DRAMCtrl.py revision 10561:e1a853349529
1# Copyright (c) 2012-2014 ARM Limited 2# All rights reserved. 3# 4# The license below extends only to copyright in the software and shall 5# not be construed as granting a license to any other intellectual 6# property including but not limited to intellectual property relating 7# to a hardware implementation of the functionality of the software 8# licensed hereunder. You may use the software subject to the license 9# terms below provided that you ensure that this notice is replicated 10# unmodified and in its entirety in all distributions of the software, 11# modified or unmodified, in source code or in binary form. 12# 13# Copyright (c) 2013 Amin Farmahini-Farahani 14# All rights reserved. 15# 16# Redistribution and use in source and binary forms, with or without 17# modification, are permitted provided that the following conditions are 18# met: redistributions of source code must retain the above copyright 19# notice, this list of conditions and the following disclaimer; 20# redistributions in binary form must reproduce the above copyright 21# notice, this list of conditions and the following disclaimer in the 22# documentation and/or other materials provided with the distribution; 23# neither the name of the copyright holders nor the names of its 24# contributors may be used to endorse or promote products derived from 25# this software without specific prior written permission. 26# 27# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38# 39# Authors: Andreas Hansson 40# Ani Udipi 41 42from m5.params import * 43from AbstractMemory import * 44 45# Enum for memory scheduling algorithms, currently First-Come 46# First-Served and a First-Row Hit then First-Come First-Served 47class MemSched(Enum): vals = ['fcfs', 'frfcfs'] 48 49# Enum for the address mapping. With Ch, Ra, Ba, Ro and Co denoting 50# channel, rank, bank, row and column, respectively, and going from 51# MSB to LSB. Available are RoRaBaChCo and RoRaBaCoCh, that are 52# suitable for an open-page policy, optimising for sequential accesses 53# hitting in the open row. For a closed-page policy, RoCoRaBaCh 54# maximises parallelism. 55class AddrMap(Enum): vals = ['RoRaBaChCo', 'RoRaBaCoCh', 'RoCoRaBaCh'] 56 57# Enum for the page policy, either open, open_adaptive, close, or 58# close_adaptive. 59class PageManage(Enum): vals = ['open', 'open_adaptive', 'close', 60 'close_adaptive'] 61 62# DRAMCtrl is a single-channel single-ported DRAM controller model 63# that aims to model the most important system-level performance 64# effects of a DRAM without getting into too much detail of the DRAM 65# itself. 66class DRAMCtrl(AbstractMemory): 67 type = 'DRAMCtrl' 68 cxx_header = "mem/dram_ctrl.hh" 69 70 # single-ported on the system interface side, instantiate with a 71 # bus in front of the controller for multiple ports 72 port = SlavePort("Slave port") 73 74 # the basic configuration of the controller architecture, note 75 # that each entry corresponds to a burst for the specific DRAM 76 # configuration (e.g. x32 with burst length 8 is 32 bytes) and not 77 # the cacheline size or request/packet size 78 write_buffer_size = Param.Unsigned(64, "Number of write queue entries") 79 read_buffer_size = Param.Unsigned(32, "Number of read queue entries") 80 81 # threshold in percent for when to forcefully trigger writes and 82 # start emptying the write buffer 83 write_high_thresh_perc = Param.Percent(85, "Threshold to force writes") 84 85 # threshold in percentage for when to start writes if the read 86 # queue is empty 87 write_low_thresh_perc = Param.Percent(50, "Threshold to start writes") 88 89 # minimum write bursts to schedule before switching back to reads 90 min_writes_per_switch = Param.Unsigned(16, "Minimum write bursts before " 91 "switching to reads") 92 93 # scheduler, address map and page policy 94 mem_sched_policy = Param.MemSched('frfcfs', "Memory scheduling policy") 95 addr_mapping = Param.AddrMap('RoRaBaChCo', "Address mapping policy") 96 page_policy = Param.PageManage('open_adaptive', "Page management policy") 97 98 # enforce a limit on the number of accesses per row 99 max_accesses_per_row = Param.Unsigned(16, "Max accesses per row before " 100 "closing"); 101 102 # size of DRAM Chip in Bytes 103 device_size = Param.MemorySize("Size of DRAM chip") 104 105 # pipeline latency of the controller and PHY, split into a 106 # frontend part and a backend part, with reads and writes serviced 107 # by the queues only seeing the frontend contribution, and reads 108 # serviced by the memory seeing the sum of the two 109 static_frontend_latency = Param.Latency("10ns", "Static frontend latency") 110 static_backend_latency = Param.Latency("10ns", "Static backend latency") 111 112 # the physical organisation of the DRAM 113 device_bus_width = Param.Unsigned("data bus width in bits for each DRAM "\ 114 "device/chip") 115 burst_length = Param.Unsigned("Burst lenght (BL) in beats") 116 device_rowbuffer_size = Param.MemorySize("Page (row buffer) size per "\ 117 "device/chip") 118 devices_per_rank = Param.Unsigned("Number of devices/chips per rank") 119 ranks_per_channel = Param.Unsigned("Number of ranks per channel") 120 121 # default to 0 bank groups per rank, indicating bank group architecture 122 # is not used 123 # update per memory class when bank group architecture is supported 124 bank_groups_per_rank = Param.Unsigned(0, "Number of bank groups per rank") 125 banks_per_rank = Param.Unsigned("Number of banks per rank") 126 # only used for the address mapping as the controller by 127 # construction is a single channel and multiple controllers have 128 # to be instantiated for a multi-channel configuration 129 channels = Param.Unsigned(1, "Number of channels") 130 131 # For power modelling we need to know if the DRAM has a DLL or not 132 dll = Param.Bool(True, "DRAM has DLL or not") 133 134 # DRAMPower provides in addition to the core power, the possibility to 135 # include RD/WR termination and IO power. This calculation assumes some 136 # default values. The integration of DRAMPower with gem5 does not include 137 # IO and RD/WR termination power by default. This might be added as an 138 # additional feature in the future. 139 140 # timing behaviour and constraints - all in nanoseconds 141 142 # the base clock period of the DRAM 143 tCK = Param.Latency("Clock period") 144 145 # the amount of time in nanoseconds from issuing an activate command 146 # to the data being available in the row buffer for a read/write 147 tRCD = Param.Latency("RAS to CAS delay") 148 149 # the time from issuing a read/write command to seeing the actual data 150 tCL = Param.Latency("CAS latency") 151 152 # minimum time between a precharge and subsequent activate 153 tRP = Param.Latency("Row precharge time") 154 155 # minimum time between an activate and a precharge to the same row 156 tRAS = Param.Latency("ACT to PRE delay") 157 158 # minimum time between a write data transfer and a precharge 159 tWR = Param.Latency("Write recovery time") 160 161 # minimum time between a read and precharge command 162 tRTP = Param.Latency("Read to precharge") 163 164 # time to complete a burst transfer, typically the burst length 165 # divided by two due to the DDR bus, but by making it a parameter 166 # it is easier to also evaluate SDR memories like WideIO. 167 # This parameter has to account for burst length. 168 # Read/Write requests with data size larger than one full burst are broken 169 # down into multiple requests in the controller 170 # tBURST is equivalent to the CAS-to-CAS delay (tCCD) 171 # With bank group architectures, tBURST represents the CAS-to-CAS 172 # delay for bursts to different bank groups (tCCD_S) 173 tBURST = Param.Latency("Burst duration (for DDR burst length / 2 cycles)") 174 175 # CAS-to-CAS delay for bursts to the same bank group 176 # only utilized with bank group architectures; set to 0 for default case 177 # tBURST is equivalent to tCCD_S; no explicit parameter required 178 # for CAS-to-CAS delay for bursts to different bank groups 179 tCCD_L = Param.Latency("0ns", "Same bank group CAS to CAS delay") 180 181 # time taken to complete one refresh cycle (N rows in all banks) 182 tRFC = Param.Latency("Refresh cycle time") 183 184 # refresh command interval, how often a "ref" command needs 185 # to be sent. It is 7.8 us for a 64ms refresh requirement 186 tREFI = Param.Latency("Refresh command interval") 187 188 # write-to-read, same rank turnaround penalty 189 tWTR = Param.Latency("Write to read, same rank switching time") 190 191 # read-to-write, same rank turnaround penalty 192 tRTW = Param.Latency("Read to write, same rank switching time") 193 194 # rank-to-rank bus delay penalty 195 # this does not correlate to a memory timing parameter and encompasses: 196 # 1) RD-to-RD, 2) WR-to-WR, 3) RD-to-WR, and 4) WR-to-RD 197 # different rank bus delay 198 tCS = Param.Latency("Rank to rank switching time") 199 200 # minimum row activate to row activate delay time 201 tRRD = Param.Latency("ACT to ACT delay") 202 203 # only utilized with bank group architectures; set to 0 for default case 204 tRRD_L = Param.Latency("0ns", "Same bank group ACT to ACT delay") 205 206 # time window in which a maximum number of activates are allowed 207 # to take place, set to 0 to disable 208 tXAW = Param.Latency("X activation window") 209 activation_limit = Param.Unsigned("Max number of activates in window") 210 211 # time to exit power-down mode 212 # Exit power-down to next valid command delay 213 tXP = Param.Latency("0ns", "Power-up Delay") 214 215 # Exit Powerdown to commands requiring a locked DLL 216 tXPDLL = Param.Latency("0ns", "Power-up Delay with locked DLL") 217 218 # time to exit self-refresh mode 219 tXS = Param.Latency("0ns", "Self-refresh exit latency") 220 221 # time to exit self-refresh mode with locked DLL 222 tXSDLL = Param.Latency("0ns", "Self-refresh exit latency DLL") 223 224 # Currently rolled into other params 225 ###################################################################### 226 227 # tRC - assumed to be tRAS + tRP 228 229 # Power Behaviour and Constraints 230 # DRAMs like LPDDR and WideIO have 2 external voltage domains. These are 231 # defined as VDD and VDD2. Each current is defined for each voltage domain 232 # separately. For example, current IDD0 is active-precharge current for 233 # voltage domain VDD and current IDD02 is active-precharge current for 234 # voltage domain VDD2. 235 # By default all currents are set to 0mA. Users who are only interested in 236 # the performance of DRAMs can leave them at 0. 237 238 # Operating 1 Bank Active-Precharge current 239 IDD0 = Param.Current("0mA", "Active precharge current") 240 241 # Operating 1 Bank Active-Precharge current multiple voltage Range 242 IDD02 = Param.Current("0mA", "Active precharge current VDD2") 243 244 # Precharge Power-down Current: Slow exit 245 IDD2P0 = Param.Current("0mA", "Precharge Powerdown slow") 246 247 # Precharge Power-down Current: Slow exit multiple voltage Range 248 IDD2P02 = Param.Current("0mA", "Precharge Powerdown slow VDD2") 249 250 # Precharge Power-down Current: Fast exit 251 IDD2P1 = Param.Current("0mA", "Precharge Powerdown fast") 252 253 # Precharge Power-down Current: Fast exit multiple voltage Range 254 IDD2P12 = Param.Current("0mA", "Precharge Powerdown fast VDD2") 255 256 # Precharge Standby current 257 IDD2N = Param.Current("0mA", "Precharge Standby current") 258 259 # Precharge Standby current multiple voltage range 260 IDD2N2 = Param.Current("0mA", "Precharge Standby current VDD2") 261 262 # Active Power-down current: slow exit 263 IDD3P0 = Param.Current("0mA", "Active Powerdown slow") 264 265 # Active Power-down current: slow exit multiple voltage range 266 IDD3P02 = Param.Current("0mA", "Active Powerdown slow VDD2") 267 268 # Active Power-down current : fast exit 269 IDD3P1 = Param.Current("0mA", "Active Powerdown fast") 270 271 # Active Power-down current : fast exit multiple voltage range 272 IDD3P12 = Param.Current("0mA", "Active Powerdown fast VDD2") 273 274 # Active Standby current 275 IDD3N = Param.Current("0mA", "Active Standby current") 276 277 # Active Standby current multiple voltage range 278 IDD3N2 = Param.Current("0mA", "Active Standby current VDD2") 279 280 # Burst Read Operating Current 281 IDD4R = Param.Current("0mA", "READ current") 282 283 # Burst Read Operating Current multiple voltage range 284 IDD4R2 = Param.Current("0mA", "READ current VDD2") 285 286 # Burst Write Operating Current 287 IDD4W = Param.Current("0mA", "WRITE current") 288 289 # Burst Write Operating Current multiple voltage range 290 IDD4W2 = Param.Current("0mA", "WRITE current VDD2") 291 292 # Refresh Current 293 IDD5 = Param.Current("0mA", "Refresh current") 294 295 # Refresh Current multiple voltage range 296 IDD52 = Param.Current("0mA", "Refresh current VDD2") 297 298 # Self-Refresh Current 299 IDD6 = Param.Current("0mA", "Self-refresh Current") 300 301 # Self-Refresh Current multiple voltage range 302 IDD62 = Param.Current("0mA", "Self-refresh Current VDD2") 303 304 # Main voltage range of the DRAM 305 VDD = Param.Voltage("0V", "Main Voltage Range") 306 307 # Second voltage range defined by some DRAMs 308 VDD2 = Param.Voltage("0V", "2nd Voltage Range") 309 310# A single DDR3-1600 x64 channel (one command and address bus), with 311# timings based on a DDR3-1600 4 Gbit datasheet (Micron MT41J512M8) in 312# an 8x8 configuration. 313class DDR3_1600_x64(DRAMCtrl): 314 # size of device in bytes 315 device_size = '512MB' 316 317 # 8x8 configuration, 8 devices each with an 8-bit interface 318 device_bus_width = 8 319 320 # DDR3 is a BL8 device 321 burst_length = 8 322 323 # Each device has a page (row buffer) size of 1 Kbyte (1K columns x8) 324 device_rowbuffer_size = '1kB' 325 326 # 8x8 configuration, so 8 devices 327 devices_per_rank = 8 328 329 # Use two ranks 330 ranks_per_channel = 2 331 332 # DDR3 has 8 banks in all configurations 333 banks_per_rank = 8 334 335 # 800 MHz 336 tCK = '1.25ns' 337 338 # 8 beats across an x64 interface translates to 4 clocks @ 800 MHz 339 tBURST = '5ns' 340 341 # DDR3-1600 11-11-11 342 tRCD = '13.75ns' 343 tCL = '13.75ns' 344 tRP = '13.75ns' 345 tRAS = '35ns' 346 tRRD = '6ns' 347 tXAW = '30ns' 348 activation_limit = 4 349 tRFC = '260ns' 350 351 tWR = '15ns' 352 353 # Greater of 4 CK or 7.5 ns 354 tWTR = '7.5ns' 355 356 # Greater of 4 CK or 7.5 ns 357 tRTP = '7.5ns' 358 359 # Default same rank rd-to-wr bus turnaround to 2 CK, @800 MHz = 2.5 ns 360 tRTW = '2.5ns' 361 362 # Default different rank bus delay to 2 CK, @800 MHz = 2.5 ns 363 tCS = '2.5ns' 364 365 # <=85C, half for >85C 366 tREFI = '7.8us' 367 368 # Current values from datasheet 369 IDD0 = '75mA' 370 IDD2N = '50mA' 371 IDD3N = '57mA' 372 IDD4W = '165mA' 373 IDD4R = '187mA' 374 IDD5 = '220mA' 375 VDD = '1.5V' 376 377# A single DDR3-2133 x64 channel refining a selected subset of the 378# options for the DDR-1600 configuration, based on the same DDR3-1600 379# 4 Gbit datasheet (Micron MT41J512M8). Most parameters are kept 380# consistent across the two configurations. 381class DDR3_2133_x64(DDR3_1600_x64): 382 # 1066 MHz 383 tCK = '0.938ns' 384 385 # 8 beats across an x64 interface translates to 4 clocks @ 1066 MHz 386 tBURST = '3.752ns' 387 388 # DDR3-2133 14-14-14 389 tRCD = '13.09ns' 390 tCL = '13.09ns' 391 tRP = '13.09ns' 392 tRAS = '33ns' 393 tRRD = '5ns' 394 tXAW = '25ns' 395 396 # Current values from datasheet 397 IDD0 = '70mA' 398 IDD2N = '37mA' 399 IDD3N = '44mA' 400 IDD4W = '157mA' 401 IDD4R = '191mA' 402 IDD5 = '250mA' 403 VDD = '1.5V' 404 405# A single DDR4-2400 x64 channel (one command and address bus), with 406# timings based on a DDR4-2400 4 Gbit datasheet (Micron MT40A512M8) 407# in an 8x8 configuration. 408class DDR4_2400_x64(DRAMCtrl): 409 # size of device 410 device_size = '512MB' 411 412 # 8x8 configuration, 8 devices each with an 8-bit interface 413 device_bus_width = 8 414 415 # DDR4 is a BL8 device 416 burst_length = 8 417 418 # Each device has a page (row buffer) size of 1 Kbyte (1K columns x8) 419 device_rowbuffer_size = '1kB' 420 421 # 8x8 configuration, so 8 devices 422 devices_per_rank = 8 423 424 # Match our DDR3 configurations which is dual rank 425 ranks_per_channel = 2 426 427 # DDR4 has 2 (x16) or 4 (x4 and x8) bank groups 428 # Set to 4 for x4, x8 case 429 bank_groups_per_rank = 4 430 431 # DDR4 has 16 banks (4 bank groups) in all 432 # configurations. Currently we do not capture the additional 433 # constraints incurred by the bank groups 434 banks_per_rank = 16 435 436 # 1200 MHz 437 tCK = '0.833ns' 438 439 # 8 beats across an x64 interface translates to 4 clocks @ 1200 MHz 440 # tBURST is equivalent to the CAS-to-CAS delay (tCCD) 441 # With bank group architectures, tBURST represents the CAS-to-CAS 442 # delay for bursts to different bank groups (tCCD_S) 443 tBURST = '3.333ns' 444 445 # @2400 data rate, tCCD_L is 6 CK 446 # CAS-to-CAS delay for bursts to the same bank group 447 # tBURST is equivalent to tCCD_S; no explicit parameter required 448 # for CAS-to-CAS delay for bursts to different bank groups 449 tCCD_L = '5ns'; 450 451 # DDR4-2400 17-17-17 452 tRCD = '14.16ns' 453 tCL = '14.16ns' 454 tRP = '14.16ns' 455 tRAS = '32ns' 456 457 # RRD_S (different bank group) for 1K page is MAX(4 CK, 3.3ns) 458 tRRD = '3.3ns' 459 460 # RRD_L (same bank group) for 1K page is MAX(4 CK, 4.9ns) 461 tRRD_L = '4.9ns'; 462 463 tXAW = '21ns' 464 activation_limit = 4 465 tRFC = '350ns' 466 467 tWR = '15ns' 468 469 # Here using the average of WTR_S and WTR_L 470 tWTR = '5ns' 471 472 # Greater of 4 CK or 7.5 ns 473 tRTP = '7.5ns' 474 475 # Default same rank rd-to-wr bus turnaround to 2 CK, @1200 MHz = 1.666 ns 476 tRTW = '1.666ns' 477 478 # Default different rank bus delay to 2 CK, @1200 MHz = 1.666 ns 479 tCS = '1.666ns' 480 481 # <=85C, half for >85C 482 tREFI = '7.8us' 483 484 # Current values from datasheet 485 IDD0 = '64mA' 486 IDD02 = '4mA' 487 IDD2N = '50mA' 488 IDD3N = '67mA' 489 IDD3N2 = '3mA' 490 IDD4W = '180mA' 491 IDD4R = '160mA' 492 IDD5 = '192mA' 493 VDD = '1.2V' 494 VDD2 = '2.5V' 495 496# A single LPDDR2-S4 x32 interface (one command/address bus), with 497# default timings based on a LPDDR2-1066 4 Gbit part (Micron MT42L128M32D1) 498# in a 1x32 configuration. 499class LPDDR2_S4_1066_x32(DRAMCtrl): 500 # No DLL in LPDDR2 501 dll = False 502 503 # size of device 504 device_size = '512MB' 505 506 # 1x32 configuration, 1 device with a 32-bit interface 507 device_bus_width = 32 508 509 # LPDDR2_S4 is a BL4 and BL8 device 510 burst_length = 8 511 512 # Each device has a page (row buffer) size of 1KB 513 # (this depends on the memory density) 514 device_rowbuffer_size = '1kB' 515 516 # 1x32 configuration, so 1 device 517 devices_per_rank = 1 518 519 # Use a single rank 520 ranks_per_channel = 1 521 522 # LPDDR2-S4 has 8 banks in all configurations 523 banks_per_rank = 8 524 525 # 533 MHz 526 tCK = '1.876ns' 527 528 # Fixed at 15 ns 529 tRCD = '15ns' 530 531 # 8 CK read latency, 4 CK write latency @ 533 MHz, 1.876 ns cycle time 532 tCL = '15ns' 533 534 # Pre-charge one bank 15 ns (all banks 18 ns) 535 tRP = '15ns' 536 537 tRAS = '42ns' 538 tWR = '15ns' 539 540 tRTP = '7.5ns' 541 542 # 8 beats across an x32 DDR interface translates to 4 clocks @ 533 MHz. 543 # Note this is a BL8 DDR device. 544 # Requests larger than 32 bytes are broken down into multiple requests 545 # in the controller 546 tBURST = '7.5ns' 547 548 # LPDDR2-S4, 4 Gbit 549 tRFC = '130ns' 550 tREFI = '3.9us' 551 552 # Irrespective of speed grade, tWTR is 7.5 ns 553 tWTR = '7.5ns' 554 555 # Default same rank rd-to-wr bus turnaround to 2 CK, @533 MHz = 3.75 ns 556 tRTW = '3.75ns' 557 558 # Default different rank bus delay to 2 CK, @533 MHz = 3.75 ns 559 tCS = '3.75ns' 560 561 # Activate to activate irrespective of density and speed grade 562 tRRD = '10.0ns' 563 564 # Irrespective of density, tFAW is 50 ns 565 tXAW = '50ns' 566 activation_limit = 4 567 568 # Current values from datasheet 569 IDD0 = '15mA' 570 IDD02 = '70mA' 571 IDD2N = '2mA' 572 IDD2N2 = '30mA' 573 IDD3N = '2.5mA' 574 IDD3N2 = '30mA' 575 IDD4W = '10mA' 576 IDD4W2 = '190mA' 577 IDD4R = '3mA' 578 IDD4R2 = '220mA' 579 IDD5 = '40mA' 580 IDD52 = '150mA' 581 VDD = '1.8V' 582 VDD2 = '1.2V' 583 584# A single WideIO x128 interface (one command and address bus), with 585# default timings based on an estimated WIO-200 8 Gbit part. 586class WideIO_200_x128(DRAMCtrl): 587 # No DLL for WideIO 588 dll = False 589 590 # size of device 591 device_size = '1024MB' 592 593 # 1x128 configuration, 1 device with a 128-bit interface 594 device_bus_width = 128 595 596 # This is a BL4 device 597 burst_length = 4 598 599 # Each device has a page (row buffer) size of 4KB 600 # (this depends on the memory density) 601 device_rowbuffer_size = '4kB' 602 603 # 1x128 configuration, so 1 device 604 devices_per_rank = 1 605 606 # Use one rank for a one-high die stack 607 ranks_per_channel = 1 608 609 # WideIO has 4 banks in all configurations 610 banks_per_rank = 4 611 612 # 200 MHz 613 tCK = '5ns' 614 615 # WIO-200 616 tRCD = '18ns' 617 tCL = '18ns' 618 tRP = '18ns' 619 tRAS = '42ns' 620 tWR = '15ns' 621 # Read to precharge is same as the burst 622 tRTP = '20ns' 623 624 # 4 beats across an x128 SDR interface translates to 4 clocks @ 200 MHz. 625 # Note this is a BL4 SDR device. 626 tBURST = '20ns' 627 628 # WIO 8 Gb 629 tRFC = '210ns' 630 631 # WIO 8 Gb, <=85C, half for >85C 632 tREFI = '3.9us' 633 634 # Greater of 2 CK or 15 ns, 2 CK @ 200 MHz = 10 ns 635 tWTR = '15ns' 636 637 # Default same rank rd-to-wr bus turnaround to 2 CK, @200 MHz = 10 ns 638 tRTW = '10ns' 639 640 # Default different rank bus delay to 2 CK, @200 MHz = 10 ns 641 tCS = '10ns' 642 643 # Activate to activate irrespective of density and speed grade 644 tRRD = '10.0ns' 645 646 # Two instead of four activation window 647 tXAW = '50ns' 648 activation_limit = 2 649 650 # The WideIO specification does not provide current information 651 652# A single LPDDR3 x32 interface (one command/address bus), with 653# default timings based on a LPDDR3-1600 4 Gbit part (Micron 654# EDF8132A1MC) in a 1x32 configuration. 655class LPDDR3_1600_x32(DRAMCtrl): 656 # No DLL for LPDDR3 657 dll = False 658 659 # size of device 660 device_size = '512MB' 661 662 # 1x32 configuration, 1 device with a 32-bit interface 663 device_bus_width = 32 664 665 # LPDDR3 is a BL8 device 666 burst_length = 8 667 668 # Each device has a page (row buffer) size of 4KB 669 device_rowbuffer_size = '4kB' 670 671 # 1x32 configuration, so 1 device 672 devices_per_rank = 1 673 674 # Technically the datasheet is a dual-rank package, but for 675 # comparison with the LPDDR2 config we stick to a single rank 676 ranks_per_channel = 1 677 678 # LPDDR3 has 8 banks in all configurations 679 banks_per_rank = 8 680 681 # 800 MHz 682 tCK = '1.25ns' 683 684 tRCD = '18ns' 685 686 # 12 CK read latency, 6 CK write latency @ 800 MHz, 1.25 ns cycle time 687 tCL = '15ns' 688 689 tRAS = '42ns' 690 tWR = '15ns' 691 692 # Greater of 4 CK or 7.5 ns, 4 CK @ 800 MHz = 5 ns 693 tRTP = '7.5ns' 694 695 # Pre-charge one bank 18 ns (all banks 21 ns) 696 tRP = '18ns' 697 698 # 8 beats across a x32 DDR interface translates to 4 clocks @ 800 MHz. 699 # Note this is a BL8 DDR device. 700 # Requests larger than 32 bytes are broken down into multiple requests 701 # in the controller 702 tBURST = '5ns' 703 704 # LPDDR3, 4 Gb 705 tRFC = '130ns' 706 tREFI = '3.9us' 707 708 # Irrespective of speed grade, tWTR is 7.5 ns 709 tWTR = '7.5ns' 710 711 # Default same rank rd-to-wr bus turnaround to 2 CK, @800 MHz = 2.5 ns 712 tRTW = '2.5ns' 713 714 # Default different rank bus delay to 2 CK, @800 MHz = 2.5 ns 715 tCS = '2.5ns' 716 717 # Activate to activate irrespective of density and speed grade 718 tRRD = '10.0ns' 719 720 # Irrespective of size, tFAW is 50 ns 721 tXAW = '50ns' 722 activation_limit = 4 723 724 # Current values from datasheet 725 IDD0 = '8mA' 726 IDD02 = '60mA' 727 IDD2N = '0.8mA' 728 IDD2N2 = '26mA' 729 IDD3N = '2mA' 730 IDD3N2 = '34mA' 731 IDD4W = '2mA' 732 IDD4W2 = '190mA' 733 IDD4R = '2mA' 734 IDD4R2 = '230mA' 735 IDD5 = '28mA' 736 IDD52 = '150mA' 737 VDD = '1.8V' 738 VDD2 = '1.2V' 739 740# A single GDDR5 x64 interface, with 741# default timings based on a GDDR5-4000 1 Gbit part (SK Hynix 742# H5GQ1H24AFR) in a 2x32 configuration. 743class GDDR5_4000_x64(DRAMCtrl): 744 # size of device 745 device_size = '128MB' 746 747 # 2x32 configuration, 1 device with a 32-bit interface 748 device_bus_width = 32 749 750 # GDDR5 is a BL8 device 751 burst_length = 8 752 753 # Each device has a page (row buffer) size of 2Kbits (256Bytes) 754 device_rowbuffer_size = '256B' 755 756 # 2x32 configuration, so 2 devices 757 devices_per_rank = 2 758 759 # assume single rank 760 ranks_per_channel = 1 761 762 # GDDR5 has 4 bank groups 763 bank_groups_per_rank = 4 764 765 # GDDR5 has 16 banks with 4 bank groups 766 banks_per_rank = 16 767 768 # 1000 MHz 769 tCK = '1ns' 770 771 # 8 beats across an x64 interface translates to 2 clocks @ 1000 MHz 772 # Data bus runs @2000 Mhz => DDR ( data runs at 4000 MHz ) 773 # 8 beats at 4000 MHz = 2 beats at 1000 MHz 774 # tBURST is equivalent to the CAS-to-CAS delay (tCCD) 775 # With bank group architectures, tBURST represents the CAS-to-CAS 776 # delay for bursts to different bank groups (tCCD_S) 777 tBURST = '2ns' 778 779 # @1000MHz data rate, tCCD_L is 3 CK 780 # CAS-to-CAS delay for bursts to the same bank group 781 # tBURST is equivalent to tCCD_S; no explicit parameter required 782 # for CAS-to-CAS delay for bursts to different bank groups 783 tCCD_L = '3ns'; 784 785 tRCD = '12ns' 786 787 # tCL is not directly found in datasheet and assumed equal tRCD 788 tCL = '12ns' 789 790 tRP = '12ns' 791 tRAS = '28ns' 792 793 # RRD_S (different bank group) 794 # RRD_S is 5.5 ns in datasheet. 795 # rounded to the next multiple of tCK 796 tRRD = '6ns' 797 798 # RRD_L (same bank group) 799 # RRD_L is 5.5 ns in datasheet. 800 # rounded to the next multiple of tCK 801 tRRD_L = '6ns' 802 803 tXAW = '23ns' 804 805 # tXAW < 4 x tRRD. 806 # Therefore, activation limit is set to 0 807 activation_limit = 0 808 809 tRFC = '65ns' 810 tWR = '12ns' 811 812 # Here using the average of WTR_S and WTR_L 813 tWTR = '5ns' 814 815 # Read-to-Precharge 2 CK 816 tRTP = '2ns' 817 818 # Assume 2 cycles 819 tRTW = '2ns' 820 821 # Default different rank bus delay to 2 CK, @1000 MHz = 2 ns 822 tCS = '2ns' 823 tREFI = '3.9us' 824