base.cc revision 13564
1/* 2 * Copyright (c) 2012-2013, 2018 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Erik Hallnor 41 * Nikos Nikoleris 42 */ 43 44/** 45 * @file 46 * Definition of BaseCache functions. 47 */ 48 49#include "mem/cache/base.hh" 50 51#include "base/compiler.hh" 52#include "base/logging.hh" 53#include "debug/Cache.hh" 54#include "debug/CachePort.hh" 55#include "debug/CacheRepl.hh" 56#include "debug/CacheVerbose.hh" 57#include "mem/cache/mshr.hh" 58#include "mem/cache/prefetch/base.hh" 59#include "mem/cache/queue_entry.hh" 60#include "params/BaseCache.hh" 61#include "params/WriteAllocator.hh" 62#include "sim/core.hh" 63 64class BaseMasterPort; 65class BaseSlavePort; 66 67using namespace std; 68 69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, 70 BaseCache *_cache, 71 const std::string &_label) 72 : QueuedSlavePort(_name, _cache, queue), 73 queue(*_cache, *this, true, _label), 74 blocked(false), mustSendRetry(false), 75 sendRetryEvent([this]{ processSendRetry(); }, _name) 76{ 77} 78 79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) 80 : MemObject(p), 81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), 82 memSidePort(p->name + ".mem_side", this, "MemSidePort"), 83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below 84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below 85 tags(p->tags), 86 prefetcher(p->prefetcher), 87 writeAllocator(p->write_allocator), 88 writebackClean(p->writeback_clean), 89 tempBlockWriteback(nullptr), 90 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, 91 name(), false, 92 EventBase::Delayed_Writeback_Pri), 93 blkSize(blk_size), 94 lookupLatency(p->tag_latency), 95 dataLatency(p->data_latency), 96 forwardLatency(p->tag_latency), 97 fillLatency(p->data_latency), 98 responseLatency(p->response_latency), 99 sequentialAccess(p->sequential_access), 100 numTarget(p->tgts_per_mshr), 101 forwardSnoops(true), 102 clusivity(p->clusivity), 103 isReadOnly(p->is_read_only), 104 blocked(0), 105 order(0), 106 noTargetMSHR(nullptr), 107 missCount(p->max_miss_count), 108 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()), 109 system(p->system) 110{ 111 // the MSHR queue has no reserve entries as we check the MSHR 112 // queue on every single allocation, whereas the write queue has 113 // as many reserve entries as we have MSHRs, since every MSHR may 114 // eventually require a writeback, and we do not check the write 115 // buffer before committing to an MSHR 116 117 // forward snoops is overridden in init() once we can query 118 // whether the connected master is actually snooping or not 119 120 tempBlock = new TempCacheBlk(blkSize); 121 122 tags->tagsInit(); 123 if (prefetcher) 124 prefetcher->setCache(this); 125} 126 127BaseCache::~BaseCache() 128{ 129 delete tempBlock; 130} 131 132void 133BaseCache::CacheSlavePort::setBlocked() 134{ 135 assert(!blocked); 136 DPRINTF(CachePort, "Port is blocking new requests\n"); 137 blocked = true; 138 // if we already scheduled a retry in this cycle, but it has not yet 139 // happened, cancel it 140 if (sendRetryEvent.scheduled()) { 141 owner.deschedule(sendRetryEvent); 142 DPRINTF(CachePort, "Port descheduled retry\n"); 143 mustSendRetry = true; 144 } 145} 146 147void 148BaseCache::CacheSlavePort::clearBlocked() 149{ 150 assert(blocked); 151 DPRINTF(CachePort, "Port is accepting new requests\n"); 152 blocked = false; 153 if (mustSendRetry) { 154 // @TODO: need to find a better time (next cycle?) 155 owner.schedule(sendRetryEvent, curTick() + 1); 156 } 157} 158 159void 160BaseCache::CacheSlavePort::processSendRetry() 161{ 162 DPRINTF(CachePort, "Port is sending retry\n"); 163 164 // reset the flag and call retry 165 mustSendRetry = false; 166 sendRetryReq(); 167} 168 169Addr 170BaseCache::regenerateBlkAddr(CacheBlk* blk) 171{ 172 if (blk != tempBlock) { 173 return tags->regenerateBlkAddr(blk); 174 } else { 175 return tempBlock->getAddr(); 176 } 177} 178 179void 180BaseCache::init() 181{ 182 if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) 183 fatal("Cache ports on %s are not connected\n", name()); 184 cpuSidePort.sendRangeChange(); 185 forwardSnoops = cpuSidePort.isSnooping(); 186} 187 188BaseMasterPort & 189BaseCache::getMasterPort(const std::string &if_name, PortID idx) 190{ 191 if (if_name == "mem_side") { 192 return memSidePort; 193 } else { 194 return MemObject::getMasterPort(if_name, idx); 195 } 196} 197 198BaseSlavePort & 199BaseCache::getSlavePort(const std::string &if_name, PortID idx) 200{ 201 if (if_name == "cpu_side") { 202 return cpuSidePort; 203 } else { 204 return MemObject::getSlavePort(if_name, idx); 205 } 206} 207 208bool 209BaseCache::inRange(Addr addr) const 210{ 211 for (const auto& r : addrRanges) { 212 if (r.contains(addr)) { 213 return true; 214 } 215 } 216 return false; 217} 218 219void 220BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) 221{ 222 if (pkt->needsResponse()) { 223 pkt->makeTimingResponse(); 224 // @todo: Make someone pay for this 225 pkt->headerDelay = pkt->payloadDelay = 0; 226 227 // In this case we are considering request_time that takes 228 // into account the delay of the xbar, if any, and just 229 // lat, neglecting responseLatency, modelling hit latency 230 // just as the value of lat overriden by access(), which calls 231 // the calculateAccessLatency() function. 232 cpuSidePort.schedTimingResp(pkt, request_time); 233 } else { 234 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, 235 pkt->print()); 236 237 // queue the packet for deletion, as the sending cache is 238 // still relying on it; if the block is found in access(), 239 // CleanEvict and Writeback messages will be deleted 240 // here as well 241 pendingDelete.reset(pkt); 242 } 243} 244 245void 246BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, 247 Tick forward_time, Tick request_time) 248{ 249 if (writeAllocator && 250 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) { 251 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(), 252 pkt->getBlockAddr(blkSize)); 253 } 254 255 if (mshr) { 256 /// MSHR hit 257 /// @note writebacks will be checked in getNextMSHR() 258 /// for any conflicting requests to the same block 259 260 //@todo remove hw_pf here 261 262 // Coalesce unless it was a software prefetch (see above). 263 if (pkt) { 264 assert(!pkt->isWriteback()); 265 // CleanEvicts corresponding to blocks which have 266 // outstanding requests in MSHRs are simply sunk here 267 if (pkt->cmd == MemCmd::CleanEvict) { 268 pendingDelete.reset(pkt); 269 } else if (pkt->cmd == MemCmd::WriteClean) { 270 // A WriteClean should never coalesce with any 271 // outstanding cache maintenance requests. 272 273 // We use forward_time here because there is an 274 // uncached memory write, forwarded to WriteBuffer. 275 allocateWriteBuffer(pkt, forward_time); 276 } else { 277 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, 278 pkt->print()); 279 280 assert(pkt->req->masterId() < system->maxMasters()); 281 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; 282 283 // We use forward_time here because it is the same 284 // considering new targets. We have multiple 285 // requests for the same address here. It 286 // specifies the latency to allocate an internal 287 // buffer and to schedule an event to the queued 288 // port and also takes into account the additional 289 // delay of the xbar. 290 mshr->allocateTarget(pkt, forward_time, order++, 291 allocOnFill(pkt->cmd)); 292 if (mshr->getNumTargets() == numTarget) { 293 noTargetMSHR = mshr; 294 setBlocked(Blocked_NoTargets); 295 // need to be careful with this... if this mshr isn't 296 // ready yet (i.e. time > curTick()), we don't want to 297 // move it ahead of mshrs that are ready 298 // mshrQueue.moveToFront(mshr); 299 } 300 } 301 } 302 } else { 303 // no MSHR 304 assert(pkt->req->masterId() < system->maxMasters()); 305 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 306 307 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { 308 // We use forward_time here because there is an 309 // writeback or writeclean, forwarded to WriteBuffer. 310 allocateWriteBuffer(pkt, forward_time); 311 } else { 312 if (blk && blk->isValid()) { 313 // If we have a write miss to a valid block, we 314 // need to mark the block non-readable. Otherwise 315 // if we allow reads while there's an outstanding 316 // write miss, the read could return stale data 317 // out of the cache block... a more aggressive 318 // system could detect the overlap (if any) and 319 // forward data out of the MSHRs, but we don't do 320 // that yet. Note that we do need to leave the 321 // block valid so that it stays in the cache, in 322 // case we get an upgrade response (and hence no 323 // new data) when the write miss completes. 324 // As long as CPUs do proper store/load forwarding 325 // internally, and have a sufficiently weak memory 326 // model, this is probably unnecessary, but at some 327 // point it must have seemed like we needed it... 328 assert((pkt->needsWritable() && !blk->isWritable()) || 329 pkt->req->isCacheMaintenance()); 330 blk->status &= ~BlkReadable; 331 } 332 // Here we are using forward_time, modelling the latency of 333 // a miss (outbound) just as forwardLatency, neglecting the 334 // lookupLatency component. 335 allocateMissBuffer(pkt, forward_time); 336 } 337 } 338} 339 340void 341BaseCache::recvTimingReq(PacketPtr pkt) 342{ 343 // anything that is merely forwarded pays for the forward latency and 344 // the delay provided by the crossbar 345 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 346 347 Cycles lat; 348 CacheBlk *blk = nullptr; 349 bool satisfied = false; 350 { 351 PacketList writebacks; 352 // Note that lat is passed by reference here. The function 353 // access() will set the lat value. 354 satisfied = access(pkt, blk, lat, writebacks); 355 356 // copy writebacks to write buffer here to ensure they logically 357 // precede anything happening below 358 doWritebacks(writebacks, forward_time); 359 } 360 361 // Here we charge the headerDelay that takes into account the latencies 362 // of the bus, if the packet comes from it. 363 // The latency charged is just the value set by the access() function. 364 // In case of a hit we are neglecting response latency. 365 // In case of a miss we are neglecting forward latency. 366 Tick request_time = clockEdge(lat) + pkt->headerDelay; 367 // Here we reset the timing of the packet. 368 pkt->headerDelay = pkt->payloadDelay = 0; 369 370 if (satisfied) { 371 // notify before anything else as later handleTimingReqHit might turn 372 // the packet in a response 373 ppHit->notify(pkt); 374 375 if (prefetcher && blk && blk->wasPrefetched()) { 376 blk->status &= ~BlkHWPrefetched; 377 } 378 379 handleTimingReqHit(pkt, blk, request_time); 380 } else { 381 handleTimingReqMiss(pkt, blk, forward_time, request_time); 382 383 ppMiss->notify(pkt); 384 } 385 386 if (prefetcher) { 387 // track time of availability of next prefetch, if any 388 Tick next_pf_time = prefetcher->nextPrefetchReadyTime(); 389 if (next_pf_time != MaxTick) { 390 schedMemSideSendEvent(next_pf_time); 391 } 392 } 393} 394 395void 396BaseCache::handleUncacheableWriteResp(PacketPtr pkt) 397{ 398 Tick completion_time = clockEdge(responseLatency) + 399 pkt->headerDelay + pkt->payloadDelay; 400 401 // Reset the bus additional time as it is now accounted for 402 pkt->headerDelay = pkt->payloadDelay = 0; 403 404 cpuSidePort.schedTimingResp(pkt, completion_time); 405} 406 407void 408BaseCache::recvTimingResp(PacketPtr pkt) 409{ 410 assert(pkt->isResponse()); 411 412 // all header delay should be paid for by the crossbar, unless 413 // this is a prefetch response from above 414 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, 415 "%s saw a non-zero packet delay\n", name()); 416 417 const bool is_error = pkt->isError(); 418 419 if (is_error) { 420 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, 421 pkt->print()); 422 } 423 424 DPRINTF(Cache, "%s: Handling response %s\n", __func__, 425 pkt->print()); 426 427 // if this is a write, we should be looking at an uncacheable 428 // write 429 if (pkt->isWrite()) { 430 assert(pkt->req->isUncacheable()); 431 handleUncacheableWriteResp(pkt); 432 return; 433 } 434 435 // we have dealt with any (uncacheable) writes above, from here on 436 // we know we are dealing with an MSHR due to a miss or a prefetch 437 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); 438 assert(mshr); 439 440 if (mshr == noTargetMSHR) { 441 // we always clear at least one target 442 clearBlocked(Blocked_NoTargets); 443 noTargetMSHR = nullptr; 444 } 445 446 // Initial target is used just for stats 447 MSHR::Target *initial_tgt = mshr->getTarget(); 448 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); 449 Tick miss_latency = curTick() - initial_tgt->recvTime; 450 451 if (pkt->req->isUncacheable()) { 452 assert(pkt->req->masterId() < system->maxMasters()); 453 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += 454 miss_latency; 455 } else { 456 assert(pkt->req->masterId() < system->maxMasters()); 457 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += 458 miss_latency; 459 } 460 461 PacketList writebacks; 462 463 bool is_fill = !mshr->isForward && 464 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp || 465 mshr->wasWholeLineWrite); 466 467 // make sure that if the mshr was due to a whole line write then 468 // the response is an invalidation 469 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate()); 470 471 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); 472 473 if (is_fill && !is_error) { 474 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", 475 pkt->getAddr()); 476 477 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ? 478 writeAllocator->allocate() : mshr->allocOnFill(); 479 blk = handleFill(pkt, blk, writebacks, allocate); 480 assert(blk != nullptr); 481 } 482 483 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { 484 // The block was marked not readable while there was a pending 485 // cache maintenance operation, restore its flag. 486 blk->status |= BlkReadable; 487 488 // This was a cache clean operation (without invalidate) 489 // and we have a copy of the block already. Since there 490 // is no invalidation, we can promote targets that don't 491 // require a writable copy 492 mshr->promoteReadable(); 493 } 494 495 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { 496 // If at this point the referenced block is writable and the 497 // response is not a cache invalidate, we promote targets that 498 // were deferred as we couldn't guarrantee a writable copy 499 mshr->promoteWritable(); 500 } 501 502 serviceMSHRTargets(mshr, pkt, blk); 503 504 if (mshr->promoteDeferredTargets()) { 505 // avoid later read getting stale data while write miss is 506 // outstanding.. see comment in timingAccess() 507 if (blk) { 508 blk->status &= ~BlkReadable; 509 } 510 mshrQueue.markPending(mshr); 511 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); 512 } else { 513 // while we deallocate an mshr from the queue we still have to 514 // check the isFull condition before and after as we might 515 // have been using the reserved entries already 516 const bool was_full = mshrQueue.isFull(); 517 mshrQueue.deallocate(mshr); 518 if (was_full && !mshrQueue.isFull()) { 519 clearBlocked(Blocked_NoMSHRs); 520 } 521 522 // Request the bus for a prefetch if this deallocation freed enough 523 // MSHRs for a prefetch to take place 524 if (prefetcher && mshrQueue.canPrefetch()) { 525 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), 526 clockEdge()); 527 if (next_pf_time != MaxTick) 528 schedMemSideSendEvent(next_pf_time); 529 } 530 } 531 532 // if we used temp block, check to see if its valid and then clear it out 533 if (blk == tempBlock && tempBlock->isValid()) { 534 evictBlock(blk, writebacks); 535 } 536 537 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; 538 // copy writebacks to write buffer 539 doWritebacks(writebacks, forward_time); 540 541 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); 542 delete pkt; 543} 544 545 546Tick 547BaseCache::recvAtomic(PacketPtr pkt) 548{ 549 // should assert here that there are no outstanding MSHRs or 550 // writebacks... that would mean that someone used an atomic 551 // access in timing mode 552 553 // We use lookupLatency here because it is used to specify the latency 554 // to access. 555 Cycles lat = lookupLatency; 556 557 CacheBlk *blk = nullptr; 558 PacketList writebacks; 559 bool satisfied = access(pkt, blk, lat, writebacks); 560 561 if (pkt->isClean() && blk && blk->isDirty()) { 562 // A cache clean opearation is looking for a dirty 563 // block. If a dirty block is encountered a WriteClean 564 // will update any copies to the path to the memory 565 // until the point of reference. 566 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 567 __func__, pkt->print(), blk->print()); 568 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); 569 writebacks.push_back(wb_pkt); 570 pkt->setSatisfied(); 571 } 572 573 // handle writebacks resulting from the access here to ensure they 574 // logically precede anything happening below 575 doWritebacksAtomic(writebacks); 576 assert(writebacks.empty()); 577 578 if (!satisfied) { 579 lat += handleAtomicReqMiss(pkt, blk, writebacks); 580 } 581 582 // Note that we don't invoke the prefetcher at all in atomic mode. 583 // It's not clear how to do it properly, particularly for 584 // prefetchers that aggressively generate prefetch candidates and 585 // rely on bandwidth contention to throttle them; these will tend 586 // to pollute the cache in atomic mode since there is no bandwidth 587 // contention. If we ever do want to enable prefetching in atomic 588 // mode, though, this is the place to do it... see timingAccess() 589 // for an example (though we'd want to issue the prefetch(es) 590 // immediately rather than calling requestMemSideBus() as we do 591 // there). 592 593 // do any writebacks resulting from the response handling 594 doWritebacksAtomic(writebacks); 595 596 // if we used temp block, check to see if its valid and if so 597 // clear it out, but only do so after the call to recvAtomic is 598 // finished so that any downstream observers (such as a snoop 599 // filter), first see the fill, and only then see the eviction 600 if (blk == tempBlock && tempBlock->isValid()) { 601 // the atomic CPU calls recvAtomic for fetch and load/store 602 // sequentuially, and we may already have a tempBlock 603 // writeback from the fetch that we have not yet sent 604 if (tempBlockWriteback) { 605 // if that is the case, write the prevoius one back, and 606 // do not schedule any new event 607 writebackTempBlockAtomic(); 608 } else { 609 // the writeback/clean eviction happens after the call to 610 // recvAtomic has finished (but before any successive 611 // calls), so that the response handling from the fill is 612 // allowed to happen first 613 schedule(writebackTempBlockAtomicEvent, curTick()); 614 } 615 616 tempBlockWriteback = evictBlock(blk); 617 } 618 619 if (pkt->needsResponse()) { 620 pkt->makeAtomicResponse(); 621 } 622 623 return lat * clockPeriod(); 624} 625 626void 627BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) 628{ 629 Addr blk_addr = pkt->getBlockAddr(blkSize); 630 bool is_secure = pkt->isSecure(); 631 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); 632 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); 633 634 pkt->pushLabel(name()); 635 636 CacheBlkPrintWrapper cbpw(blk); 637 638 // Note that just because an L2/L3 has valid data doesn't mean an 639 // L1 doesn't have a more up-to-date modified copy that still 640 // needs to be found. As a result we always update the request if 641 // we have it, but only declare it satisfied if we are the owner. 642 643 // see if we have data at all (owned or otherwise) 644 bool have_data = blk && blk->isValid() 645 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize, 646 blk->data); 647 648 // data we have is dirty if marked as such or if we have an 649 // in-service MSHR that is pending a modified line 650 bool have_dirty = 651 have_data && (blk->isDirty() || 652 (mshr && mshr->inService && mshr->isPendingModified())); 653 654 bool done = have_dirty || 655 cpuSidePort.trySatisfyFunctional(pkt) || 656 mshrQueue.trySatisfyFunctional(pkt, blk_addr) || 657 writeBuffer.trySatisfyFunctional(pkt, blk_addr) || 658 memSidePort.trySatisfyFunctional(pkt); 659 660 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), 661 (blk && blk->isValid()) ? "valid " : "", 662 have_data ? "data " : "", done ? "done " : ""); 663 664 // We're leaving the cache, so pop cache->name() label 665 pkt->popLabel(); 666 667 if (done) { 668 pkt->makeResponse(); 669 } else { 670 // if it came as a request from the CPU side then make sure it 671 // continues towards the memory side 672 if (from_cpu_side) { 673 memSidePort.sendFunctional(pkt); 674 } else if (cpuSidePort.isSnooping()) { 675 // if it came from the memory side, it must be a snoop request 676 // and we should only forward it if we are forwarding snoops 677 cpuSidePort.sendFunctionalSnoop(pkt); 678 } 679 } 680} 681 682 683void 684BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) 685{ 686 assert(pkt->isRequest()); 687 688 uint64_t overwrite_val; 689 bool overwrite_mem; 690 uint64_t condition_val64; 691 uint32_t condition_val32; 692 693 int offset = pkt->getOffset(blkSize); 694 uint8_t *blk_data = blk->data + offset; 695 696 assert(sizeof(uint64_t) >= pkt->getSize()); 697 698 overwrite_mem = true; 699 // keep a copy of our possible write value, and copy what is at the 700 // memory address into the packet 701 pkt->writeData((uint8_t *)&overwrite_val); 702 pkt->setData(blk_data); 703 704 if (pkt->req->isCondSwap()) { 705 if (pkt->getSize() == sizeof(uint64_t)) { 706 condition_val64 = pkt->req->getExtraData(); 707 overwrite_mem = !std::memcmp(&condition_val64, blk_data, 708 sizeof(uint64_t)); 709 } else if (pkt->getSize() == sizeof(uint32_t)) { 710 condition_val32 = (uint32_t)pkt->req->getExtraData(); 711 overwrite_mem = !std::memcmp(&condition_val32, blk_data, 712 sizeof(uint32_t)); 713 } else 714 panic("Invalid size for conditional read/write\n"); 715 } 716 717 if (overwrite_mem) { 718 std::memcpy(blk_data, &overwrite_val, pkt->getSize()); 719 blk->status |= BlkDirty; 720 } 721} 722 723QueueEntry* 724BaseCache::getNextQueueEntry() 725{ 726 // Check both MSHR queue and write buffer for potential requests, 727 // note that null does not mean there is no request, it could 728 // simply be that it is not ready 729 MSHR *miss_mshr = mshrQueue.getNext(); 730 WriteQueueEntry *wq_entry = writeBuffer.getNext(); 731 732 // If we got a write buffer request ready, first priority is a 733 // full write buffer, otherwise we favour the miss requests 734 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { 735 // need to search MSHR queue for conflicting earlier miss. 736 MSHR *conflict_mshr = 737 mshrQueue.findPending(wq_entry->blkAddr, 738 wq_entry->isSecure); 739 740 if (conflict_mshr && conflict_mshr->order < wq_entry->order) { 741 // Service misses in order until conflict is cleared. 742 return conflict_mshr; 743 744 // @todo Note that we ignore the ready time of the conflict here 745 } 746 747 // No conflicts; issue write 748 return wq_entry; 749 } else if (miss_mshr) { 750 // need to check for conflicting earlier writeback 751 WriteQueueEntry *conflict_mshr = 752 writeBuffer.findPending(miss_mshr->blkAddr, 753 miss_mshr->isSecure); 754 if (conflict_mshr) { 755 // not sure why we don't check order here... it was in the 756 // original code but commented out. 757 758 // The only way this happens is if we are 759 // doing a write and we didn't have permissions 760 // then subsequently saw a writeback (owned got evicted) 761 // We need to make sure to perform the writeback first 762 // To preserve the dirty data, then we can issue the write 763 764 // should we return wq_entry here instead? I.e. do we 765 // have to flush writes in order? I don't think so... not 766 // for Alpha anyway. Maybe for x86? 767 return conflict_mshr; 768 769 // @todo Note that we ignore the ready time of the conflict here 770 } 771 772 // No conflicts; issue read 773 return miss_mshr; 774 } 775 776 // fall through... no pending requests. Try a prefetch. 777 assert(!miss_mshr && !wq_entry); 778 if (prefetcher && mshrQueue.canPrefetch()) { 779 // If we have a miss queue slot, we can try a prefetch 780 PacketPtr pkt = prefetcher->getPacket(); 781 if (pkt) { 782 Addr pf_addr = pkt->getBlockAddr(blkSize); 783 if (!tags->findBlock(pf_addr, pkt->isSecure()) && 784 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && 785 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { 786 // Update statistic on number of prefetches issued 787 // (hwpf_mshr_misses) 788 assert(pkt->req->masterId() < system->maxMasters()); 789 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; 790 791 // allocate an MSHR and return it, note 792 // that we send the packet straight away, so do not 793 // schedule the send 794 return allocateMissBuffer(pkt, curTick(), false); 795 } else { 796 // free the request and packet 797 delete pkt; 798 } 799 } 800 } 801 802 return nullptr; 803} 804 805void 806BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) 807{ 808 assert(pkt->isRequest()); 809 810 assert(blk && blk->isValid()); 811 // Occasionally this is not true... if we are a lower-level cache 812 // satisfying a string of Read and ReadEx requests from 813 // upper-level caches, a Read will mark the block as shared but we 814 // can satisfy a following ReadEx anyway since we can rely on the 815 // Read requester(s) to have buffered the ReadEx snoop and to 816 // invalidate their blocks after receiving them. 817 // assert(!pkt->needsWritable() || blk->isWritable()); 818 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); 819 820 // Check RMW operations first since both isRead() and 821 // isWrite() will be true for them 822 if (pkt->cmd == MemCmd::SwapReq) { 823 if (pkt->isAtomicOp()) { 824 // extract data from cache and save it into the data field in 825 // the packet as a return value from this atomic op 826 int offset = tags->extractBlkOffset(pkt->getAddr()); 827 uint8_t *blk_data = blk->data + offset; 828 pkt->setData(blk_data); 829 830 // execute AMO operation 831 (*(pkt->getAtomicOp()))(blk_data); 832 833 // set block status to dirty 834 blk->status |= BlkDirty; 835 } else { 836 cmpAndSwap(blk, pkt); 837 } 838 } else if (pkt->isWrite()) { 839 // we have the block in a writable state and can go ahead, 840 // note that the line may be also be considered writable in 841 // downstream caches along the path to memory, but always 842 // Exclusive, and never Modified 843 assert(blk->isWritable()); 844 // Write or WriteLine at the first cache with block in writable state 845 if (blk->checkWrite(pkt)) { 846 pkt->writeDataToBlock(blk->data, blkSize); 847 } 848 // Always mark the line as dirty (and thus transition to the 849 // Modified state) even if we are a failed StoreCond so we 850 // supply data to any snoops that have appended themselves to 851 // this cache before knowing the store will fail. 852 blk->status |= BlkDirty; 853 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); 854 } else if (pkt->isRead()) { 855 if (pkt->isLLSC()) { 856 blk->trackLoadLocked(pkt); 857 } 858 859 // all read responses have a data payload 860 assert(pkt->hasRespData()); 861 pkt->setDataFromBlock(blk->data, blkSize); 862 } else if (pkt->isUpgrade()) { 863 // sanity check 864 assert(!pkt->hasSharers()); 865 866 if (blk->isDirty()) { 867 // we were in the Owned state, and a cache above us that 868 // has the line in Shared state needs to be made aware 869 // that the data it already has is in fact dirty 870 pkt->setCacheResponding(); 871 blk->status &= ~BlkDirty; 872 } 873 } else if (pkt->isClean()) { 874 blk->status &= ~BlkDirty; 875 } else { 876 assert(pkt->isInvalidate()); 877 invalidateBlock(blk); 878 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, 879 pkt->print()); 880 } 881} 882 883///////////////////////////////////////////////////// 884// 885// Access path: requests coming in from the CPU side 886// 887///////////////////////////////////////////////////// 888Cycles 889BaseCache::calculateAccessLatency(const CacheBlk* blk, 890 const Cycles lookup_lat) const 891{ 892 Cycles lat(lookup_lat); 893 894 if (blk != nullptr) { 895 // First access tags, then data 896 if (sequentialAccess) { 897 lat += dataLatency; 898 // Latency is dictated by the slowest of tag and data latencies 899 } else { 900 lat = std::max(lookup_lat, dataLatency); 901 } 902 903 // Check if the block to be accessed is available. If not, apply the 904 // access latency on top of when the block is ready to be accessed. 905 const Tick when_ready = blk->getWhenReady(); 906 if (when_ready > curTick() && 907 ticksToCycles(when_ready - curTick()) > lat) { 908 lat += ticksToCycles(when_ready - curTick()); 909 } 910 } 911 912 return lat; 913} 914 915bool 916BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, 917 PacketList &writebacks) 918{ 919 // sanity check 920 assert(pkt->isRequest()); 921 922 chatty_assert(!(isReadOnly && pkt->isWrite()), 923 "Should never see a write in a read-only cache %s\n", 924 name()); 925 926 // Access block in the tags 927 Cycles tag_latency(0); 928 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency); 929 930 // Calculate access latency 931 lat = calculateAccessLatency(blk, tag_latency); 932 933 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), 934 blk ? "hit " + blk->print() : "miss"); 935 936 if (pkt->req->isCacheMaintenance()) { 937 // A cache maintenance operation is always forwarded to the 938 // memory below even if the block is found in dirty state. 939 940 // We defer any changes to the state of the block until we 941 // create and mark as in service the mshr for the downstream 942 // packet. 943 return false; 944 } 945 946 if (pkt->isEviction()) { 947 // We check for presence of block in above caches before issuing 948 // Writeback or CleanEvict to write buffer. Therefore the only 949 // possible cases can be of a CleanEvict packet coming from above 950 // encountering a Writeback generated in this cache peer cache and 951 // waiting in the write buffer. Cases of upper level peer caches 952 // generating CleanEvict and Writeback or simply CleanEvict and 953 // CleanEvict almost simultaneously will be caught by snoops sent out 954 // by crossbar. 955 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), 956 pkt->isSecure()); 957 if (wb_entry) { 958 assert(wb_entry->getNumTargets() == 1); 959 PacketPtr wbPkt = wb_entry->getTarget()->pkt; 960 assert(wbPkt->isWriteback()); 961 962 if (pkt->isCleanEviction()) { 963 // The CleanEvict and WritebackClean snoops into other 964 // peer caches of the same level while traversing the 965 // crossbar. If a copy of the block is found, the 966 // packet is deleted in the crossbar. Hence, none of 967 // the other upper level caches connected to this 968 // cache have the block, so we can clear the 969 // BLOCK_CACHED flag in the Writeback if set and 970 // discard the CleanEvict by returning true. 971 wbPkt->clearBlockCached(); 972 return true; 973 } else { 974 assert(pkt->cmd == MemCmd::WritebackDirty); 975 // Dirty writeback from above trumps our clean 976 // writeback... discard here 977 // Note: markInService will remove entry from writeback buffer. 978 markInService(wb_entry); 979 delete wbPkt; 980 } 981 } 982 } 983 984 // Writeback handling is special case. We can write the block into 985 // the cache without having a writeable copy (or any copy at all). 986 if (pkt->isWriteback()) { 987 assert(blkSize == pkt->getSize()); 988 989 // we could get a clean writeback while we are having 990 // outstanding accesses to a block, do the simple thing for 991 // now and drop the clean writeback so that we do not upset 992 // any ordering/decisions about ownership already taken 993 if (pkt->cmd == MemCmd::WritebackClean && 994 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { 995 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " 996 "dropping\n", pkt->getAddr()); 997 return true; 998 } 999 1000 if (!blk) { 1001 // need to do a replacement 1002 blk = allocateBlock(pkt, writebacks); 1003 if (!blk) { 1004 // no replaceable block available: give up, fwd to next level. 1005 incMissCount(pkt); 1006 return false; 1007 } 1008 1009 blk->status |= BlkReadable; 1010 } 1011 // only mark the block dirty if we got a writeback command, 1012 // and leave it as is for a clean writeback 1013 if (pkt->cmd == MemCmd::WritebackDirty) { 1014 // TODO: the coherent cache can assert(!blk->isDirty()); 1015 blk->status |= BlkDirty; 1016 } 1017 // if the packet does not have sharers, it is passing 1018 // writable, and we got the writeback in Modified or Exclusive 1019 // state, if not we are in the Owned or Shared state 1020 if (!pkt->hasSharers()) { 1021 blk->status |= BlkWritable; 1022 } 1023 // nothing else to do; writeback doesn't expect response 1024 assert(!pkt->needsResponse()); 1025 pkt->writeDataToBlock(blk->data, blkSize); 1026 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1027 incHitCount(pkt); 1028 // populate the time when the block will be ready to access. 1029 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay + 1030 pkt->payloadDelay); 1031 return true; 1032 } else if (pkt->cmd == MemCmd::CleanEvict) { 1033 if (blk) { 1034 // Found the block in the tags, need to stop CleanEvict from 1035 // propagating further down the hierarchy. Returning true will 1036 // treat the CleanEvict like a satisfied write request and delete 1037 // it. 1038 return true; 1039 } 1040 // We didn't find the block here, propagate the CleanEvict further 1041 // down the memory hierarchy. Returning false will treat the CleanEvict 1042 // like a Writeback which could not find a replaceable block so has to 1043 // go to next level. 1044 return false; 1045 } else if (pkt->cmd == MemCmd::WriteClean) { 1046 // WriteClean handling is a special case. We can allocate a 1047 // block directly if it doesn't exist and we can update the 1048 // block immediately. The WriteClean transfers the ownership 1049 // of the block as well. 1050 assert(blkSize == pkt->getSize()); 1051 1052 if (!blk) { 1053 if (pkt->writeThrough()) { 1054 // if this is a write through packet, we don't try to 1055 // allocate if the block is not present 1056 return false; 1057 } else { 1058 // a writeback that misses needs to allocate a new block 1059 blk = allocateBlock(pkt, writebacks); 1060 if (!blk) { 1061 // no replaceable block available: give up, fwd to 1062 // next level. 1063 incMissCount(pkt); 1064 return false; 1065 } 1066 1067 blk->status |= BlkReadable; 1068 } 1069 } 1070 1071 // at this point either this is a writeback or a write-through 1072 // write clean operation and the block is already in this 1073 // cache, we need to update the data and the block flags 1074 assert(blk); 1075 // TODO: the coherent cache can assert(!blk->isDirty()); 1076 if (!pkt->writeThrough()) { 1077 blk->status |= BlkDirty; 1078 } 1079 // nothing else to do; writeback doesn't expect response 1080 assert(!pkt->needsResponse()); 1081 pkt->writeDataToBlock(blk->data, blkSize); 1082 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); 1083 1084 incHitCount(pkt); 1085 // populate the time when the block will be ready to access. 1086 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay + 1087 pkt->payloadDelay); 1088 // if this a write-through packet it will be sent to cache 1089 // below 1090 return !pkt->writeThrough(); 1091 } else if (blk && (pkt->needsWritable() ? blk->isWritable() : 1092 blk->isReadable())) { 1093 // OK to satisfy access 1094 incHitCount(pkt); 1095 satisfyRequest(pkt, blk); 1096 maintainClusivity(pkt->fromCache(), blk); 1097 1098 return true; 1099 } 1100 1101 // Can't satisfy access normally... either no block (blk == nullptr) 1102 // or have block but need writable 1103 1104 incMissCount(pkt); 1105 1106 if (!blk && pkt->isLLSC() && pkt->isWrite()) { 1107 // complete miss on store conditional... just give up now 1108 pkt->req->setExtraData(0); 1109 return true; 1110 } 1111 1112 return false; 1113} 1114 1115void 1116BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) 1117{ 1118 if (from_cache && blk && blk->isValid() && !blk->isDirty() && 1119 clusivity == Enums::mostly_excl) { 1120 // if we have responded to a cache, and our block is still 1121 // valid, but not dirty, and this cache is mostly exclusive 1122 // with respect to the cache above, drop the block 1123 invalidateBlock(blk); 1124 } 1125} 1126 1127CacheBlk* 1128BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, 1129 bool allocate) 1130{ 1131 assert(pkt->isResponse()); 1132 Addr addr = pkt->getAddr(); 1133 bool is_secure = pkt->isSecure(); 1134#if TRACING_ON 1135 CacheBlk::State old_state = blk ? blk->status : 0; 1136#endif 1137 1138 // When handling a fill, we should have no writes to this line. 1139 assert(addr == pkt->getBlockAddr(blkSize)); 1140 assert(!writeBuffer.findMatch(addr, is_secure)); 1141 1142 if (!blk) { 1143 // better have read new data... 1144 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp); 1145 1146 // need to do a replacement if allocating, otherwise we stick 1147 // with the temporary storage 1148 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr; 1149 1150 if (!blk) { 1151 // No replaceable block or a mostly exclusive 1152 // cache... just use temporary storage to complete the 1153 // current request and then get rid of it 1154 blk = tempBlock; 1155 tempBlock->insert(addr, is_secure); 1156 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, 1157 is_secure ? "s" : "ns"); 1158 } 1159 } else { 1160 // existing block... probably an upgrade 1161 // don't clear block status... if block is already dirty we 1162 // don't want to lose that 1163 } 1164 1165 // Block is guaranteed to be valid at this point 1166 assert(blk->isValid()); 1167 assert(blk->isSecure() == is_secure); 1168 assert(regenerateBlkAddr(blk) == addr); 1169 1170 blk->status |= BlkReadable; 1171 1172 // sanity check for whole-line writes, which should always be 1173 // marked as writable as part of the fill, and then later marked 1174 // dirty as part of satisfyRequest 1175 if (pkt->cmd == MemCmd::InvalidateResp) { 1176 assert(!pkt->hasSharers()); 1177 } 1178 1179 // here we deal with setting the appropriate state of the line, 1180 // and we start by looking at the hasSharers flag, and ignore the 1181 // cacheResponding flag (normally signalling dirty data) if the 1182 // packet has sharers, thus the line is never allocated as Owned 1183 // (dirty but not writable), and always ends up being either 1184 // Shared, Exclusive or Modified, see Packet::setCacheResponding 1185 // for more details 1186 if (!pkt->hasSharers()) { 1187 // we could get a writable line from memory (rather than a 1188 // cache) even in a read-only cache, note that we set this bit 1189 // even for a read-only cache, possibly revisit this decision 1190 blk->status |= BlkWritable; 1191 1192 // check if we got this via cache-to-cache transfer (i.e., from a 1193 // cache that had the block in Modified or Owned state) 1194 if (pkt->cacheResponding()) { 1195 // we got the block in Modified state, and invalidated the 1196 // owners copy 1197 blk->status |= BlkDirty; 1198 1199 chatty_assert(!isReadOnly, "Should never see dirty snoop response " 1200 "in read-only cache %s\n", name()); 1201 } 1202 } 1203 1204 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", 1205 addr, is_secure ? "s" : "ns", old_state, blk->print()); 1206 1207 // if we got new data, copy it in (checking for a read response 1208 // and a response that has data is the same in the end) 1209 if (pkt->isRead()) { 1210 // sanity checks 1211 assert(pkt->hasData()); 1212 assert(pkt->getSize() == blkSize); 1213 1214 pkt->writeDataToBlock(blk->data, blkSize); 1215 } 1216 // We pay for fillLatency here. 1217 blk->setWhenReady(clockEdge(fillLatency) + pkt->payloadDelay); 1218 1219 return blk; 1220} 1221 1222CacheBlk* 1223BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks) 1224{ 1225 // Get address 1226 const Addr addr = pkt->getAddr(); 1227 1228 // Get secure bit 1229 const bool is_secure = pkt->isSecure(); 1230 1231 // Find replacement victim 1232 std::vector<CacheBlk*> evict_blks; 1233 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks); 1234 1235 // It is valid to return nullptr if there is no victim 1236 if (!victim) 1237 return nullptr; 1238 1239 // Print victim block's information 1240 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print()); 1241 1242 // Check for transient state allocations. If any of the entries listed 1243 // for eviction has a transient state, the allocation fails 1244 for (const auto& blk : evict_blks) { 1245 if (blk->isValid()) { 1246 Addr repl_addr = regenerateBlkAddr(blk); 1247 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); 1248 if (repl_mshr) { 1249 // must be an outstanding upgrade or clean request 1250 // on a block we're about to replace... 1251 assert((!blk->isWritable() && repl_mshr->needsWritable()) || 1252 repl_mshr->isCleaning()); 1253 1254 // too hard to replace block with transient state 1255 // allocation failed, block not inserted 1256 return nullptr; 1257 } 1258 } 1259 } 1260 1261 // The victim will be replaced by a new entry, so increase the replacement 1262 // counter if a valid block is being replaced 1263 if (victim->isValid()) { 1264 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " 1265 "(%s): %s\n", regenerateBlkAddr(victim), 1266 victim->isSecure() ? "s" : "ns", 1267 addr, is_secure ? "s" : "ns", 1268 victim->isDirty() ? "writeback" : "clean"); 1269 1270 replacements++; 1271 } 1272 1273 // Evict valid blocks associated to this victim block 1274 for (const auto& blk : evict_blks) { 1275 if (blk->isValid()) { 1276 if (blk->wasPrefetched()) { 1277 unusedPrefetches++; 1278 } 1279 1280 evictBlock(blk, writebacks); 1281 } 1282 } 1283 1284 // Insert new block at victimized entry 1285 tags->insertBlock(addr, is_secure, pkt->req->masterId(), 1286 pkt->req->taskId(), victim); 1287 1288 return victim; 1289} 1290 1291void 1292BaseCache::invalidateBlock(CacheBlk *blk) 1293{ 1294 // If handling a block present in the Tags, let it do its invalidation 1295 // process, which will update stats and invalidate the block itself 1296 if (blk != tempBlock) { 1297 tags->invalidate(blk); 1298 } else { 1299 tempBlock->invalidate(); 1300 } 1301} 1302 1303void 1304BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks) 1305{ 1306 PacketPtr pkt = evictBlock(blk); 1307 if (pkt) { 1308 writebacks.push_back(pkt); 1309 } 1310} 1311 1312PacketPtr 1313BaseCache::writebackBlk(CacheBlk *blk) 1314{ 1315 chatty_assert(!isReadOnly || writebackClean, 1316 "Writeback from read-only cache"); 1317 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); 1318 1319 writebacks[Request::wbMasterId]++; 1320 1321 RequestPtr req = std::make_shared<Request>( 1322 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1323 1324 if (blk->isSecure()) 1325 req->setFlags(Request::SECURE); 1326 1327 req->taskId(blk->task_id); 1328 1329 PacketPtr pkt = 1330 new Packet(req, blk->isDirty() ? 1331 MemCmd::WritebackDirty : MemCmd::WritebackClean); 1332 1333 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", 1334 pkt->print(), blk->isWritable(), blk->isDirty()); 1335 1336 if (blk->isWritable()) { 1337 // not asserting shared means we pass the block in modified 1338 // state, mark our own block non-writeable 1339 blk->status &= ~BlkWritable; 1340 } else { 1341 // we are in the Owned state, tell the receiver 1342 pkt->setHasSharers(); 1343 } 1344 1345 // make sure the block is not marked dirty 1346 blk->status &= ~BlkDirty; 1347 1348 pkt->allocate(); 1349 pkt->setDataFromBlock(blk->data, blkSize); 1350 1351 return pkt; 1352} 1353 1354PacketPtr 1355BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) 1356{ 1357 RequestPtr req = std::make_shared<Request>( 1358 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId); 1359 1360 if (blk->isSecure()) { 1361 req->setFlags(Request::SECURE); 1362 } 1363 req->taskId(blk->task_id); 1364 1365 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); 1366 1367 if (dest) { 1368 req->setFlags(dest); 1369 pkt->setWriteThrough(); 1370 } 1371 1372 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), 1373 blk->isWritable(), blk->isDirty()); 1374 1375 if (blk->isWritable()) { 1376 // not asserting shared means we pass the block in modified 1377 // state, mark our own block non-writeable 1378 blk->status &= ~BlkWritable; 1379 } else { 1380 // we are in the Owned state, tell the receiver 1381 pkt->setHasSharers(); 1382 } 1383 1384 // make sure the block is not marked dirty 1385 blk->status &= ~BlkDirty; 1386 1387 pkt->allocate(); 1388 pkt->setDataFromBlock(blk->data, blkSize); 1389 1390 return pkt; 1391} 1392 1393 1394void 1395BaseCache::memWriteback() 1396{ 1397 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); }); 1398} 1399 1400void 1401BaseCache::memInvalidate() 1402{ 1403 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); }); 1404} 1405 1406bool 1407BaseCache::isDirty() const 1408{ 1409 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); }); 1410} 1411 1412bool 1413BaseCache::coalesce() const 1414{ 1415 return writeAllocator && writeAllocator->coalesce(); 1416} 1417 1418void 1419BaseCache::writebackVisitor(CacheBlk &blk) 1420{ 1421 if (blk.isDirty()) { 1422 assert(blk.isValid()); 1423 1424 RequestPtr request = std::make_shared<Request>( 1425 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId); 1426 1427 request->taskId(blk.task_id); 1428 if (blk.isSecure()) { 1429 request->setFlags(Request::SECURE); 1430 } 1431 1432 Packet packet(request, MemCmd::WriteReq); 1433 packet.dataStatic(blk.data); 1434 1435 memSidePort.sendFunctional(&packet); 1436 1437 blk.status &= ~BlkDirty; 1438 } 1439} 1440 1441void 1442BaseCache::invalidateVisitor(CacheBlk &blk) 1443{ 1444 if (blk.isDirty()) 1445 warn_once("Invalidating dirty cache lines. " \ 1446 "Expect things to break.\n"); 1447 1448 if (blk.isValid()) { 1449 assert(!blk.isDirty()); 1450 invalidateBlock(&blk); 1451 } 1452} 1453 1454Tick 1455BaseCache::nextQueueReadyTime() const 1456{ 1457 Tick nextReady = std::min(mshrQueue.nextReadyTime(), 1458 writeBuffer.nextReadyTime()); 1459 1460 // Don't signal prefetch ready time if no MSHRs available 1461 // Will signal once enoguh MSHRs are deallocated 1462 if (prefetcher && mshrQueue.canPrefetch()) { 1463 nextReady = std::min(nextReady, 1464 prefetcher->nextPrefetchReadyTime()); 1465 } 1466 1467 return nextReady; 1468} 1469 1470 1471bool 1472BaseCache::sendMSHRQueuePacket(MSHR* mshr) 1473{ 1474 assert(mshr); 1475 1476 // use request from 1st target 1477 PacketPtr tgt_pkt = mshr->getTarget()->pkt; 1478 1479 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); 1480 1481 // if the cache is in write coalescing mode or (additionally) in 1482 // no allocation mode, and we have a write packet with an MSHR 1483 // that is not a whole-line write (due to incompatible flags etc), 1484 // then reset the write mode 1485 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) { 1486 if (!mshr->isWholeLineWrite()) { 1487 // if we are currently write coalescing, hold on the 1488 // MSHR as many cycles extra as we need to completely 1489 // write a cache line 1490 if (writeAllocator->delay(mshr->blkAddr)) { 1491 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod(); 1492 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow " 1493 "for write coalescing\n", tgt_pkt->print(), delay); 1494 mshrQueue.delay(mshr, delay); 1495 return false; 1496 } else { 1497 writeAllocator->reset(); 1498 } 1499 } else { 1500 writeAllocator->resetDelay(mshr->blkAddr); 1501 } 1502 } 1503 1504 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); 1505 1506 // either a prefetch that is not present upstream, or a normal 1507 // MSHR request, proceed to get the packet to send downstream 1508 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(), 1509 mshr->isWholeLineWrite()); 1510 1511 mshr->isForward = (pkt == nullptr); 1512 1513 if (mshr->isForward) { 1514 // not a cache block request, but a response is expected 1515 // make copy of current packet to forward, keep current 1516 // copy for response handling 1517 pkt = new Packet(tgt_pkt, false, true); 1518 assert(!pkt->isWrite()); 1519 } 1520 1521 // play it safe and append (rather than set) the sender state, 1522 // as forwarded packets may already have existing state 1523 pkt->pushSenderState(mshr); 1524 1525 if (pkt->isClean() && blk && blk->isDirty()) { 1526 // A cache clean opearation is looking for a dirty block. Mark 1527 // the packet so that the destination xbar can determine that 1528 // there will be a follow-up write packet as well. 1529 pkt->setSatisfied(); 1530 } 1531 1532 if (!memSidePort.sendTimingReq(pkt)) { 1533 // we are awaiting a retry, but we 1534 // delete the packet and will be creating a new packet 1535 // when we get the opportunity 1536 delete pkt; 1537 1538 // note that we have now masked any requestBus and 1539 // schedSendEvent (we will wait for a retry before 1540 // doing anything), and this is so even if we do not 1541 // care about this packet and might override it before 1542 // it gets retried 1543 return true; 1544 } else { 1545 // As part of the call to sendTimingReq the packet is 1546 // forwarded to all neighbouring caches (and any caches 1547 // above them) as a snoop. Thus at this point we know if 1548 // any of the neighbouring caches are responding, and if 1549 // so, we know it is dirty, and we can determine if it is 1550 // being passed as Modified, making our MSHR the ordering 1551 // point 1552 bool pending_modified_resp = !pkt->hasSharers() && 1553 pkt->cacheResponding(); 1554 markInService(mshr, pending_modified_resp); 1555 1556 if (pkt->isClean() && blk && blk->isDirty()) { 1557 // A cache clean opearation is looking for a dirty 1558 // block. If a dirty block is encountered a WriteClean 1559 // will update any copies to the path to the memory 1560 // until the point of reference. 1561 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", 1562 __func__, pkt->print(), blk->print()); 1563 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), 1564 pkt->id); 1565 PacketList writebacks; 1566 writebacks.push_back(wb_pkt); 1567 doWritebacks(writebacks, 0); 1568 } 1569 1570 return false; 1571 } 1572} 1573 1574bool 1575BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) 1576{ 1577 assert(wq_entry); 1578 1579 // always a single target for write queue entries 1580 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; 1581 1582 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); 1583 1584 // forward as is, both for evictions and uncacheable writes 1585 if (!memSidePort.sendTimingReq(tgt_pkt)) { 1586 // note that we have now masked any requestBus and 1587 // schedSendEvent (we will wait for a retry before 1588 // doing anything), and this is so even if we do not 1589 // care about this packet and might override it before 1590 // it gets retried 1591 return true; 1592 } else { 1593 markInService(wq_entry); 1594 return false; 1595 } 1596} 1597 1598void 1599BaseCache::serialize(CheckpointOut &cp) const 1600{ 1601 bool dirty(isDirty()); 1602 1603 if (dirty) { 1604 warn("*** The cache still contains dirty data. ***\n"); 1605 warn(" Make sure to drain the system using the correct flags.\n"); 1606 warn(" This checkpoint will not restore correctly " \ 1607 "and dirty data in the cache will be lost!\n"); 1608 } 1609 1610 // Since we don't checkpoint the data in the cache, any dirty data 1611 // will be lost when restoring from a checkpoint of a system that 1612 // wasn't drained properly. Flag the checkpoint as invalid if the 1613 // cache contains dirty data. 1614 bool bad_checkpoint(dirty); 1615 SERIALIZE_SCALAR(bad_checkpoint); 1616} 1617 1618void 1619BaseCache::unserialize(CheckpointIn &cp) 1620{ 1621 bool bad_checkpoint; 1622 UNSERIALIZE_SCALAR(bad_checkpoint); 1623 if (bad_checkpoint) { 1624 fatal("Restoring from checkpoints with dirty caches is not " 1625 "supported in the classic memory system. Please remove any " 1626 "caches or drain them properly before taking checkpoints.\n"); 1627 } 1628} 1629 1630void 1631BaseCache::regStats() 1632{ 1633 MemObject::regStats(); 1634 1635 using namespace Stats; 1636 1637 // Hit statistics 1638 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1639 MemCmd cmd(access_idx); 1640 const string &cstr = cmd.toString(); 1641 1642 hits[access_idx] 1643 .init(system->maxMasters()) 1644 .name(name() + "." + cstr + "_hits") 1645 .desc("number of " + cstr + " hits") 1646 .flags(total | nozero | nonan) 1647 ; 1648 for (int i = 0; i < system->maxMasters(); i++) { 1649 hits[access_idx].subname(i, system->getMasterName(i)); 1650 } 1651 } 1652 1653// These macros make it easier to sum the right subset of commands and 1654// to change the subset of commands that are considered "demand" vs 1655// "non-demand" 1656#define SUM_DEMAND(s) \ 1657 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \ 1658 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq]) 1659 1660// should writebacks be included here? prior code was inconsistent... 1661#define SUM_NON_DEMAND(s) \ 1662 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq]) 1663 1664 demandHits 1665 .name(name() + ".demand_hits") 1666 .desc("number of demand (read+write) hits") 1667 .flags(total | nozero | nonan) 1668 ; 1669 demandHits = SUM_DEMAND(hits); 1670 for (int i = 0; i < system->maxMasters(); i++) { 1671 demandHits.subname(i, system->getMasterName(i)); 1672 } 1673 1674 overallHits 1675 .name(name() + ".overall_hits") 1676 .desc("number of overall hits") 1677 .flags(total | nozero | nonan) 1678 ; 1679 overallHits = demandHits + SUM_NON_DEMAND(hits); 1680 for (int i = 0; i < system->maxMasters(); i++) { 1681 overallHits.subname(i, system->getMasterName(i)); 1682 } 1683 1684 // Miss statistics 1685 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1686 MemCmd cmd(access_idx); 1687 const string &cstr = cmd.toString(); 1688 1689 misses[access_idx] 1690 .init(system->maxMasters()) 1691 .name(name() + "." + cstr + "_misses") 1692 .desc("number of " + cstr + " misses") 1693 .flags(total | nozero | nonan) 1694 ; 1695 for (int i = 0; i < system->maxMasters(); i++) { 1696 misses[access_idx].subname(i, system->getMasterName(i)); 1697 } 1698 } 1699 1700 demandMisses 1701 .name(name() + ".demand_misses") 1702 .desc("number of demand (read+write) misses") 1703 .flags(total | nozero | nonan) 1704 ; 1705 demandMisses = SUM_DEMAND(misses); 1706 for (int i = 0; i < system->maxMasters(); i++) { 1707 demandMisses.subname(i, system->getMasterName(i)); 1708 } 1709 1710 overallMisses 1711 .name(name() + ".overall_misses") 1712 .desc("number of overall misses") 1713 .flags(total | nozero | nonan) 1714 ; 1715 overallMisses = demandMisses + SUM_NON_DEMAND(misses); 1716 for (int i = 0; i < system->maxMasters(); i++) { 1717 overallMisses.subname(i, system->getMasterName(i)); 1718 } 1719 1720 // Miss latency statistics 1721 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1722 MemCmd cmd(access_idx); 1723 const string &cstr = cmd.toString(); 1724 1725 missLatency[access_idx] 1726 .init(system->maxMasters()) 1727 .name(name() + "." + cstr + "_miss_latency") 1728 .desc("number of " + cstr + " miss cycles") 1729 .flags(total | nozero | nonan) 1730 ; 1731 for (int i = 0; i < system->maxMasters(); i++) { 1732 missLatency[access_idx].subname(i, system->getMasterName(i)); 1733 } 1734 } 1735 1736 demandMissLatency 1737 .name(name() + ".demand_miss_latency") 1738 .desc("number of demand (read+write) miss cycles") 1739 .flags(total | nozero | nonan) 1740 ; 1741 demandMissLatency = SUM_DEMAND(missLatency); 1742 for (int i = 0; i < system->maxMasters(); i++) { 1743 demandMissLatency.subname(i, system->getMasterName(i)); 1744 } 1745 1746 overallMissLatency 1747 .name(name() + ".overall_miss_latency") 1748 .desc("number of overall miss cycles") 1749 .flags(total | nozero | nonan) 1750 ; 1751 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency); 1752 for (int i = 0; i < system->maxMasters(); i++) { 1753 overallMissLatency.subname(i, system->getMasterName(i)); 1754 } 1755 1756 // access formulas 1757 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1758 MemCmd cmd(access_idx); 1759 const string &cstr = cmd.toString(); 1760 1761 accesses[access_idx] 1762 .name(name() + "." + cstr + "_accesses") 1763 .desc("number of " + cstr + " accesses(hits+misses)") 1764 .flags(total | nozero | nonan) 1765 ; 1766 accesses[access_idx] = hits[access_idx] + misses[access_idx]; 1767 1768 for (int i = 0; i < system->maxMasters(); i++) { 1769 accesses[access_idx].subname(i, system->getMasterName(i)); 1770 } 1771 } 1772 1773 demandAccesses 1774 .name(name() + ".demand_accesses") 1775 .desc("number of demand (read+write) accesses") 1776 .flags(total | nozero | nonan) 1777 ; 1778 demandAccesses = demandHits + demandMisses; 1779 for (int i = 0; i < system->maxMasters(); i++) { 1780 demandAccesses.subname(i, system->getMasterName(i)); 1781 } 1782 1783 overallAccesses 1784 .name(name() + ".overall_accesses") 1785 .desc("number of overall (read+write) accesses") 1786 .flags(total | nozero | nonan) 1787 ; 1788 overallAccesses = overallHits + overallMisses; 1789 for (int i = 0; i < system->maxMasters(); i++) { 1790 overallAccesses.subname(i, system->getMasterName(i)); 1791 } 1792 1793 // miss rate formulas 1794 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1795 MemCmd cmd(access_idx); 1796 const string &cstr = cmd.toString(); 1797 1798 missRate[access_idx] 1799 .name(name() + "." + cstr + "_miss_rate") 1800 .desc("miss rate for " + cstr + " accesses") 1801 .flags(total | nozero | nonan) 1802 ; 1803 missRate[access_idx] = misses[access_idx] / accesses[access_idx]; 1804 1805 for (int i = 0; i < system->maxMasters(); i++) { 1806 missRate[access_idx].subname(i, system->getMasterName(i)); 1807 } 1808 } 1809 1810 demandMissRate 1811 .name(name() + ".demand_miss_rate") 1812 .desc("miss rate for demand accesses") 1813 .flags(total | nozero | nonan) 1814 ; 1815 demandMissRate = demandMisses / demandAccesses; 1816 for (int i = 0; i < system->maxMasters(); i++) { 1817 demandMissRate.subname(i, system->getMasterName(i)); 1818 } 1819 1820 overallMissRate 1821 .name(name() + ".overall_miss_rate") 1822 .desc("miss rate for overall accesses") 1823 .flags(total | nozero | nonan) 1824 ; 1825 overallMissRate = overallMisses / overallAccesses; 1826 for (int i = 0; i < system->maxMasters(); i++) { 1827 overallMissRate.subname(i, system->getMasterName(i)); 1828 } 1829 1830 // miss latency formulas 1831 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1832 MemCmd cmd(access_idx); 1833 const string &cstr = cmd.toString(); 1834 1835 avgMissLatency[access_idx] 1836 .name(name() + "." + cstr + "_avg_miss_latency") 1837 .desc("average " + cstr + " miss latency") 1838 .flags(total | nozero | nonan) 1839 ; 1840 avgMissLatency[access_idx] = 1841 missLatency[access_idx] / misses[access_idx]; 1842 1843 for (int i = 0; i < system->maxMasters(); i++) { 1844 avgMissLatency[access_idx].subname(i, system->getMasterName(i)); 1845 } 1846 } 1847 1848 demandAvgMissLatency 1849 .name(name() + ".demand_avg_miss_latency") 1850 .desc("average overall miss latency") 1851 .flags(total | nozero | nonan) 1852 ; 1853 demandAvgMissLatency = demandMissLatency / demandMisses; 1854 for (int i = 0; i < system->maxMasters(); i++) { 1855 demandAvgMissLatency.subname(i, system->getMasterName(i)); 1856 } 1857 1858 overallAvgMissLatency 1859 .name(name() + ".overall_avg_miss_latency") 1860 .desc("average overall miss latency") 1861 .flags(total | nozero | nonan) 1862 ; 1863 overallAvgMissLatency = overallMissLatency / overallMisses; 1864 for (int i = 0; i < system->maxMasters(); i++) { 1865 overallAvgMissLatency.subname(i, system->getMasterName(i)); 1866 } 1867 1868 blocked_cycles.init(NUM_BLOCKED_CAUSES); 1869 blocked_cycles 1870 .name(name() + ".blocked_cycles") 1871 .desc("number of cycles access was blocked") 1872 .subname(Blocked_NoMSHRs, "no_mshrs") 1873 .subname(Blocked_NoTargets, "no_targets") 1874 ; 1875 1876 1877 blocked_causes.init(NUM_BLOCKED_CAUSES); 1878 blocked_causes 1879 .name(name() + ".blocked") 1880 .desc("number of cycles access was blocked") 1881 .subname(Blocked_NoMSHRs, "no_mshrs") 1882 .subname(Blocked_NoTargets, "no_targets") 1883 ; 1884 1885 avg_blocked 1886 .name(name() + ".avg_blocked_cycles") 1887 .desc("average number of cycles each access was blocked") 1888 .subname(Blocked_NoMSHRs, "no_mshrs") 1889 .subname(Blocked_NoTargets, "no_targets") 1890 ; 1891 1892 avg_blocked = blocked_cycles / blocked_causes; 1893 1894 unusedPrefetches 1895 .name(name() + ".unused_prefetches") 1896 .desc("number of HardPF blocks evicted w/o reference") 1897 .flags(nozero) 1898 ; 1899 1900 writebacks 1901 .init(system->maxMasters()) 1902 .name(name() + ".writebacks") 1903 .desc("number of writebacks") 1904 .flags(total | nozero | nonan) 1905 ; 1906 for (int i = 0; i < system->maxMasters(); i++) { 1907 writebacks.subname(i, system->getMasterName(i)); 1908 } 1909 1910 // MSHR statistics 1911 // MSHR hit statistics 1912 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1913 MemCmd cmd(access_idx); 1914 const string &cstr = cmd.toString(); 1915 1916 mshr_hits[access_idx] 1917 .init(system->maxMasters()) 1918 .name(name() + "." + cstr + "_mshr_hits") 1919 .desc("number of " + cstr + " MSHR hits") 1920 .flags(total | nozero | nonan) 1921 ; 1922 for (int i = 0; i < system->maxMasters(); i++) { 1923 mshr_hits[access_idx].subname(i, system->getMasterName(i)); 1924 } 1925 } 1926 1927 demandMshrHits 1928 .name(name() + ".demand_mshr_hits") 1929 .desc("number of demand (read+write) MSHR hits") 1930 .flags(total | nozero | nonan) 1931 ; 1932 demandMshrHits = SUM_DEMAND(mshr_hits); 1933 for (int i = 0; i < system->maxMasters(); i++) { 1934 demandMshrHits.subname(i, system->getMasterName(i)); 1935 } 1936 1937 overallMshrHits 1938 .name(name() + ".overall_mshr_hits") 1939 .desc("number of overall MSHR hits") 1940 .flags(total | nozero | nonan) 1941 ; 1942 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits); 1943 for (int i = 0; i < system->maxMasters(); i++) { 1944 overallMshrHits.subname(i, system->getMasterName(i)); 1945 } 1946 1947 // MSHR miss statistics 1948 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1949 MemCmd cmd(access_idx); 1950 const string &cstr = cmd.toString(); 1951 1952 mshr_misses[access_idx] 1953 .init(system->maxMasters()) 1954 .name(name() + "." + cstr + "_mshr_misses") 1955 .desc("number of " + cstr + " MSHR misses") 1956 .flags(total | nozero | nonan) 1957 ; 1958 for (int i = 0; i < system->maxMasters(); i++) { 1959 mshr_misses[access_idx].subname(i, system->getMasterName(i)); 1960 } 1961 } 1962 1963 demandMshrMisses 1964 .name(name() + ".demand_mshr_misses") 1965 .desc("number of demand (read+write) MSHR misses") 1966 .flags(total | nozero | nonan) 1967 ; 1968 demandMshrMisses = SUM_DEMAND(mshr_misses); 1969 for (int i = 0; i < system->maxMasters(); i++) { 1970 demandMshrMisses.subname(i, system->getMasterName(i)); 1971 } 1972 1973 overallMshrMisses 1974 .name(name() + ".overall_mshr_misses") 1975 .desc("number of overall MSHR misses") 1976 .flags(total | nozero | nonan) 1977 ; 1978 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses); 1979 for (int i = 0; i < system->maxMasters(); i++) { 1980 overallMshrMisses.subname(i, system->getMasterName(i)); 1981 } 1982 1983 // MSHR miss latency statistics 1984 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 1985 MemCmd cmd(access_idx); 1986 const string &cstr = cmd.toString(); 1987 1988 mshr_miss_latency[access_idx] 1989 .init(system->maxMasters()) 1990 .name(name() + "." + cstr + "_mshr_miss_latency") 1991 .desc("number of " + cstr + " MSHR miss cycles") 1992 .flags(total | nozero | nonan) 1993 ; 1994 for (int i = 0; i < system->maxMasters(); i++) { 1995 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i)); 1996 } 1997 } 1998 1999 demandMshrMissLatency 2000 .name(name() + ".demand_mshr_miss_latency") 2001 .desc("number of demand (read+write) MSHR miss cycles") 2002 .flags(total | nozero | nonan) 2003 ; 2004 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency); 2005 for (int i = 0; i < system->maxMasters(); i++) { 2006 demandMshrMissLatency.subname(i, system->getMasterName(i)); 2007 } 2008 2009 overallMshrMissLatency 2010 .name(name() + ".overall_mshr_miss_latency") 2011 .desc("number of overall MSHR miss cycles") 2012 .flags(total | nozero | nonan) 2013 ; 2014 overallMshrMissLatency = 2015 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency); 2016 for (int i = 0; i < system->maxMasters(); i++) { 2017 overallMshrMissLatency.subname(i, system->getMasterName(i)); 2018 } 2019 2020 // MSHR uncacheable statistics 2021 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2022 MemCmd cmd(access_idx); 2023 const string &cstr = cmd.toString(); 2024 2025 mshr_uncacheable[access_idx] 2026 .init(system->maxMasters()) 2027 .name(name() + "." + cstr + "_mshr_uncacheable") 2028 .desc("number of " + cstr + " MSHR uncacheable") 2029 .flags(total | nozero | nonan) 2030 ; 2031 for (int i = 0; i < system->maxMasters(); i++) { 2032 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i)); 2033 } 2034 } 2035 2036 overallMshrUncacheable 2037 .name(name() + ".overall_mshr_uncacheable_misses") 2038 .desc("number of overall MSHR uncacheable misses") 2039 .flags(total | nozero | nonan) 2040 ; 2041 overallMshrUncacheable = 2042 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable); 2043 for (int i = 0; i < system->maxMasters(); i++) { 2044 overallMshrUncacheable.subname(i, system->getMasterName(i)); 2045 } 2046 2047 // MSHR miss latency statistics 2048 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2049 MemCmd cmd(access_idx); 2050 const string &cstr = cmd.toString(); 2051 2052 mshr_uncacheable_lat[access_idx] 2053 .init(system->maxMasters()) 2054 .name(name() + "." + cstr + "_mshr_uncacheable_latency") 2055 .desc("number of " + cstr + " MSHR uncacheable cycles") 2056 .flags(total | nozero | nonan) 2057 ; 2058 for (int i = 0; i < system->maxMasters(); i++) { 2059 mshr_uncacheable_lat[access_idx].subname( 2060 i, system->getMasterName(i)); 2061 } 2062 } 2063 2064 overallMshrUncacheableLatency 2065 .name(name() + ".overall_mshr_uncacheable_latency") 2066 .desc("number of overall MSHR uncacheable cycles") 2067 .flags(total | nozero | nonan) 2068 ; 2069 overallMshrUncacheableLatency = 2070 SUM_DEMAND(mshr_uncacheable_lat) + 2071 SUM_NON_DEMAND(mshr_uncacheable_lat); 2072 for (int i = 0; i < system->maxMasters(); i++) { 2073 overallMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2074 } 2075 2076#if 0 2077 // MSHR access formulas 2078 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2079 MemCmd cmd(access_idx); 2080 const string &cstr = cmd.toString(); 2081 2082 mshrAccesses[access_idx] 2083 .name(name() + "." + cstr + "_mshr_accesses") 2084 .desc("number of " + cstr + " mshr accesses(hits+misses)") 2085 .flags(total | nozero | nonan) 2086 ; 2087 mshrAccesses[access_idx] = 2088 mshr_hits[access_idx] + mshr_misses[access_idx] 2089 + mshr_uncacheable[access_idx]; 2090 } 2091 2092 demandMshrAccesses 2093 .name(name() + ".demand_mshr_accesses") 2094 .desc("number of demand (read+write) mshr accesses") 2095 .flags(total | nozero | nonan) 2096 ; 2097 demandMshrAccesses = demandMshrHits + demandMshrMisses; 2098 2099 overallMshrAccesses 2100 .name(name() + ".overall_mshr_accesses") 2101 .desc("number of overall (read+write) mshr accesses") 2102 .flags(total | nozero | nonan) 2103 ; 2104 overallMshrAccesses = overallMshrHits + overallMshrMisses 2105 + overallMshrUncacheable; 2106#endif 2107 2108 // MSHR miss rate formulas 2109 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2110 MemCmd cmd(access_idx); 2111 const string &cstr = cmd.toString(); 2112 2113 mshrMissRate[access_idx] 2114 .name(name() + "." + cstr + "_mshr_miss_rate") 2115 .desc("mshr miss rate for " + cstr + " accesses") 2116 .flags(total | nozero | nonan) 2117 ; 2118 mshrMissRate[access_idx] = 2119 mshr_misses[access_idx] / accesses[access_idx]; 2120 2121 for (int i = 0; i < system->maxMasters(); i++) { 2122 mshrMissRate[access_idx].subname(i, system->getMasterName(i)); 2123 } 2124 } 2125 2126 demandMshrMissRate 2127 .name(name() + ".demand_mshr_miss_rate") 2128 .desc("mshr miss rate for demand accesses") 2129 .flags(total | nozero | nonan) 2130 ; 2131 demandMshrMissRate = demandMshrMisses / demandAccesses; 2132 for (int i = 0; i < system->maxMasters(); i++) { 2133 demandMshrMissRate.subname(i, system->getMasterName(i)); 2134 } 2135 2136 overallMshrMissRate 2137 .name(name() + ".overall_mshr_miss_rate") 2138 .desc("mshr miss rate for overall accesses") 2139 .flags(total | nozero | nonan) 2140 ; 2141 overallMshrMissRate = overallMshrMisses / overallAccesses; 2142 for (int i = 0; i < system->maxMasters(); i++) { 2143 overallMshrMissRate.subname(i, system->getMasterName(i)); 2144 } 2145 2146 // mshrMiss latency formulas 2147 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2148 MemCmd cmd(access_idx); 2149 const string &cstr = cmd.toString(); 2150 2151 avgMshrMissLatency[access_idx] 2152 .name(name() + "." + cstr + "_avg_mshr_miss_latency") 2153 .desc("average " + cstr + " mshr miss latency") 2154 .flags(total | nozero | nonan) 2155 ; 2156 avgMshrMissLatency[access_idx] = 2157 mshr_miss_latency[access_idx] / mshr_misses[access_idx]; 2158 2159 for (int i = 0; i < system->maxMasters(); i++) { 2160 avgMshrMissLatency[access_idx].subname( 2161 i, system->getMasterName(i)); 2162 } 2163 } 2164 2165 demandAvgMshrMissLatency 2166 .name(name() + ".demand_avg_mshr_miss_latency") 2167 .desc("average overall mshr miss latency") 2168 .flags(total | nozero | nonan) 2169 ; 2170 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses; 2171 for (int i = 0; i < system->maxMasters(); i++) { 2172 demandAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2173 } 2174 2175 overallAvgMshrMissLatency 2176 .name(name() + ".overall_avg_mshr_miss_latency") 2177 .desc("average overall mshr miss latency") 2178 .flags(total | nozero | nonan) 2179 ; 2180 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses; 2181 for (int i = 0; i < system->maxMasters(); i++) { 2182 overallAvgMshrMissLatency.subname(i, system->getMasterName(i)); 2183 } 2184 2185 // mshrUncacheable latency formulas 2186 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) { 2187 MemCmd cmd(access_idx); 2188 const string &cstr = cmd.toString(); 2189 2190 avgMshrUncacheableLatency[access_idx] 2191 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency") 2192 .desc("average " + cstr + " mshr uncacheable latency") 2193 .flags(total | nozero | nonan) 2194 ; 2195 avgMshrUncacheableLatency[access_idx] = 2196 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx]; 2197 2198 for (int i = 0; i < system->maxMasters(); i++) { 2199 avgMshrUncacheableLatency[access_idx].subname( 2200 i, system->getMasterName(i)); 2201 } 2202 } 2203 2204 overallAvgMshrUncacheableLatency 2205 .name(name() + ".overall_avg_mshr_uncacheable_latency") 2206 .desc("average overall mshr uncacheable latency") 2207 .flags(total | nozero | nonan) 2208 ; 2209 overallAvgMshrUncacheableLatency = 2210 overallMshrUncacheableLatency / overallMshrUncacheable; 2211 for (int i = 0; i < system->maxMasters(); i++) { 2212 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i)); 2213 } 2214 2215 replacements 2216 .name(name() + ".replacements") 2217 .desc("number of replacements") 2218 ; 2219} 2220 2221void 2222BaseCache::regProbePoints() 2223{ 2224 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit"); 2225 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss"); 2226} 2227 2228/////////////// 2229// 2230// CpuSidePort 2231// 2232/////////////// 2233bool 2234BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) 2235{ 2236 // Snoops shouldn't happen when bypassing caches 2237 assert(!cache->system->bypassCaches()); 2238 2239 assert(pkt->isResponse()); 2240 2241 // Express snoop responses from master to slave, e.g., from L1 to L2 2242 cache->recvTimingSnoopResp(pkt); 2243 return true; 2244} 2245 2246 2247bool 2248BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) 2249{ 2250 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) { 2251 // always let express snoop packets through even if blocked 2252 return true; 2253 } else if (blocked || mustSendRetry) { 2254 // either already committed to send a retry, or blocked 2255 mustSendRetry = true; 2256 return false; 2257 } 2258 mustSendRetry = false; 2259 return true; 2260} 2261 2262bool 2263BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) 2264{ 2265 assert(pkt->isRequest()); 2266 2267 if (cache->system->bypassCaches()) { 2268 // Just forward the packet if caches are disabled. 2269 // @todo This should really enqueue the packet rather 2270 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt); 2271 assert(success); 2272 return true; 2273 } else if (tryTiming(pkt)) { 2274 cache->recvTimingReq(pkt); 2275 return true; 2276 } 2277 return false; 2278} 2279 2280Tick 2281BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) 2282{ 2283 if (cache->system->bypassCaches()) { 2284 // Forward the request if the system is in cache bypass mode. 2285 return cache->memSidePort.sendAtomic(pkt); 2286 } else { 2287 return cache->recvAtomic(pkt); 2288 } 2289} 2290 2291void 2292BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) 2293{ 2294 if (cache->system->bypassCaches()) { 2295 // The cache should be flushed if we are in cache bypass mode, 2296 // so we don't need to check if we need to update anything. 2297 cache->memSidePort.sendFunctional(pkt); 2298 return; 2299 } 2300 2301 // functional request 2302 cache->functionalAccess(pkt, true); 2303} 2304 2305AddrRangeList 2306BaseCache::CpuSidePort::getAddrRanges() const 2307{ 2308 return cache->getAddrRanges(); 2309} 2310 2311 2312BaseCache:: 2313CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, 2314 const std::string &_label) 2315 : CacheSlavePort(_name, _cache, _label), cache(_cache) 2316{ 2317} 2318 2319/////////////// 2320// 2321// MemSidePort 2322// 2323/////////////// 2324bool 2325BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) 2326{ 2327 cache->recvTimingResp(pkt); 2328 return true; 2329} 2330 2331// Express snooping requests to memside port 2332void 2333BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) 2334{ 2335 // Snoops shouldn't happen when bypassing caches 2336 assert(!cache->system->bypassCaches()); 2337 2338 // handle snooping requests 2339 cache->recvTimingSnoopReq(pkt); 2340} 2341 2342Tick 2343BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) 2344{ 2345 // Snoops shouldn't happen when bypassing caches 2346 assert(!cache->system->bypassCaches()); 2347 2348 return cache->recvAtomicSnoop(pkt); 2349} 2350 2351void 2352BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) 2353{ 2354 // Snoops shouldn't happen when bypassing caches 2355 assert(!cache->system->bypassCaches()); 2356 2357 // functional snoop (note that in contrast to atomic we don't have 2358 // a specific functionalSnoop method, as they have the same 2359 // behaviour regardless) 2360 cache->functionalAccess(pkt, false); 2361} 2362 2363void 2364BaseCache::CacheReqPacketQueue::sendDeferredPacket() 2365{ 2366 // sanity check 2367 assert(!waitingOnRetry); 2368 2369 // there should never be any deferred request packets in the 2370 // queue, instead we resly on the cache to provide the packets 2371 // from the MSHR queue or write queue 2372 assert(deferredPacketReadyTime() == MaxTick); 2373 2374 // check for request packets (requests & writebacks) 2375 QueueEntry* entry = cache.getNextQueueEntry(); 2376 2377 if (!entry) { 2378 // can happen if e.g. we attempt a writeback and fail, but 2379 // before the retry, the writeback is eliminated because 2380 // we snoop another cache's ReadEx. 2381 } else { 2382 // let our snoop responses go first if there are responses to 2383 // the same addresses 2384 if (checkConflictingSnoop(entry->blkAddr)) { 2385 return; 2386 } 2387 waitingOnRetry = entry->sendPacket(cache); 2388 } 2389 2390 // if we succeeded and are not waiting for a retry, schedule the 2391 // next send considering when the next queue is ready, note that 2392 // snoop responses have their own packet queue and thus schedule 2393 // their own events 2394 if (!waitingOnRetry) { 2395 schedSendEvent(cache.nextQueueReadyTime()); 2396 } 2397} 2398 2399BaseCache::MemSidePort::MemSidePort(const std::string &_name, 2400 BaseCache *_cache, 2401 const std::string &_label) 2402 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), 2403 _reqQueue(*_cache, *this, _snoopRespQueue, _label), 2404 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache) 2405{ 2406} 2407 2408void 2409WriteAllocator::updateMode(Addr write_addr, unsigned write_size, 2410 Addr blk_addr) 2411{ 2412 // check if we are continuing where the last write ended 2413 if (nextAddr == write_addr) { 2414 delayCtr[blk_addr] = delayThreshold; 2415 // stop if we have already saturated 2416 if (mode != WriteMode::NO_ALLOCATE) { 2417 byteCount += write_size; 2418 // switch to streaming mode if we have passed the lower 2419 // threshold 2420 if (mode == WriteMode::ALLOCATE && 2421 byteCount > coalesceLimit) { 2422 mode = WriteMode::COALESCE; 2423 DPRINTF(Cache, "Switched to write coalescing\n"); 2424 } else if (mode == WriteMode::COALESCE && 2425 byteCount > noAllocateLimit) { 2426 // and continue and switch to non-allocating mode if we 2427 // pass the upper threshold 2428 mode = WriteMode::NO_ALLOCATE; 2429 DPRINTF(Cache, "Switched to write-no-allocate\n"); 2430 } 2431 } 2432 } else { 2433 // we did not see a write matching the previous one, start 2434 // over again 2435 byteCount = write_size; 2436 mode = WriteMode::ALLOCATE; 2437 resetDelay(blk_addr); 2438 } 2439 nextAddr = write_addr + write_size; 2440} 2441 2442WriteAllocator* 2443WriteAllocatorParams::create() 2444{ 2445 return new WriteAllocator(this); 2446} 2447