // new data) when the write miss completes. 318 // As long as CPUs do proper store/load forwarding 319 // internally, and have a sufficiently weak memory 320 // model, this is probably unnecessary, but at some 321 // point it must have seemed like we needed it... 322 assert((pkt->needsWritable() && !blk->isWritable()) || 323 pkt->req->isCacheMaintenance()); 324 blk->status &= ~BlkReadable; 325 } 326 // Here we are using forward_time, modelling the latency of 327 // a miss (outbound) just as forwardLatency, neglecting the 328 // lookupLatency component. 329 allocateMissBuffer(pkt, forward_time); 330 } 331 } 332} 333 334void 335BaseCache::recvTimingReq(PacketPtr pkt) 336{ 337 // anything that is merely forwarded pays for the forward latency and 338 // the delay provided by the crossbar 339 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 340 341 Cycles lat; 342 CacheBlk *blk = nullptr; 343 bool satisfied = false; 344 { 345 PacketList writebacks; 346 // Note that lat is passed by reference here. The function 347 // access() will set the lat value. 348 satisfied = access(pkt, blk, lat, writebacks); 349 350 // After the evicted blocks are selected, they must be forwarded 351 // to the write buffer to ensure they logically precede anything 352 // happening below 353 doWritebacks(writebacks, clockEdge(lat + forwardLatency)); 354 } 355 356 // Here we charge the headerDelay that takes into account the latencies 357 // of the bus, if the packet comes from it. 358 // The latency charged is just the value set by the access() function. 359 // In case of a hit we are neglecting response latency. 360 // In case of a miss we are neglecting forward latency. 361 Tick request_time = clockEdge(lat); 362 // Here we reset the timing of the packet. 363 pkt->headerDelay = pkt->payloadDelay = 0; 364 365 if (satisfied) { 366 // notify before anything else as later handleTimingReqHit might turn 367 // the packet in a response 368 ppHit->notify(pkt); 369 370 if (prefetcher && blk && blk->wasPrefetched()) { 371 blk->status &= ~BlkHWPrefetched; 372 } 373 374 handleTimingReqHit(pkt, blk, request_time); 375 } else { 376 handleTimingReqMiss(pkt, blk, forward_time, request_time); 377 378 ppMiss->notify(pkt); 379 } 380 381 if (prefetcher) { 382 // track time of availability of next prefetch, if any 383 Tick next_pf_time = prefetcher->nextPrefetchReadyTime(); 384 if (next_pf_time != MaxTick) { 385 schedMemSideSendEvent(next_pf_time); 386 } 387 } 388} 389 390void 391BaseCache::handleUncacheableWriteResp(PacketPtr pkt) 392{ 393 Tick completion_time = clockEdge(responseLatency) + 394 pkt->headerDelay + pkt->payloadDelay; 395 396 // Reset the bus additional time as it is now accounted for 397 pkt->headerDelay = pkt->payloadDelay = 0; 398 399 cpuSidePort.schedTimingResp(pkt, completion_time); 400} 401 402void 403BaseCache::recvTimingResp(PacketPtr pkt) 404{ 405 assert(pkt->isResponse()); 406 407 // all header delay should be paid for by the crossbar, unless 408 // this is a prefetch response from above 409 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 410 "%s saw a non-zero packet delay\n", name()); 411 412 const bool is_error = pkt->isError(); 413 414 if (is_error) { 415 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 416 pkt->print()); 417 } 418 419 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 420 pkt->print()); 421 422 // if this is a write, we should be looking at an uncacheable 423 // write 424 if (pkt->isWrite()) { 425 assert(pkt->req->isUncacheable()); 426 handleUncacheableWriteResp(pkt); 427 return; 428 } 429 430 // we have dealt with any (uncacheable) writes above, from here on 431 // we know we are dealing with an MSHR due to a miss or a prefetch 432 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 433 assert(mshr); 434 435 if (mshr == noTargetMSHR) { 436 // we always clear at least one target 437 clearBlocked(Blocked_NoTargets); 438 noTargetMSHR = nullptr; 439 } 440 441 // Initial target is used just for stats 442 MSHR::Target *initial_tgt = mshr->getTarget(); 443 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 444 Tick miss_latency = curTick() - initial_tgt->recvTime; 445 446 if (pkt->req->isUncacheable()) { 447 assert(pkt->req->masterId() < system->maxMasters()); 448 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 449 miss_latency; 450 } else { 451 assert(pkt->req->masterId() < system->maxMasters()); 452 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 453 miss_latency; 454 } 455 456 PacketList writebacks; 457 458 bool is_fill = !mshr->isForward && 459 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp || 460 mshr->wasWholeLineWrite); 461 462 // make sure that if the mshr was due to a whole line write then 463 // the response is an invalidation 464 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate()); 465 466 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 467 468 if (is_fill && !is_error) { 469 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 470 pkt->getAddr()); 471 472 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ? 473 writeAllocator->allocate() : mshr->allocOnFill(); 474 blk = handleFill(pkt, blk, writebacks, allocate); 475 assert(blk != nullptr); 476 ppFill->notify(pkt); 477 } 478 479 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { 480 // The block was marked not readable while there was a pending 481 // cache maintenance operation, restore its flag. 482 blk->status |= BlkReadable; 483 484 // This was a cache clean operation (without invalidate) 485 // and we have a copy of the block already. Since there 486 // is no invalidation, we can promote targets that don't 487 // require a writable copy 488 mshr->promoteReadable(); 489 } 490 491 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { 492 // If at this point the referenced block is writable and the 493 // response is not a cache invalidate, we promote targets that 494 // were deferred as we couldn't guarrantee a writable copy 495 mshr->promoteWritable(); 496 } 497 498 serviceMSHRTargets(mshr, pkt, blk); 499 500 if (mshr->promoteDeferredTargets()) { 501 // avoid later read getting stale data while write miss is 502 // outstanding.. see comment in timingAccess() 503 if (blk) { 504 blk->status &= ~BlkReadable; 505 } 506 mshrQueue.markPending(mshr); 507 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 508 } else { 509 // while we deallocate an mshr from the queue we still have to 510 // check the isFull condition before and after as we might 511 // have been using the reserved entries already 512 const bool was_full = mshrQueue.isFull(); 513 mshrQueue.deallocate(mshr); 514 if (was_full && !mshrQueue.isFull()) { 515 clearBlocked(Blocked_NoMSHRs); 516 } 517 518 // Request the bus for a prefetch if this deallocation freed enough 519 // MSHRs for a prefetch to take place 520 if (prefetcher && mshrQueue.canPrefetch()) { 521 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 522 clockEdge()); 523 if (next_pf_time != MaxTick) 524 schedMemSideSendEvent(next_pf_time); 525 } 526 } 527 528 // if we used temp block, check to see if its valid and then clear it out 529 if (blk == tempBlock && tempBlock->isValid()) { 530 evictBlock(blk, writebacks); 531 } 532 533 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 534 // copy writebacks to write buffer 535 doWritebacks(writebacks, forward_time); 536 537 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 538 delete pkt; 539} 540 541 542Tick 543BaseCache::recvAtomic(PacketPtr pkt) 544{ 545 // should assert here that there are no outstanding MSHRs or 546 // writebacks... that would mean that someone used an atomic 547 // access in timing mode 548 549 // We use lookupLatency here because it is used to specify the latency 550 // to access. 551 Cycles lat = lookupLatency; 552 553 CacheBlk *blk = nullptr; 554 PacketList writebacks; 555 bool satisfied = access(pkt, blk, lat, writebacks); 556 557 if (pkt->isClean() && blk && blk->isDirty()) { 558 // A cache clean opearation is looking for a dirty 559 // block. If a dirty block is encountered a WriteClean 560 // will update any copies to the path to the memory 561 // until the point of reference. 562 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 563 __func__, pkt->print(), blk->print()); 564 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 565 writebacks.push_back(wb_pkt); 566 pkt->setSatisfied(); 567 } 568 569 // handle writebacks resulting from the access here to ensure they 570 // logically precede anything happening below 571 doWritebacksAtomic(writebacks); 572 assert(writebacks.empty()); 573 574 if (!satisfied) { 575 lat += handleAtomicReqMiss(pkt, blk, writebacks); 576 } 577 578 // Note that we don't invoke the prefetcher at all in atomic mode. 579 // It's not clear how to do it properly, particularly for 580 // prefetchers that aggressively generate prefetch candidates and 581 // rely on bandwidth contention to throttle them; these will tend 582 // to pollute the cache in atomic mode since there is no bandwidth 583 // contention. If we ever do want to enable prefetching in atomic 584 // mode, though, this is the place to do it... see timingAccess() 585 // for an example (though we'd want to issue the prefetch(es) 586 // immediately rather than calling requestMemSideBus() as we do 587 // there). 588 589 // do any writebacks resulting from the response handling 590 doWritebacksAtomic(writebacks); 591 592 // if we used temp block, check to see if its valid and if so 593 // clear it out, but only do so after the call to recvAtomic is 594 // finished so that any downstream observers (such as a snoop 595 // filter), first see the fill, and only then see the eviction 596 if (blk == tempBlock && tempBlock->isValid()) { 597 // the atomic CPU calls recvAtomic for fetch and load/store 598 // sequentuially, and we may already have a tempBlock 599 // writeback from the fetch that we have not yet sent 600 if (tempBlockWriteback) { 601 // if that is the case, write the prevoius one back, and 602 // do not schedule any new event 603 writebackTempBlockAtomic(); 604 } else { 605 // the writeback/clean eviction happens after the call to 606 // recvAtomic has finished (but before any successive 607 // calls), so that the response handling from the fill is 608 // allowed to happen first 609 schedule(writebackTempBlockAtomicEvent, curTick()); 610 } 611 612 tempBlockWriteback = evictBlock(blk); 613 } 614 615 if (pkt->needsResponse()) { 616 pkt->makeAtomicResponse(); 617 } 618 619 return lat * clockPeriod(); 620} 621 622void 623BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) 624{ 625 Addr blk_addr = pkt->getBlockAddr(blkSize); 626 bool is_secure = pkt->isSecure(); 627 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 628 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 629 630 pkt->pushLabel(name()); 631 632 CacheBlkPrintWrapper cbpw(blk); 633 634 // Note that just because an L2/L3 has valid data doesn't mean an 635 // L1 doesn't have a more up-to-date modified copy that still 636 // needs to be found. As a result we always update the request if 637 // we have it, but only declare it satisfied if we are the owner. 638 639 // see if we have data at all (owned or otherwise) 640 bool have_data = blk && blk->isValid() 641 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize, 642 blk->data); 643 644 // data we have is dirty if marked as such or if we have an 645 // in-service MSHR that is pending a modified line 646 bool have_dirty = 647 have_data && (blk->isDirty() || 648 (mshr && mshr->inService && mshr->isPendingModified())); 649 650 bool done = have_dirty || 651 cpuSidePort.trySatisfyFunctional(pkt) || 652 mshrQueue.trySatisfyFunctional(pkt, blk_addr) || 653 writeBuffer.trySatisfyFunctional(pkt, blk_addr) || 654 memSidePort.trySatisfyFunctional(pkt); 655 656 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 657 (blk && blk->isValid()) ? "valid " : "", 658 have_data ? "data " : "", done ? "done " : ""); 659 660 // We're leaving the cache, so pop cache->name() label 661 pkt->popLabel(); 662 663 if (done) { 664 pkt->makeResponse(); 665 } else { 666 // if it came as a request from the CPU side then make sure it 667 // continues towards the memory side 668 if (from_cpu_side) { 669 memSidePort.sendFunctional(pkt); 670 } else if (cpuSidePort.isSnooping()) { 671 // if it came from the memory side, it must be a snoop request 672 // and we should only forward it if we are forwarding snoops 673 cpuSidePort.sendFunctionalSnoop(pkt); 674 } 675 } 676} 677 678 679void 680BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 681{ 682 assert(pkt->isRequest()); 683 684 uint64_t overwrite_val; 685 bool overwrite_mem; 686 uint64_t condition_val64; 687 uint32_t condition_val32; 688 689 int offset = pkt->getOffset(blkSize); 690 uint8_t *blk_data = blk->data + offset; 691 692 assert(sizeof(uint64_t) >= pkt->getSize()); 693 694 overwrite_mem = true; 695 // keep a copy of our possible write value, and copy what is at the 696 // memory address into the packet 697 pkt->writeData((uint8_t *)&overwrite_val); 698 pkt->setData(blk_data); 699 700 if (pkt->req->isCondSwap()) { 701 if (pkt->getSize() == sizeof(uint64_t)) { 702 condition_val64 = pkt->req->getExtraData(); 703 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 704 sizeof(uint64_t)); 705 } else if (pkt->getSize() == sizeof(uint32_t)) { 706 condition_val32 = (uint32_t)pkt->req->getExtraData(); 707 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 708 sizeof(uint32_t)); 709 } else 710 panic("Invalid size for conditional read/write\n"); 711 } 712 713 if (overwrite_mem) { 714 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 715 blk->status |= BlkDirty; 716 } 717} 718 719QueueEntry* 720BaseCache::getNextQueueEntry() 721{ 722 // Check both MSHR queue and write buffer for potential requests, 723 // note that null does not mean there is no request, it could 724 // simply be that it is not ready 725 MSHR *miss_mshr = mshrQueue.getNext(); 726 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 727 728 // If we got a write buffer request ready, first priority is a 729 // full write buffer, otherwise we favour the miss requests 730 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 731 // need to search MSHR queue for conflicting earlier miss. 732 MSHR *conflict_mshr = 733 mshrQueue.findPending(wq_entry->blkAddr, 734 wq_entry->isSecure); 735 736 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 737 // Service misses in order until conflict is cleared. 738 return conflict_mshr; 739 740 // @todo Note that we ignore the ready time of the conflict here 741 } 742 743 // No conflicts; issue write 744 return wq_entry; 745 } else if (miss_mshr) { 746 // need to check for conflicting earlier writeback 747 WriteQueueEntry *conflict_mshr = 748 writeBuffer.findPending(miss_mshr->blkAddr, 749 miss_mshr->isSecure); 750 if (conflict_mshr) { 751 // not sure why we don't check order here... it was in the 752 // original code but commented out. 753 754 // The only way this happens is if we are 755 // doing a write and we didn't have permissions 756 // then subsequently saw a writeback (owned got evicted) 757 // We need to make sure to perform the writeback first 758 // To preserve the dirty data, then we can issue the write 759 760 // should we return wq_entry here instead? I.e. do we 761 // have to flush writes in order? I don't think so... not 762 // for Alpha anyway. Maybe for x86? 763 return conflict_mshr; 764 765 // @todo Note that we ignore the ready time of the conflict here 766 } 767 768 // No conflicts; issue read 769 return miss_mshr; 770 } 771 772 // fall through... no pending requests. Try a prefetch. 773 assert(!miss_mshr && !wq_entry); 774 if (prefetcher && mshrQueue.canPrefetch()) { 775 // If we have a miss queue slot, we can try a prefetch 776 PacketPtr pkt = prefetcher->getPacket(); 777 if (pkt) { 778 Addr pf_addr = pkt->getBlockAddr(blkSize); 779 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 780 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 781 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 782 // Update statistic on number of prefetches issued 783 // (hwpf_mshr_misses) 784 assert(pkt->req->masterId() < system->maxMasters()); 785 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 786 787 // allocate an MSHR and return it, note 788 // that we send the packet straight away, so do not 789 // schedule the send 790 return allocateMissBuffer(pkt, curTick(), false); 791 } else { 792 // free the request and packet 793 delete pkt; 794 } 795 } 796 } 797 798 return nullptr; 799} 800 801void 802BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) 803{ 804 assert(pkt->isRequest()); 805 806 assert(blk && blk->isValid()); 807 // Occasionally this is not true... if we are a lower-level cache 808 // satisfying a string of Read and ReadEx requests from 809 // upper-level caches, a Read will mark the block as shared but we 810 // can satisfy a following ReadEx anyway since we can rely on the 811 // Read requester(s) to have buffered the ReadEx snoop and to 812 // invalidate their blocks after receiving them. 813 // assert(!pkt->needsWritable() || blk->isWritable()); 814 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 815 816 // Check RMW operations first since both isRead() and 817 // isWrite() will be true for them 818 if (pkt->cmd == MemCmd::SwapReq) { 819 if (pkt->isAtomicOp()) { 820 // extract data from cache and save it into the data field in 821 // the packet as a return value from this atomic op 822 int offset = tags->extractBlkOffset(pkt->getAddr()); 823 uint8_t *blk_data = blk->data + offset; 824 pkt->setData(blk_data); 825 826 // execute AMO operation 827 (*(pkt->getAtomicOp()))(blk_data); 828 829 // set block status to dirty 830 blk->status |= BlkDirty; 831 } else { 832 cmpAndSwap(blk, pkt); 833 } 834 } else if (pkt->isWrite()) { 835 // we have the block in a writable state and can go ahead, 836 // note that the line may be also be considered writable in 837 // downstream caches along the path to memory, but always 838 // Exclusive, and never Modified 839 assert(blk->isWritable()); 840 // Write or WriteLine at the first cache with block in writable state 841 if (blk->checkWrite(pkt)) { 842 pkt->writeDataToBlock(blk->data, blkSize); 843 } 844 // Always mark the line as dirty (and thus transition to the 845 // Modified state) even if we are a failed StoreCond so we 846 // supply data to any snoops that have appended themselves to 847 // this cache before knowing the store will fail. 848 blk->status |= BlkDirty; 849 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 850 } else if (pkt->isRead()) { 851 if (pkt->isLLSC()) { 852 blk->trackLoadLocked(pkt); 853 } 854 855 // all read responses have a data payload 856 assert(pkt->hasRespData()); 857 pkt->setDataFromBlock(blk->data, blkSize); 858 } else if (pkt->isUpgrade()) { 859 // sanity check 860 assert(!pkt->hasSharers()); 861 862 if (blk->isDirty()) { 863 // we were in the Owned state, and a cache above us that 864 // has the line in Shared state needs to be made aware 865 // that the data it already has is in fact dirty 866 pkt->setCacheResponding(); 867 blk->status &= ~BlkDirty; 868 } 869 } else if (pkt->isClean()) { 870 blk->status &= ~BlkDirty; 871 } else { 872 assert(pkt->isInvalidate()); 873 invalidateBlock(blk); 874 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 875 pkt->print()); 876 } 877} 878 879///////////////////////////////////////////////////// 880// 881// Access path: requests coming in from the CPU side 882// 883///////////////////////////////////////////////////// 884Cycles 885BaseCache::calculateTagOnlyLatency(const uint32_t delay, 886 const Cycles lookup_lat) const 887{ 888 // A tag-only access has to wait for the packet to arrive in order to 889 // perform the tag lookup. 890 return ticksToCycles(delay) + lookup_lat; 891} 892 893Cycles 894BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay, 895 const Cycles lookup_lat) const 896{ 897 Cycles lat(0); 898 899 if (blk != nullptr) { 900 // As soon as the access arrives, for sequential accesses first access 901 // tags, then the data entry. In the case of parallel accesses the 902 // latency is dictated by the slowest of tag and data latencies. 903 if (sequentialAccess) { 904 lat = ticksToCycles(delay) + lookup_lat + dataLatency; 905 } else { 906 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency); 907 } 908 909 // Check if the block to be accessed is available. If not, apply the 910 // access latency on top of when the block is ready to be accessed. 911 const Tick tick = curTick() + delay; 912 const Tick when_ready = blk->getWhenReady(); 913 if (when_ready > tick && 914 ticksToCycles(when_ready - tick) > lat) { 915 lat += ticksToCycles(when_ready - tick); 916 } 917 } else { 918 // In case of a miss, we neglect the data access in a parallel 919 // configuration (i.e., the data access will be stopped as soon as 920 // we find out it is a miss), and use the tag-only latency. 921 lat = calculateTagOnlyLatency(delay, lookup_lat); 922 } 923 924 return lat; 925} 926 927bool 928BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 929 PacketList &writebacks) 930{ 931 // sanity check 932 assert(pkt->isRequest()); 933 934 chatty_assert(!(isReadOnly && pkt->isWrite()), 935 "Should never see a write in a read-only cache %s\n", 936 name()); 937 938 // Access block in the tags 939 Cycles tag_latency(0); 940 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency); 941 942 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), 943 blk ? "hit " + blk->print() : "miss"); 944 945 if (pkt->req->isCacheMaintenance()) { 946 // A cache maintenance operation is always forwarded to the 947 // memory below even if the block is found in dirty state. 948 949 // We defer any changes to the state of the block until we 950 // create and mark as in service the mshr for the downstream 951 // packet. 952 953 // Calculate access latency on top of when the packet arrives. This 954 // takes into account the bus delay. 955 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency); 956 957 return false; 958 } 959 960 if (pkt->isEviction()) { 961 // We check for presence of block in above caches before issuing 962 // Writeback or CleanEvict to write buffer. Therefore the only 963 // possible cases can be of a CleanEvict packet coming from above 964 // encountering a Writeback generated in this cache peer cache and 965 // waiting in the write buffer. Cases of upper level peer caches 966 // generating CleanEvict and Writeback or simply CleanEvict and 967 // CleanEvict almost simultaneously will be caught by snoops sent out 968 // by crossbar. 969 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 970 pkt->isSecure()); 971 if (wb_entry) { 972 assert(wb_entry->getNumTargets() == 1); 973 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 974 assert(wbPkt->isWriteback()); 975 976 if (pkt->isCleanEviction()) { 977 // The CleanEvict and WritebackClean snoops into other 978 // peer caches of the same level while traversing the 979 // crossbar. If a copy of the block is found, the 980 // packet is deleted in the crossbar. Hence, none of 981 // the other upper level caches connected to this 982 // cache have the block, so we can clear the 983 // BLOCK_CACHED flag in the Writeback if set and 984 // discard the CleanEvict by returning true. 985 wbPkt->clearBlockCached(); 986 987 // A clean evict does not need to access the data array 988 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency); 989 990 return true; 991 } else { 992 assert(pkt->cmd == MemCmd::WritebackDirty); 993 // Dirty writeback from above trumps our clean 994 // writeback... discard here 995 // Note: markInService will remove entry from writeback buffer. 996 markInService(wb_entry); 997 delete wbPkt; 998 } 999 } 1000 } 1001 1002 // Writeback handling is special case. We can write the block into 1003 // the cache without having a writeable copy (or any copy at all). 1004 if (pkt->isWriteback()) { 1005 assert(blkSize == pkt->getSize()); 1006 1007 // we could get a clean writeback while we are having 1008 // outstanding accesses to a block, do the simple thing for 1009 // now and drop the clean writeback so that we do not upset 1010 // any ordering/decisions about ownership already taken 1011 if (pkt->cmd == MemCmd::WritebackClean && 1012 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 1013 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 1014 "dropping\n", pkt->getAddr()); 1015 1016 // A writeback searches for the block, then writes the data. 1017 // As the writeback is being dropped, the data is not touched, 1018 // and we just had to wait for the time to find a match in the 1019 // MSHR. As of now assume a mshr queue search takes as long as 1020 // a tag lookup for simplicity. 1021 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency); 1022 1023 return true; 1024 } 1025 1026 if (!blk) { 1027 // need to do a replacement 1028 blk = allocateBlock(pkt, writebacks); 1029 if (!blk) { 1030 // no replaceable block available: give up, fwd to next level. 1031 incMissCount(pkt); 1032 1033 // A writeback searches for the block, then writes the data. 1034 // As the block could not be found, it was a tag-only access. 1035 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency); 1036 1037 return false; 1038 } 1039 1040 blk->status |= BlkReadable; 1041 } 1042 // only mark the block dirty if we got a writeback command, 1043 // and leave it as is for a clean writeback 1044 if (pkt->cmd == MemCmd::WritebackDirty) { 1045 // TODO: the coherent cache can assert(!blk->isDirty()); 1046 blk->status |= BlkDirty; 1047 } 1048 // if the packet does not have sharers, it is passing 1049 // writable, and we got the writeback in Modified or Exclusive 1050 // state, if not we are in the Owned or Shared state 1051 if (!pkt->hasSharers()) { 1052 blk->status |= BlkWritable; 1053 } 1054 // nothing else to do; writeback doesn't expect response 1055 assert(!pkt->needsResponse()); 1056 pkt->writeDataToBlock(blk->data, blkSize); 1057 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1058 incHitCount(pkt); 1059 1060 // A writeback searches for the block, then writes the data 1061 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency); 1062 1063 // When the packet metadata arrives, the tag lookup will be done while 1064 // the payload is arriving. Then the block will be ready to access as 1065 // soon as the fill is done 1066 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay + 1067 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay)); 1068 1069 return true; 1070 } else if (pkt->cmd == MemCmd::CleanEvict) { 1071 // A CleanEvict does not need to access the data array 1072 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency); 1073 1074 if (blk) { 1075 // Found the block in the tags, need to stop CleanEvict from 1076 // propagating further down the hierarchy. Returning true will 1077 // treat the CleanEvict like a satisfied write request and delete 1078 // it. 1079 return true; 1080 } 1081 // We didn't find the block here, propagate the CleanEvict further 1082 // down the memory hierarchy. Returning false will treat the CleanEvict 1083 // like a Writeback which could not find a replaceable block so has to 1084 // go to next level. 1085 return false; 1086 } else if (pkt->cmd == MemCmd::WriteClean) { 1087 // WriteClean handling is a special case. We can allocate a 1088 // block directly if it doesn't exist and we can update the 1089 // block immediately. The WriteClean transfers the ownership 1090 // of the block as well. 1091 assert(blkSize == pkt->getSize()); 1092 1093 if (!blk) { 1094 if (pkt->writeThrough()) { 1095 // A writeback searches for the block, then writes the data. 1096 // As the block could not be found, it was a tag-only access. 1097 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency); 1098 1099 // if this is a write through packet, we don't try to 1100 // allocate if the block is not present 1101 return false; 1102 } else { 1103 // a writeback that misses needs to allocate a new block 1104 blk = allocateBlock(pkt, writebacks); 1105 if (!blk) { 1106 // no replaceable block available: give up, fwd to 1107 // next level. 1108 incMissCount(pkt); 1109 1110 // A writeback searches for the block, then writes the 1111 // data. As the block could not be found, it was a tag-only 1112 // access. 1113 lat = calculateTagOnlyLatency(pkt->headerDelay, 1114 tag_latency); 1115 1116 return false; 1117 } 1118 1119 blk->status |= BlkReadable; 1120 } 1121 } 1122 1123 // at this point either this is a writeback or a write-through 1124 // write clean operation and the block is already in this 1125 // cache, we need to update the data and the block flags 1126 assert(blk); 1127 // TODO: the coherent cache can assert(!blk->isDirty()); 1128 if (!pkt->writeThrough()) { 1129 blk->status |= BlkDirty; 1130 } 1131 // nothing else to do; writeback doesn't expect response 1132 assert(!pkt->needsResponse()); 1133 pkt->writeDataToBlock(blk->data, blkSize); 1134 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1135 1136 incHitCount(pkt); 1137 1138 // A writeback searches for the block, then writes the data 1139 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency); 1140 1141 // When the packet metadata arrives, the tag lookup will be done while 1142 // the payload is arriving. Then the block will be ready to access as 1143 // soon as the fill is done 1144 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay + 1145 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay)); 1146 1147 // if this a write-through packet it will be sent to cache 1148 // below 1149 return !pkt->writeThrough(); 1150 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 1151 blk->isReadable())) { 1152 // OK to satisfy access 1153 incHitCount(pkt); 1154 1155 // Calculate access latency based on the need to access the data array 1156 if (pkt->isRead() || pkt->isWrite()) { 1157 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency); 1158 } else { 1159 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency); 1160 } 1161 1162 satisfyRequest(pkt, blk); 1163 maintainClusivity(pkt->fromCache(), blk); 1164 1165 return true; 1166 } 1167 1168 // Can't satisfy access normally... either no block (blk == nullptr) 1169 // or have block but need writable 1170 1171 incMissCount(pkt); 1172 1173 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency); 1174 1175 if (!blk && pkt->isLLSC() && pkt->isWrite()) { 1176 // complete miss on store conditional... just give up now 1177 pkt->req->setExtraData(0); 1178 return true; 1179 } 1180 1181 return false; 1182} 1183 1184void 1185BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) 1186{ 1187 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 1188 clusivity == Enums::mostly_excl) { 1189 // if we have responded to a cache, and our block is still 1190 // valid, but not dirty, and this cache is mostly exclusive 1191 // with respect to the cache above, drop the block 1192 invalidateBlock(blk); 1193 } 1194} 1195 1196CacheBlk* 1197BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1198 bool allocate) 1199{ 1200 assert(pkt->isResponse()); 1201 Addr addr = pkt->getAddr(); 1202 bool is_secure = pkt->isSecure(); 1203#if TRACING_ON 1204 CacheBlk::State old_state = blk ? blk->status : 0; 1205#endif 1206 1207 // When handling a fill, we should have no writes to this line. 1208 assert(addr == pkt->getBlockAddr(blkSize)); 1209 assert(!writeBuffer.findMatch(addr, is_secure)); 1210 1211 if (!blk) { 1212 // better have read new data... 1213 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp); 1214 1215 // need to do a replacement if allocating, otherwise we stick 1216 // with the temporary storage 1217 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr; 1218 1219 if (!blk) { 1220 // No replaceable block or a mostly exclusive 1221 // cache... just use temporary storage to complete the 1222 // current request and then get rid of it 1223 blk = tempBlock; 1224 tempBlock->insert(addr, is_secure); 1225 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1226 is_secure ? "s" : "ns"); 1227 } 1228 } else { 1229 // existing block... probably an upgrade 1230 // don't clear block status... if block is already dirty we 1231 // don't want to lose that 1232 } 1233 1234 // Block is guaranteed to be valid at this point 1235 assert(blk->isValid()); 1236 assert(blk->isSecure() == is_secure); 1237 assert(regenerateBlkAddr(blk) == addr); 1238 1239 blk->status |= BlkReadable; 1240 1241 // sanity check for whole-line writes, which should always be 1242 // marked as writable as part of the fill, and then later marked 1243 // dirty as part of satisfyRequest 1244 if (pkt->cmd == MemCmd::InvalidateResp) { 1245 assert(!pkt->hasSharers()); 1246 } 1247 1248 // here we deal with setting the appropriate state of the line, 1249 // and we start by looking at the hasSharers flag, and ignore the 1250 // cacheResponding flag (normally signalling dirty data) if the 1251 // packet has sharers, thus the line is never allocated as Owned 1252 // (dirty but not writable), and always ends up being either 1253 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1254 // for more details 1255 if (!pkt->hasSharers()) { 1256 // we could get a writable line from memory (rather than a 1257 // cache) even in a read-only cache, note that we set this bit 1258 // even for a read-only cache, possibly revisit this decision 1259 blk->status |= BlkWritable; 1260 1261 // check if we got this via cache-to-cache transfer (i.e., from a 1262 // cache that had the block in Modified or Owned state) 1263 if (pkt->cacheResponding()) { 1264 // we got the block in Modified state, and invalidated the 1265 // owners copy 1266 blk->status |= BlkDirty; 1267 1268 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1269 "in read-only cache %s\n", name()); 1270 } 1271 } 1272 1273 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1274 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1275 1276 // if we got new data, copy it in (checking for a read response 1277 // and a response that has data is the same in the end) 1278 if (pkt->isRead()) { 1279 // sanity checks 1280 assert(pkt->hasData()); 1281 assert(pkt->getSize() == blkSize); 1282 1283 pkt->writeDataToBlock(blk->data, blkSize); 1284 } 1285 // The block will be ready when the payload arrives and the fill is done 1286 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay + 1287 pkt->payloadDelay); 1288 1289 return blk; 1290} 1291 1292CacheBlk* 1293BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks) 1294{ 1295 // Get address 1296 const Addr addr = pkt->getAddr(); 1297 1298 // Get secure bit 1299 const bool is_secure = pkt->isSecure(); 1300 1301 // Find replacement victim 1302 std::vector<CacheBlk*> evict_blks; 1303 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks); 1304 1305 // It is valid to return nullptr if there is no victim 1306 if (!victim) 1307 return nullptr; 1308 1309 // Print victim block's information 1310 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print()); 1311 1312 // Check for transient state allocations. If any of the entries listed 1313 // for eviction has a transient state, the allocation fails 1314 for (const auto& blk : evict_blks) { 1315 if (blk->isValid()) { 1316 Addr repl_addr = regenerateBlkAddr(blk); 1317 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1318 if (repl_mshr) { 1319 // must be an outstanding upgrade or clean request 1320 // on a block we're about to replace... 1321 assert((!blk->isWritable() && repl_mshr->needsWritable()) || 1322 repl_mshr->isCleaning()); 1323 1324 // too hard to replace block with transient state 1325 // allocation failed, block not inserted 1326 return nullptr; 1327 } 1328 } 1329 } 1330 1331 // The victim will be replaced by a new entry, so increase the replacement 1332 // counter if a valid block is being replaced 1333 if (victim->isValid()) { 1334 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1335 "(%s): %s\n", regenerateBlkAddr(victim), 1336 victim->isSecure() ? "s" : "ns", 1337 addr, is_secure ? "s" : "ns", 1338 victim->isDirty() ? "writeback" : "clean"); 1339 1340 replacements++; 1341 } 1342 1343 // Evict valid blocks associated to this victim block 1344 for (const auto& blk : evict_blks) { 1345 if (blk->isValid()) { 1346 if (blk->wasPrefetched()) { 1347 unusedPrefetches++; 1348 } 1349 1350 evictBlock(blk, writebacks); 1351 } 1352 } 1353 1354 // Insert new block at victimized entry 1355 tags->insertBlock(pkt, victim); 1356 1357 return victim; 1358} 1359 1360void 1361BaseCache::invalidateBlock(CacheBlk *blk) 1362{ 1363 // If handling a block present in the Tags, let it do its invalidation 1364 // process, which will update stats and invalidate the block itself 1365 if (blk != tempBlock) { 1366 tags->invalidate(blk); 1367 } else { 1368 tempBlock->invalidate(); 1369 } 1370} 1371 1372void 1373BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks) 1374{ 1375 PacketPtr pkt = evictBlock(blk); 1376 if (pkt) { 1377 writebacks.push_back(pkt); 1378 } 1379} 1380 1381PacketPtr 1382BaseCache::writebackBlk(CacheBlk *blk) 1383{ 1384 chatty_assert(!isReadOnly || writebackClean, 1385 "Writeback from read-only cache"); 1386 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1387 1388 writebacks[Request::wbMasterId]++; 1389 1390 RequestPtr req = std::make_shared<Request>( 1391 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1392 1393 if (blk->isSecure()) 1394 req->setFlags(Request::SECURE); 1395 1396 req->taskId(blk->task_id); 1397 1398 PacketPtr pkt = 1399 new Packet(req, blk->isDirty() ? 1400 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1401 1402 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1403 pkt->print(), blk->isWritable(), blk->isDirty()); 1404 1405 if (blk->isWritable()) { 1406 // not asserting shared means we pass the block in modified 1407 // state, mark our own block non-writeable 1408 blk->status &= ~BlkWritable; 1409 } else { 1410 // we are in the Owned state, tell the receiver 1411 pkt->setHasSharers(); 1412 } 1413 1414 // make sure the block is not marked dirty 1415 blk->status &= ~BlkDirty; 1416 1417 pkt->allocate(); 1418 pkt->setDataFromBlock(blk->data, blkSize); 1419 1420 return pkt; 1421} 1422 1423PacketPtr 1424BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1425{ 1426 RequestPtr req = std::make_shared<Request>( 1427 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1428 1429 if (blk->isSecure()) { 1430 req->setFlags(Request::SECURE); 1431 } 1432 req->taskId(blk->task_id); 1433 1434 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1435 1436 if (dest) { 1437 req->setFlags(dest); 1438 pkt->setWriteThrough(); 1439 } 1440 1441 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1442 blk->isWritable(), blk->isDirty()); 1443 1444 if (blk->isWritable()) { 1445 // not asserting shared means we pass the block in modified 1446 // state, mark our own block non-writeable 1447 blk->status &= ~BlkWritable; 1448 } else { 1449 // we are in the Owned state, tell the receiver 1450 pkt->setHasSharers(); 1451 } 1452 1453 // make sure the block is not marked dirty 1454 blk->status &= ~BlkDirty; 1455 1456 pkt->allocate(); 1457 pkt->setDataFromBlock(blk->data, blkSize); 1458 1459 return pkt; 1460} 1461 1462 1463void 1464BaseCache::memWriteback() 1465{ 1466 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); }); 1467} 1468 1469void 1470BaseCache::memInvalidate() 1471{ 1472 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); }); 1473} 1474 1475bool 1476BaseCache::isDirty() const 1477{ 1478 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); }); 1479} 1480 1481bool 1482BaseCache::coalesce() const 1483{ 1484 return writeAllocator && writeAllocator->coalesce(); 1485} 1486 1487void 1488BaseCache::writebackVisitor(CacheBlk &blk) 1489{ 1490 if (blk.isDirty()) { 1491 assert(blk.isValid()); 1492 1493 RequestPtr request = std::make_shared<Request>( 1494 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId); 1495 1496 request->taskId(blk.task_id); 1497 if (blk.isSecure()) { 1498 request->setFlags(Request::SECURE); 1499 } 1500 1501 Packet packet(request, MemCmd::WriteReq); 1502 packet.dataStatic(blk.data); 1503 1504 memSidePort.sendFunctional(&packet); 1505 1506 blk.status &= ~BlkDirty; 1507 } 1508} 1509 1510void 1511BaseCache::invalidateVisitor(CacheBlk &blk) 1512{ 1513 if (blk.isDirty()) 1514 warn_once("Invalidating dirty cache lines. " \ 1515 "Expect things to break.\n"); 1516 1517 if (blk.isValid()) { 1518 assert(!blk.isDirty()); 1519 invalidateBlock(&blk); 1520 } 1521} 1522 1523Tick 1524BaseCache::nextQueueReadyTime() const 1525{ 1526 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 1527 writeBuffer.nextReadyTime()); 1528 1529 // Don't signal prefetch ready time if no MSHRs available 1530 // Will signal once enoguh MSHRs are deallocated 1531 if (prefetcher && mshrQueue.canPrefetch()) { 1532 nextReady = std::min(nextReady, 1533 prefetcher->nextPrefetchReadyTime()); 1534 } 1535 1536 return nextReady; 1537} 1538 1539 1540bool 1541BaseCache::sendMSHRQueuePacket(MSHR* mshr) 1542{ 1543 assert(mshr); 1544 1545 // use request from 1st target 1546 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1547 1548 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1549 1550 // if the cache is in write coalescing mode or (additionally) in 1551 // no allocation mode, and we have a write packet with an MSHR 1552 // that is not a whole-line write (due to incompatible flags etc), 1553 // then reset the write mode 1554 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) { 1555 if (!mshr->isWholeLineWrite()) { 1556 // if we are currently write coalescing, hold on the 1557 // MSHR as many cycles extra as we need to completely 1558 // write a cache line 1559 if (writeAllocator->delay(mshr->blkAddr)) { 1560 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod(); 1561 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow " 1562 "for write coalescing\n", tgt_pkt->print(), delay); 1563 mshrQueue.delay(mshr, delay); 1564 return false; 1565 } else { 1566 writeAllocator->reset(); 1567 } 1568 } else { 1569 writeAllocator->resetDelay(mshr->blkAddr); 1570 } 1571 } 1572 1573 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 1574 1575 // either a prefetch that is not present upstream, or a normal 1576 // MSHR request, proceed to get the packet to send downstream 1577 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(), 1578 mshr->isWholeLineWrite()); 1579 1580 mshr->isForward = (pkt == nullptr); 1581 1582 if (mshr->isForward) { 1583 // not a cache block request, but a response is expected 1584 // make copy of current packet to forward, keep current 1585 // copy for response handling 1586 pkt = new Packet(tgt_pkt, false, true); 1587 assert(!pkt->isWrite()); 1588 } 1589 1590 // play it safe and append (rather than set) the sender state, 1591 // as forwarded packets may already have existing state 1592 pkt->pushSenderState(mshr); 1593 1594 if (pkt->isClean() && blk && blk->isDirty()) { 1595 // A cache clean opearation is looking for a dirty block. Mark 1596 // the packet so that the destination xbar can determine that 1597 // there will be a follow-up write packet as well. 1598 pkt->setSatisfied(); 1599 } 1600 1601 if (!memSidePort.sendTimingReq(pkt)) { 1602 // we are awaiting a retry, but we 1603 // delete the packet and will be creating a new packet 1604 // when we get the opportunity 1605 delete pkt; 1606 1607 // note that we have now masked any requestBus and 1608 // schedSendEvent (we will wait for a retry before 1609 // doing anything), and this is so even if we do not 1610 // care about this packet and might override it before 1611 // it gets retried 1612 return true; 1613 } else { 1614 // As part of the call to sendTimingReq the packet is 1615 // forwarded to all neighbouring caches (and any caches 1616 // above them) as a snoop. Thus at this point we know if 1617 // any of the neighbouring caches are responding, and if 1618 // so, we know it is dirty, and we can determine if it is 1619 // being passed as Modified, making our MSHR the ordering 1620 // point 1621 bool pending_modified_resp = !pkt->hasSharers() && 1622 pkt->cacheResponding(); 1623 markInService(mshr, pending_modified_resp); 1624 1625 if (pkt->isClean() && blk && blk->isDirty()) { 1626 // A cache clean opearation is looking for a dirty 1627 // block. If a dirty block is encountered a WriteClean 1628 // will update any copies to the path to the memory 1629 // until the point of reference. 1630 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1631 __func__, pkt->print(), blk->print()); 1632 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 1633 pkt->id); 1634 PacketList writebacks; 1635 writebacks.push_back(wb_pkt); 1636 doWritebacks(writebacks, 0); 1637 } 1638 1639 return false; 1640 } 1641} 1642 1643bool 1644BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 1645{ 1646 assert(wq_entry); 1647 1648 // always a single target for write queue entries 1649 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 1650 1651 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 1652 1653 // forward as is, both for evictions and uncacheable writes 1654 if (!memSidePort.sendTimingReq(tgt_pkt)) { 1655 // note that we have now masked any requestBus and 1656 // schedSendEvent (we will wait for a retry before 1657 // doing anything), and this is so even if we do not 1658 // care about this packet and might override it before 1659 // it gets retried 1660 return true; 1661 } else { 1662 markInService(wq_entry); 1663 return false; 1664 } 1665} 1666 1667void 1668BaseCache::serialize(CheckpointOut &cp) const 1669{ 1670 bool dirty(isDirty()); 1671 1672 if (dirty) { 1673 warn("*** The cache still contains dirty data. ***\n"); 1674 warn(" Make sure to drain the system using the correct flags.\n"); 1675 warn(" This checkpoint will not restore correctly " \ 1676 "and dirty data in the cache will be lost!\n"); 1677 } 1678 1679 // Since we don't checkpoint the data in the cache, any dirty data 1680 // will be lost when restoring from a checkpoint of a system that 1681 // wasn't drained properly. Flag the checkpoint as invalid if the 1682 // cache contains dirty data. 1683 bool bad_checkpoint(dirty); 1684 SERIALIZE_SCALAR(bad_checkpoint); 1685} 1686 1687void 1688BaseCache::unserialize(CheckpointIn &cp) 1689{ 1690 bool bad_checkpoint; 1691 UNSERIALIZE_SCALAR(bad_checkpoint); 1692 if (bad_checkpoint) { 1693 fatal("Restoring from checkpoints with dirty caches is not " 1694 "supported in the classic memory system. Please remove any " 1695 "caches or drain them properly before taking checkpoints.\n"); 1696 } 1697} 1698 1699void 1700BaseCache::regStats() 1701{ 1702 MemObject::regStats(); 1703 1704 using namespace Stats; 1705 1706 // Hit statistics 1707 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1708 MemCmd cmd(access_idx); 1709 const string &cstr = cmd.toString(); 1710 1711 hits[access_idx] 1712 .init(system->maxMasters()) 1713 .name(name() + "." + cstr + "_hits") 1714 .desc("number of " + cstr + " hits") 1715 .flags(total | nozero | nonan) 1716 ; 1717 for (int i = 0; i < system->maxMasters(); i++) { 1718 hits[access_idx].subname(i, system->getMasterName(i)); 1719 } 1720 } 1721 1722// These macros make it easier to sum the right subset of commands and 1723// to change the subset of commands that are considered "demand" vs 1724// "non-demand" 1725#define SUM_DEMAND(s) \ 1726 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \ 1727 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq]) 1728 1729// should writebacks be included here? prior code was inconsistent... 1730#define SUM_NON_DEMAND(s) \ 1731 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq]) 1732 1733 demandHits 1734 .name(name() + ".demand_hits") 1735 .desc("number of demand (read+write) hits") 1736 .flags(total | nozero | nonan) 1737 ; 1738 demandHits = SUM_DEMAND(hits); 1739 for (int i = 0; i < system->maxMasters(); i++) { 1740 demandHits.subname(i, system->getMasterName(i)); 1741 } 1742 1743 overallHits 1744 .name(name() + ".overall_hits") 1745 .desc("number of overall hits") 1746 .flags(total | nozero | nonan) 1747 ; 1748 overallHits = demandHits + SUM_NON_DEMAND(hits); 1749 for (int i = 0; i < system->maxMasters(); i++) { 1750 overallHits.subname(i, system->getMasterName(i)); 1751 } 1752 1753 // Miss statistics 1754 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1755 MemCmd cmd(access_idx); 1756 const string &cstr = cmd.toString(); 1757 1758 misses[access_idx] 1759 .init(system->maxMasters()) 1760 .name(name() + "." + cstr + "_misses") 1761 .desc("number of " + cstr + " misses") 1762 .flags(total | nozero | nonan) 1763 ; 1764 for (int i = 0; i < system->maxMasters(); i++) { 1765 misses[access_idx].subname(i, system->getMasterName(i)); 1766 } 1767 } 1768 1769 demandMisses 1770 .name(name() + ".demand_misses") 1771 .desc("number of demand (read+write) misses") 1772 .flags(total | nozero | nonan) 1773 ; 1774 demandMisses = SUM_DEMAND(misses); 1775 for (int i = 0; i < system->maxMasters(); i++) { 1776 demandMisses.subname(i, system->getMasterName(i)); 1777 } 1778 1779 overallMisses 1780 .name(name() + ".overall_misses") 1781 .desc("number of overall misses") 1782 .flags(total | nozero | nonan) 1783 ; 1784 overallMisses = demandMisses + SUM_NON_DEMAND(misses); 1785 for (int i = 0; i < system->maxMasters(); i++) { 1786 overallMisses.subname(i, system->getMasterName(i)); 1787 } 1788 1789 // Miss latency statistics 1790 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1791 MemCmd cmd(access_idx); 1792 const string &cstr = cmd.toString(); 1793 1794 missLatency[access_idx] 1795 .init(system->maxMasters()) 1796 .name(name() + "." + cstr + "_miss_latency") 1797 .desc("number of " + cstr + " miss cycles") 1798 .flags(total | nozero | nonan) 1799 ; 1800 for (int i = 0; i < system->maxMasters(); i++) { 1801 missLatency[access_idx].subname(i, system->getMasterName(i)); 1802 } 1803 } 1804 1805 demandMissLatency 1806 .name(name() + ".demand_miss_latency") 1807 .desc("number of demand (read+write) miss cycles") 1808 .flags(total | nozero | nonan) 1809 ; 1810 demandMissLatency = SUM_DEMAND(missLatency); 1811 for (int i = 0; i < system->maxMasters(); i++) { 1812 demandMissLatency.subname(i, system->getMasterName(i)); 1813 } 1814 1815 overallMissLatency 1816 .name(name() + ".overall_miss_latency") 1817 .desc("number of overall miss cycles") 1818 .flags(total | nozero | nonan) 1819 ; 1820 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency); 1821 for (int i = 0; i < system->maxMasters(); i++) { 1822 overallMissLatency.subname(i, system->getMasterName(i)); 1823 } 1824 1825 // access formulas 1826 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1827 MemCmd cmd(access_idx); 1828 const string &cstr = cmd.toString(); 1829 1830 accesses[access_idx] 1831 .name(name() + "." + cstr + "_accesses") 1832 .desc("number of " + cstr + " accesses(hits+misses)") 1833 .flags(total | nozero | nonan) 1834 ; 1835 accesses[access_idx] = hits[access_idx] + misses[access_idx]; 1836 1837 for (int i = 0; i < system->maxMasters(); i++) { 1838 accesses[access_idx].subname(i, system->getMasterName(i)); 1839 } 1840 } 1841 1842 demandAccesses 1843 .name(name() + ".demand_accesses") 1844 .desc("number of demand (read+write) accesses") 1845 .flags(total | nozero | nonan) 1846 ; 1847 demandAccesses = demandHits + demandMisses; 1848 for (int i = 0; i < system->maxMasters(); i++) { 1849 demandAccesses.subname(i, system->getMasterName(i)); 1850 } 1851 1852 overallAccesses 1853 .name(name() + ".overall_accesses") 1854 .desc("number of overall (read+write) accesses") 1855 .flags(total | nozero | nonan) 1856 ; 1857 overallAccesses = overallHits + overallMisses; 1858 for (int i = 0; i < system->maxMasters(); i++) { 1859 overallAccesses.subname(i, system->getMasterName(i)); 1860 } 1861 1862 // miss rate formulas 1863 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1864 MemCmd cmd(access_idx); 1865 const string &cstr = cmd.toString(); 1866 1867 missRate[access_idx] 1868 .name(name() + "." + cstr + "_miss_rate") 1869 .desc("miss rate for " + cstr + " accesses") 1870 .flags(total | nozero | nonan) 1871 ; 1872 missRate[access_idx] = misses[access_idx] / accesses[access_idx]; 1873 1874 for (int i = 0; i < system->maxMasters(); i++) { 1875 missRate[access_idx].subname(i, system->getMasterName(i)); 1876 } 1877 } 1878 1879 demandMissRate 1880 .name(name() + ".demand_miss_rate") 1881 .desc("miss rate for demand accesses") 1882 .flags(total | nozero | nonan) 1883 ; 1884 demandMissRate = demandMisses / demandAccesses; 1885 for (int i = 0; i < system->maxMasters(); i++) { 1886 demandMissRate.subname(i, system->getMasterName(i)); 1887 } 1888 1889 overallMissRate 1890 .name(name() + ".overall_miss_rate") 1891 .desc("miss rate for overall accesses") 1892 .flags(total | nozero | nonan) 1893 ; 1894 overallMissRate = overallMisses / overallAccesses; 1895 for (int i = 0; i < system->maxMasters(); i++) { 1896 overallMissRate.subname(i, system->getMasterName(i)); 1897 } 1898 1899 // miss latency formulas 1900 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1901 MemCmd cmd(access_idx); 1902 const string &cstr = cmd.toString(); 1903 1904 avgMissLatency[access_idx] 1905 .name(name() + "." + cstr + "_avg_miss_latency") 1906 .desc("average " + cstr + " miss latency") 1907 .flags(total | nozero | nonan) 1908 ; 1909 avgMissLatency[access_idx] = 1910 missLatency[access_idx] / misses[access_idx]; 1911 1912 for (int i = 0; i < system->maxMasters(); i++) { 1913 avgMissLatency[access_idx].subname(i, system->getMasterName(i)); 1914 } 1915 } 1916 1917 demandAvgMissLatency 1918 .name(name() + ".demand_avg_miss_latency") 1919 .desc("average overall miss latency") 1920 .flags(total | nozero | nonan) 1921 ; 1922 demandAvgMissLatency = demandMissLatency / demandMisses; 1923 for (int i = 0; i < system->maxMasters(); i++) { 1924 demandAvgMissLatency.subname(i, system->getMasterName(i)); 1925 } 1926 1927 overallAvgMissLatency 1928 .name(name() + ".overall_avg_miss_latency") 1929 .desc("average overall miss latency") 1930 .flags(total | nozero | nonan) 1931 ; 1932 overallAvgMissLatency = overallMissLatency / overallMisses; 1933 for (int i = 0; i < system->maxMasters(); i++) { 1934 overallAvgMissLatency.subname(i, system->getMasterName(i)); 1935 } 1936 1937 blocked_cycles.init(NUM_BLOCKED_CAUSES); 1938 blocked_cycles 1939 .name(name() + ".blocked_cycles") 1940 .desc("number of cycles access was blocked") 1941 .subname(Blocked_NoMSHRs, "no_mshrs") 1942 .subname(Blocked_NoTargets, "no_targets") 1943 ; 1944 1945 1946 blocked_causes.init(NUM_BLOCKED_CAUSES); 1947 blocked_causes 1948 .name(name() + ".blocked") 1949 .desc("number of cycles access was blocked") 1950 .subname(Blocked_NoMSHRs, "no_mshrs") 1951 .subname(Blocked_NoTargets, "no_targets") 1952 ; 1953 1954 avg_blocked 1955 .name(name() + ".avg_blocked_cycles") 1956 .desc("average number of cycles each access was blocked") 1957 .subname(Blocked_NoMSHRs, "no_mshrs") 1958 .subname(Blocked_NoTargets, "no_targets") 1959 ; 1960 1961 avg_blocked = blocked_cycles / blocked_causes; 1962 1963 unusedPrefetches 1964 .name(name() + ".unused_prefetches") 1965 .desc("number of HardPF blocks evicted w/o reference") 1966 .flags(nozero) 1967 ; 1968 1969 writebacks 1970 .init(system->maxMasters()) 1971 .name(name() + ".writebacks") 1972 .desc("number of writebacks") 1973 .flags(total | nozero | nonan) 1974 ; 1975 for (int i = 0; i < system->maxMasters(); i++) { 1976 writebacks.subname(i, system->getMasterName(i)); 1977 } 1978 1979 // MSHR statistics 1980 // MSHR hit statistics 1981 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1982 MemCmd cmd(access_idx); 1983 const string &cstr = cmd.toString(); 1984 1985 mshr_hits[access_idx] 1986 .init(system->maxMasters()) 1987 .name(name() + "." + cstr + "_mshr_hits") 1988 .desc("number of " + cstr + " MSHR hits") 1989 .flags(total | nozero | nonan) 1990 ; 1991 for (int i = 0; i < system->maxMasters(); i++) { 1992 mshr_hits[access_idx].subname(i, system->getMasterName(i)); 1993 } 1994 } 1995 1996 demandMshrHits 1997 .name(name() + ".demand_mshr_hits") 1998 .desc("number of demand (read+write) MSHR hits") 1999 .flags(total | nozero | nonan) 2000 ; 2001 demandMshrHits = SUM_DEMAND(mshr_hits); 2002 for (int i = 0; i < system->maxMasters(); i++) { 2003 demandMshrHits.subname(i, system->getMasterName(i)); 2004 } 2005 2006 overallMshrHits 2007 .name(name() + ".overall_mshr_hits") 2008 .desc("number of overall MSHR hits") 2009 .flags(total | nozero | nonan) 2010 ; 2011 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits); 2012 for (int i = 0; i < system->maxMasters(); i++) { 2013 overallMshrHits.subname(i, system->getMasterName(i)); 2014 } 2015 2016 // MSHR miss statistics 2017 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2018 MemCmd cmd(access_idx); 2019 const string &cstr = cmd.toString(); 2020 2021 mshr_misses[access_idx] 2022 .init(system->maxMasters()) 2023 .name(name() + "." + cstr + "_mshr_misses") 2024 .desc("number of " + cstr + " MSHR misses") 2025 .flags(total | nozero | nonan) 2026 ; 2027 for (int i = 0; i < system->maxMasters(); i++) { 2028 mshr_misses[access_idx].subname(i, system->getMasterName(i)); 2029 } 2030 } 2031 2032 demandMshrMisses 2033 .name(name() + ".demand_mshr_misses") 2034 .desc("number of demand (read+write) MSHR misses") 2035 .flags(total | nozero | nonan) 2036 ; 2037 demandMshrMisses = SUM_DEMAND(mshr_misses); 2038 for (int i = 0; i < system->maxMasters(); i++) { 2039 demandMshrMisses.subname(i, system->getMasterName(i)); 2040 } 2041 2042 overallMshrMisses 2043 .name(name() + ".overall_mshr_misses") 2044 .desc("number of overall MSHR misses") 2045 .flags(total | nozero | nonan) 2046 ; 2047 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses); 2048 for (int i = 0; i < system->maxMasters(); i++) { 2049 overallMshrMisses.subname(i, system->getMasterName(i)); 2050 } 2051 2052 // MSHR miss latency statistics 2053 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2054 MemCmd cmd(access_idx); 2055 const string &cstr = cmd.toString(); 2056 2057 mshr_miss_latency[access_idx] 2058 .init(system->maxMasters()) 2059 .name(name() + "." + cstr + "_mshr_miss_latency") 2060 .desc("number of " + cstr + " MSHR miss cycles") 2061 .flags(total | nozero | nonan) 2062 ; 2063 for (int i = 0; i < system->maxMasters(); i++) { 2064 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i)); 2065 } 2066 } 2067 2068 demandMshrMissLatency 2069 .name(name() + ".demand_mshr_miss_latency") 2070 .desc("number of demand (read+write) MSHR miss cycles") 2071 .flags(total | nozero | nonan) 2072 ; 2073 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency); 2074 for (int i = 0; i < system->maxMasters(); i++) { 2075 demandMshrMissLatency.subname(i, system->getMasterName(i)); 2076 } 2077 2078 overallMshrMissLatency 2079 .name(name() + ".overall_mshr_miss_latency") 2080 .desc("number of overall MSHR miss cycles") 2081 .flags(total | nozero | nonan) 2082 ; 2083 overallMshrMissLatency = 2084 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency); 2085 for (int i = 0; i < system->maxMasters(); i++) { 2086 overallMshrMissLatency.subname(i, system->getMasterName(i)); 2087 } 2088 2089 // MSHR uncacheable statistics 2090 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2091 MemCmd cmd(access_idx); 2092 const string &cstr = cmd.toString(); 2093 2094 mshr_uncacheable[access_idx] 2095 .init(system->maxMasters()) 2096 .name(name() + "." + cstr + "_mshr_uncacheable") 2097 .desc("number of " + cstr + " MSHR uncacheable") 2098 .flags(total | nozero | nonan) 2099 ; 2100 for (int i = 0; i < system->maxMasters(); i++) { 2101 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i)); 2102 } 2103 } 2104 2105 overallMshrUncacheable 2106 .name(name() + ".overall_mshr_uncacheable_misses") 2107 .desc("number of overall MSHR uncacheable misses") 2108 .flags(total | nozero | nonan) 2109 ; 2110 overallMshrUncacheable = 2111 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable); 2112 for (int i = 0; i < system->maxMasters(); i++) { 2113 overallMshrUncacheable.subname(i, system->getMasterName(i)); 2114 } 2115 2116 // MSHR miss latency statistics 2117 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2118 MemCmd cmd(access_idx); 2119 const string &cstr = cmd.toString(); 2120 2121 mshr_uncacheable_lat[access_idx] 2122 .init(system->maxMasters()) 2123 .name(name() + "." + cstr + "_mshr_uncacheable_latency") 2124 .desc("number of " + cstr + " MSHR uncacheable cycles") 2125 .flags(total | nozero | nonan) 2126 ; 2127 for (int i = 0; i < system->maxMasters(); i++) { 2128 mshr_uncacheable_lat[access_idx].subname( 2129 i, system->getMasterName(i)); 2130 } 2131 } 2132 2133 overallMshrUncacheableLatency 2134 .name(name() + ".overall_mshr_uncacheable_latency") 2135 .desc("number of overall MSHR uncacheable cycles") 2136 .flags(total | nozero | nonan) 2137 ; 2138 overallMshrUncacheableLatency = 2139 SUM_DEMAND(mshr_uncacheable_lat) + 2140 SUM_NON_DEMAND(mshr_uncacheable_lat); 2141 for (int i = 0; i < system->maxMasters(); i++) { 2142 overallMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2143 } 2144 2145#if 0 2146 // MSHR access formulas 2147 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2148 MemCmd cmd(access_idx); 2149 const string &cstr = cmd.toString(); 2150 2151 mshrAccesses[access_idx] 2152 .name(name() + "." + cstr + "_mshr_accesses") 2153 .desc("number of " + cstr + " mshr accesses(hits+misses)") 2154 .flags(total | nozero | nonan) 2155 ; 2156 mshrAccesses[access_idx] = 2157 mshr_hits[access_idx] + mshr_misses[access_idx] 2158 + mshr_uncacheable[access_idx]; 2159 } 2160 2161 demandMshrAccesses 2162 .name(name() + ".demand_mshr_accesses") 2163 .desc("number of demand (read+write) mshr accesses") 2164 .flags(total | nozero | nonan) 2165 ; 2166 demandMshrAccesses = demandMshrHits + demandMshrMisses; 2167 2168 overallMshrAccesses 2169 .name(name() + ".overall_mshr_accesses") 2170 .desc("number of overall (read+write) mshr accesses") 2171 .flags(total | nozero | nonan) 2172 ; 2173 overallMshrAccesses = overallMshrHits + overallMshrMisses 2174 + overallMshrUncacheable; 2175#endif 2176 2177 // MSHR miss rate formulas 2178 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2179 MemCmd cmd(access_idx); 2180 const string &cstr = cmd.toString(); 2181 2182 mshrMissRate[access_idx] 2183 .name(name() + "." + cstr + "_mshr_miss_rate") 2184 .desc("mshr miss rate for " + cstr + " accesses") 2185 .flags(total | nozero | nonan) 2186 ; 2187 mshrMissRate[access_idx] = 2188 mshr_misses[access_idx] / accesses[access_idx]; 2189 2190 for (int i = 0; i < system->maxMasters(); i++) { 2191 mshrMissRate[access_idx].subname(i, system->getMasterName(i)); 2192 } 2193 } 2194 2195 demandMshrMissRate 2196 .name(name() + ".demand_mshr_miss_rate") 2197 .desc("mshr miss rate for demand accesses") 2198 .flags(total | nozero | nonan) 2199 ; 2200 demandMshrMissRate = demandMshrMisses / demandAccesses; 2201 for (int i = 0; i < system->maxMasters(); i++) { 2202 demandMshrMissRate.subname(i, system->getMasterName(i)); 2203 } 2204 2205 overallMshrMissRate 2206 .name(name() + ".overall_mshr_miss_rate") 2207 .desc("mshr miss rate for overall accesses") 2208 .flags(total | nozero | nonan) 2209 ; 2210 overallMshrMissRate = overallMshrMisses / overallAccesses; 2211 for (int i = 0; i < system->maxMasters(); i++) { 2212 overallMshrMissRate.subname(i, system->getMasterName(i)); 2213 } 2214 2215 // mshrMiss latency formulas 2216 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2217 MemCmd cmd(access_idx); 2218 const string &cstr = cmd.toString(); 2219 2220 avgMshrMissLatency[access_idx] 2221 .name(name() + "." + cstr + "_avg_mshr_miss_latency") 2222 .desc("average " + cstr + " mshr miss latency") 2223 .flags(total | nozero | nonan) 2224 ; 2225 avgMshrMissLatency[access_idx] = 2226 mshr_miss_latency[access_idx] / mshr_misses[access_idx]; 2227 2228 for (int i = 0; i < system->maxMasters(); i++) { 2229 avgMshrMissLatency[access_idx].subname( 2230 i, system->getMasterName(i)); 2231 } 2232 } 2233 2234 demandAvgMshrMissLatency 2235 .name(name() + ".demand_avg_mshr_miss_latency") 2236 .desc("average overall mshr miss latency") 2237 .flags(total | nozero | nonan) 2238 ; 2239 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses; 2240 for (int i = 0; i < system->maxMasters(); i++) { 2241 demandAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2242 } 2243 2244 overallAvgMshrMissLatency 2245 .name(name() + ".overall_avg_mshr_miss_latency") 2246 .desc("average overall mshr miss latency") 2247 .flags(total | nozero | nonan) 2248 ; 2249 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses; 2250 for (int i = 0; i < system->maxMasters(); i++) { 2251 overallAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2252 } 2253 2254 // mshrUncacheable latency formulas 2255 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2256 MemCmd cmd(access_idx); 2257 const string &cstr = cmd.toString(); 2258 2259 avgMshrUncacheableLatency[access_idx] 2260 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency") 2261 .desc("average " + cstr + " mshr uncacheable latency") 2262 .flags(total | nozero | nonan) 2263 ; 2264 avgMshrUncacheableLatency[access_idx] = 2265 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx]; 2266 2267 for (int i = 0; i < system->maxMasters(); i++) { 2268 avgMshrUncacheableLatency[access_idx].subname( 2269 i, system->getMasterName(i)); 2270 } 2271 } 2272 2273 overallAvgMshrUncacheableLatency 2274 .name(name() + ".overall_avg_mshr_uncacheable_latency") 2275 .desc("average overall mshr uncacheable latency") 2276 .flags(total | nozero | nonan) 2277 ; 2278 overallAvgMshrUncacheableLatency = 2279 overallMshrUncacheableLatency / overallMshrUncacheable; 2280 for (int i = 0; i < system->maxMasters(); i++) { 2281 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2282 } 2283 2284 replacements 2285 .name(name() + ".replacements") 2286 .desc("number of replacements") 2287 ; 2288} 2289 2290void 2291BaseCache::regProbePoints() 2292{ 2293 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit"); 2294 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss"); 2295 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill"); 2296} 2297 2298/////////////// 2299// 2300// CpuSidePort 2301// 2302/////////////// 2303bool 2304BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2305{ 2306 // Snoops shouldn't happen when bypassing caches 2307 assert(!cache->system->bypassCaches()); 2308 2309 assert(pkt->isResponse()); 2310 2311 // Express snoop responses from master to slave, e.g., from L1 to L2 2312 cache->recvTimingSnoopResp(pkt); 2313 return true; 2314} 2315 2316 2317bool 2318BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) 2319{ 2320 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) { 2321 // always let express snoop packets through even if blocked 2322 return true; 2323 } else if (blocked || mustSendRetry) { 2324 // either already committed to send a retry, or blocked 2325 mustSendRetry = true; 2326 return false; 2327 } 2328 mustSendRetry = false; 2329 return true; 2330} 2331 2332bool 2333BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2334{ 2335 assert(pkt->isRequest()); 2336 2337 if (cache->system->bypassCaches()) { 2338 // Just forward the packet if caches are disabled. 2339 // @todo This should really enqueue the packet rather 2340 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt); 2341 assert(success); 2342 return true; 2343 } else if (tryTiming(pkt)) { 2344 cache->recvTimingReq(pkt); 2345 return true; 2346 } 2347 return false; 2348} 2349 2350Tick 2351BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) 2352{ 2353 if (cache->system->bypassCaches()) { 2354 // Forward the request if the system is in cache bypass mode. 2355 return cache->memSidePort.sendAtomic(pkt); 2356 } else { 2357 return cache->recvAtomic(pkt); 2358 } 2359} 2360 2361void 2362BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) 2363{ 2364 if (cache->system->bypassCaches()) { 2365 // The cache should be flushed if we are in cache bypass mode, 2366 // so we don't need to check if we need to update anything. 2367 cache->memSidePort.sendFunctional(pkt); 2368 return; 2369 } 2370 2371 // functional request 2372 cache->functionalAccess(pkt, true); 2373} 2374 2375AddrRangeList 2376BaseCache::CpuSidePort::getAddrRanges() const 2377{ 2378 return cache->getAddrRanges(); 2379} 2380 2381 2382BaseCache:: 2383CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, 2384 const std::string &_label) 2385 : CacheSlavePort(_name, _cache, _label), cache(_cache) 2386{ 2387} 2388 2389/////////////// 2390// 2391// MemSidePort 2392// 2393/////////////// 2394bool 2395BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) 2396{ 2397 cache->recvTimingResp(pkt); 2398 return true; 2399} 2400 2401// Express snooping requests to memside port 2402void 2403BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2404{ 2405 // Snoops shouldn't happen when bypassing caches 2406 assert(!cache->system->bypassCaches()); 2407 2408 // handle snooping requests 2409 cache->recvTimingSnoopReq(pkt); 2410} 2411 2412Tick 2413BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2414{ 2415 // Snoops shouldn't happen when bypassing caches 2416 assert(!cache->system->bypassCaches()); 2417 2418 return cache->recvAtomicSnoop(pkt); 2419} 2420 2421void 2422BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2423{ 2424 // Snoops shouldn't happen when bypassing caches 2425 assert(!cache->system->bypassCaches()); 2426 2427 // functional snoop (note that in contrast to atomic we don't have 2428 // a specific functionalSnoop method, as they have the same 2429 // behaviour regardless) 2430 cache->functionalAccess(pkt, false); 2431} 2432 2433void 2434BaseCache::CacheReqPacketQueue::sendDeferredPacket() 2435{ 2436 // sanity check 2437 assert(!waitingOnRetry); 2438 2439 // there should never be any deferred request packets in the 2440 // queue, instead we resly on the cache to provide the packets 2441 // from the MSHR queue or write queue 2442 assert(deferredPacketReadyTime() == MaxTick); 2443 2444 // check for request packets (requests & writebacks) 2445 QueueEntry* entry = cache.getNextQueueEntry(); 2446 2447 if (!entry) { 2448 // can happen if e.g. we attempt a writeback and fail, but 2449 // before the retry, the writeback is eliminated because 2450 // we snoop another cache's ReadEx. 2451 } else { 2452 // let our snoop responses go first if there are responses to 2453 // the same addresses 2454 if (checkConflictingSnoop(entry->blkAddr)) { 2455 return; 2456 } 2457 waitingOnRetry = entry->sendPacket(cache); 2458 } 2459 2460 // if we succeeded and are not waiting for a retry, schedule the 2461 // next send considering when the next queue is ready, note that 2462 // snoop responses have their own packet queue and thus schedule 2463 // their own events 2464 if (!waitingOnRetry) { 2465 schedSendEvent(cache.nextQueueReadyTime()); 2466 } 2467} 2468 2469BaseCache::MemSidePort::MemSidePort(const std::string &_name, 2470 BaseCache *_cache, 2471 const std::string &_label) 2472 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2473 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2474 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache) 2475{ 2476} 2477 2478void 2479WriteAllocator::updateMode(Addr write_addr, unsigned write_size, 2480 Addr blk_addr) 2481{ 2482 // check if we are continuing where the last write ended 2483 if (nextAddr == write_addr) { 2484 delayCtr[blk_addr] = delayThreshold; 2485 // stop if we have already saturated 2486 if (mode != WriteMode::NO_ALLOCATE) { 2487 byteCount += write_size; 2488 // switch to streaming mode if we have passed the lower 2489 // threshold 2490 if (mode == WriteMode::ALLOCATE && 2491 byteCount > coalesceLimit) { 2492 mode = WriteMode::COALESCE; 2493 DPRINTF(Cache, "Switched to write coalescing\n"); 2494 } else if (mode == WriteMode::COALESCE && 2495 byteCount > noAllocateLimit) { 2496 // and continue and switch to non-allocating mode if we 2497 // pass the upper threshold 2498 mode = WriteMode::NO_ALLOCATE; 2499 DPRINTF(Cache, "Switched to write-no-allocate\n"); 2500 } 2501 } 2502 } else { 2503 // we did not see a write matching the previous one, start 2504 // over again 2505 byteCount = write_size; 2506 mode = WriteMode::ALLOCATE; 2507 resetDelay(blk_addr); 2508 } 2509 nextAddr = write_addr + write_size; 2510} 2511 2512WriteAllocator* 2513WriteAllocatorParams::create() 2514{ 2515 return new WriteAllocator(this); 2516} 2517