DRAMCtrl.py revision 10429:025a459edb87
1# Copyright (c) 2012-2014 ARM Limited 2# All rights reserved. 3# 4# The license below extends only to copyright in the software and shall 5# not be construed as granting a license to any other intellectual 6# property including but not limited to intellectual property relating 7# to a hardware implementation of the functionality of the software 8# licensed hereunder. You may use the software subject to the license 9# terms below provided that you ensure that this notice is replicated 10# unmodified and in its entirety in all distributions of the software, 11# modified or unmodified, in source code or in binary form. 12# 13# Copyright (c) 2013 Amin Farmahini-Farahani 14# All rights reserved. 15# 16# Redistribution and use in source and binary forms, with or without 17# modification, are permitted provided that the following conditions are 18# met: redistributions of source code must retain the above copyright 19# notice, this list of conditions and the following disclaimer; 20# redistributions in binary form must reproduce the above copyright 21# notice, this list of conditions and the following disclaimer in the 22# documentation and/or other materials provided with the distribution; 23# neither the name of the copyright holders nor the names of its 24# contributors may be used to endorse or promote products derived from 25# this software without specific prior written permission. 26# 27# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38# 39# Authors: Andreas Hansson 40# Ani Udipi 41 42from m5.params import * 43from AbstractMemory import * 44 45# Enum for memory scheduling algorithms, currently First-Come 46# First-Served and a First-Row Hit then First-Come First-Served 47class MemSched(Enum): vals = ['fcfs', 'frfcfs'] 48 49# Enum for the address mapping. With Ch, Ra, Ba, Ro and Co denoting 50# channel, rank, bank, row and column, respectively, and going from 51# MSB to LSB. Available are RoRaBaChCo and RoRaBaCoCh, that are 52# suitable for an open-page policy, optimising for sequential accesses 53# hitting in the open row. For a closed-page policy, RoCoRaBaCh 54# maximises parallelism. 55class AddrMap(Enum): vals = ['RoRaBaChCo', 'RoRaBaCoCh', 'RoCoRaBaCh'] 56 57# Enum for the page policy, either open, open_adaptive, close, or 58# close_adaptive. 59class PageManage(Enum): vals = ['open', 'open_adaptive', 'close', 60 'close_adaptive'] 61 62# DRAMCtrl is a single-channel single-ported DRAM controller model 63# that aims to model the most important system-level performance 64# effects of a DRAM without getting into too much detail of the DRAM 65# itself. 66class DRAMCtrl(AbstractMemory): 67 type = 'DRAMCtrl' 68 cxx_header = "mem/dram_ctrl.hh" 69 70 # single-ported on the system interface side, instantiate with a 71 # bus in front of the controller for multiple ports 72 port = SlavePort("Slave port") 73 74 # the basic configuration of the controller architecture 75 write_buffer_size = Param.Unsigned(64, "Number of write queue entries") 76 read_buffer_size = Param.Unsigned(32, "Number of read queue entries") 77 78 # threshold in percent for when to forcefully trigger writes and 79 # start emptying the write buffer 80 write_high_thresh_perc = Param.Percent(85, "Threshold to force writes") 81 82 # threshold in percentage for when to start writes if the read 83 # queue is empty 84 write_low_thresh_perc = Param.Percent(50, "Threshold to start writes") 85 86 # minimum write bursts to schedule before switching back to reads 87 min_writes_per_switch = Param.Unsigned(16, "Minimum write bursts before " 88 "switching to reads") 89 90 # scheduler, address map and page policy 91 mem_sched_policy = Param.MemSched('frfcfs', "Memory scheduling policy") 92 addr_mapping = Param.AddrMap('RoRaBaChCo', "Address mapping policy") 93 page_policy = Param.PageManage('open_adaptive', "Page management policy") 94 95 # enforce a limit on the number of accesses per row 96 max_accesses_per_row = Param.Unsigned(16, "Max accesses per row before " 97 "closing"); 98 99 # pipeline latency of the controller and PHY, split into a 100 # frontend part and a backend part, with reads and writes serviced 101 # by the queues only seeing the frontend contribution, and reads 102 # serviced by the memory seeing the sum of the two 103 static_frontend_latency = Param.Latency("10ns", "Static frontend latency") 104 static_backend_latency = Param.Latency("10ns", "Static backend latency") 105 106 # the physical organisation of the DRAM 107 device_bus_width = Param.Unsigned("data bus width in bits for each DRAM "\ 108 "device/chip") 109 burst_length = Param.Unsigned("Burst lenght (BL) in beats") 110 device_rowbuffer_size = Param.MemorySize("Page (row buffer) size per "\ 111 "device/chip") 112 devices_per_rank = Param.Unsigned("Number of devices/chips per rank") 113 ranks_per_channel = Param.Unsigned("Number of ranks per channel") 114 115 # default to 0 bank groups per rank, indicating bank group architecture 116 # is not used 117 # update per memory class when bank group architecture is supported 118 bank_groups_per_rank = Param.Unsigned(0, "Number of bank groups per rank") 119 banks_per_rank = Param.Unsigned("Number of banks per rank") 120 # only used for the address mapping as the controller by 121 # construction is a single channel and multiple controllers have 122 # to be instantiated for a multi-channel configuration 123 channels = Param.Unsigned(1, "Number of channels") 124 125 # timing behaviour and constraints - all in nanoseconds 126 127 # the base clock period of the DRAM 128 tCK = Param.Latency("Clock period") 129 130 # the amount of time in nanoseconds from issuing an activate command 131 # to the data being available in the row buffer for a read/write 132 tRCD = Param.Latency("RAS to CAS delay") 133 134 # the time from issuing a read/write command to seeing the actual data 135 tCL = Param.Latency("CAS latency") 136 137 # minimum time between a precharge and subsequent activate 138 tRP = Param.Latency("Row precharge time") 139 140 # minimum time between an activate and a precharge to the same row 141 tRAS = Param.Latency("ACT to PRE delay") 142 143 # minimum time between a write data transfer and a precharge 144 tWR = Param.Latency("Write recovery time") 145 146 # minimum time between a read and precharge command 147 tRTP = Param.Latency("Read to precharge") 148 149 # time to complete a burst transfer, typically the burst length 150 # divided by two due to the DDR bus, but by making it a parameter 151 # it is easier to also evaluate SDR memories like WideIO. 152 # This parameter has to account for burst length. 153 # Read/Write requests with data size larger than one full burst are broken 154 # down into multiple requests in the controller 155 # tBURST is equivalent to the CAS-to-CAS delay (tCCD) 156 # With bank group architectures, tBURST represents the CAS-to-CAS 157 # delay for bursts to different bank groups (tCCD_S) 158 tBURST = Param.Latency("Burst duration (for DDR burst length / 2 cycles)") 159 160 # CAS-to-CAS delay for bursts to the same bank group 161 # only utilized with bank group architectures; set to 0 for default case 162 # tBURST is equivalent to tCCD_S; no explicit parameter required 163 # for CAS-to-CAS delay for bursts to different bank groups 164 tCCD_L = Param.Latency("0ns", "Same bank group CAS to CAS delay") 165 166 # time taken to complete one refresh cycle (N rows in all banks) 167 tRFC = Param.Latency("Refresh cycle time") 168 169 # refresh command interval, how often a "ref" command needs 170 # to be sent. It is 7.8 us for a 64ms refresh requirement 171 tREFI = Param.Latency("Refresh command interval") 172 173 # write-to-read, same rank turnaround penalty 174 tWTR = Param.Latency("Write to read, same rank switching time") 175 176 # read-to-write, same rank turnaround penalty 177 tRTW = Param.Latency("Read to write, same rank switching time") 178 179 # rank-to-rank bus delay penalty 180 # this does not correlate to a memory timing parameter and encompasses: 181 # 1) RD-to-RD, 2) WR-to-WR, 3) RD-to-WR, and 4) WR-to-RD 182 # different rank bus delay 183 tCS = Param.Latency("Rank to rank switching time") 184 185 # minimum row activate to row activate delay time 186 tRRD = Param.Latency("ACT to ACT delay") 187 188 # only utilized with bank group architectures; set to 0 for default case 189 tRRD_L = Param.Latency("0ns", "Same bank group ACT to ACT delay") 190 191 # time window in which a maximum number of activates are allowed 192 # to take place, set to 0 to disable 193 tXAW = Param.Latency("X activation window") 194 activation_limit = Param.Unsigned("Max number of activates in window") 195 196 # Currently rolled into other params 197 ###################################################################### 198 199 # tRC - assumed to be tRAS + tRP 200 201# A single DDR3-1600 x64 channel (one command and address bus), with 202# timings based on a DDR3-1600 4 Gbit datasheet (Micron MT41J512M8) in 203# an 8x8 configuration, amounting to 4 Gbyte of memory. 204class DDR3_1600_x64(DRAMCtrl): 205 # 8x8 configuration, 8 devices each with an 8-bit interface 206 device_bus_width = 8 207 208 # DDR3 is a BL8 device 209 burst_length = 8 210 211 # Each device has a page (row buffer) size of 1 Kbyte (1K columns x8) 212 device_rowbuffer_size = '1kB' 213 214 # 8x8 configuration, so 8 devices 215 devices_per_rank = 8 216 217 # Use two ranks 218 ranks_per_channel = 2 219 220 # DDR3 has 8 banks in all configurations 221 banks_per_rank = 8 222 223 # 800 MHz 224 tCK = '1.25ns' 225 226 # 8 beats across an x64 interface translates to 4 clocks @ 800 MHz 227 tBURST = '5ns' 228 229 # DDR3-1600 11-11-11 230 tRCD = '13.75ns' 231 tCL = '13.75ns' 232 tRP = '13.75ns' 233 tRAS = '35ns' 234 tRRD = '6ns' 235 tXAW = '30ns' 236 activation_limit = 4 237 tRFC = '260ns' 238 239 tWR = '15ns' 240 241 # Greater of 4 CK or 7.5 ns 242 tWTR = '7.5ns' 243 244 # Greater of 4 CK or 7.5 ns 245 tRTP = '7.5ns' 246 247 # Default same rank rd-to-wr bus turnaround to 2 CK, @800 MHz = 2.5 ns 248 tRTW = '2.5ns' 249 250 # Default different rank bus delay to 2 CK, @800 MHz = 2.5 ns 251 tCS = '2.5ns' 252 253 # <=85C, half for >85C 254 tREFI = '7.8us' 255 256# A single DDR3-2133 x64 channel refining a selected subset of the 257# options for the DDR-1600 configuration, based on the same DDR3-1600 258# 4 Gbit datasheet (Micron MT41J512M8). Most parameters are kept 259# consistent across the two configurations. 260class DDR3_2133_x64(DDR3_1600_x64): 261 # 1066 MHz 262 tCK = '0.938ns' 263 264 # 8 beats across an x64 interface translates to 4 clocks @ 1066 MHz 265 tBURST = '3.752ns' 266 267 # DDR3-2133 14-14-14 268 tRCD = '13.09ns' 269 tCL = '13.09ns' 270 tRP = '13.09ns' 271 tRAS = '33ns' 272 tRRD = '5ns' 273 tXAW = '25ns' 274 275# A single DDR4-2400 x64 channel (one command and address bus), with 276# timings based on a DDR4-2400 4 Gbit datasheet (Samsung K4A4G085WD) 277# in an 8x8 configuration, amounting to 4 Gbyte of memory. 278class DDR4_2400_x64(DRAMCtrl): 279 # 8x8 configuration, 8 devices each with an 8-bit interface 280 device_bus_width = 8 281 282 # DDR4 is a BL8 device 283 burst_length = 8 284 285 # Each device has a page (row buffer) size of 1 Kbyte (1K columns x8) 286 device_rowbuffer_size = '1kB' 287 288 # 8x8 configuration, so 8 devices 289 devices_per_rank = 8 290 291 # Use a single rank 292 ranks_per_channel = 1 293 294 # DDR4 has 2 (x16) or 4 (x4 and x8) bank groups 295 # Set to 4 for x4, x8 case 296 bank_groups_per_rank = 4 297 298 # DDR4 has 16 banks (4 bank groups) in all 299 # configurations. Currently we do not capture the additional 300 # constraints incurred by the bank groups 301 banks_per_rank = 16 302 303 # 1200 MHz 304 tCK = '0.833ns' 305 306 # 8 beats across an x64 interface translates to 4 clocks @ 1200 MHz 307 # tBURST is equivalent to the CAS-to-CAS delay (tCCD) 308 # With bank group architectures, tBURST represents the CAS-to-CAS 309 # delay for bursts to different bank groups (tCCD_S) 310 tBURST = '3.333ns' 311 312 # @2400 data rate, tCCD_L is 6 CK 313 # CAS-to-CAS delay for bursts to the same bank group 314 # tBURST is equivalent to tCCD_S; no explicit parameter required 315 # for CAS-to-CAS delay for bursts to different bank groups 316 tCCD_L = '5ns'; 317 318 # DDR4-2400 17-17-17 319 tRCD = '14.16ns' 320 tCL = '14.16ns' 321 tRP = '14.16ns' 322 tRAS = '32ns' 323 324 # RRD_S (different bank group) for 1K page is MAX(4 CK, 3.3ns) 325 tRRD = '3.3ns' 326 327 # RRD_L (same bank group) for 1K page is MAX(4 CK, 4.9ns) 328 tRRD_L = '4.9ns'; 329 330 tXAW = '21ns' 331 activation_limit = 4 332 tRFC = '260ns' 333 334 tWR = '15ns' 335 336 # Here using the average of WTR_S and WTR_L 337 tWTR = '5ns' 338 339 # Greater of 4 CK or 7.5 ns 340 tRTP = '7.5ns' 341 342 # Default same rank rd-to-wr bus turnaround to 2 CK, @1200 MHz = 1.666 ns 343 tRTW = '1.666ns' 344 345 # Default different rank bus delay to 2 CK, @1200 MHz = 1.666 ns 346 tCS = '1.666ns' 347 348 # <=85C, half for >85C 349 tREFI = '7.8us' 350 351# A single LPDDR2-S4 x32 interface (one command/address bus), with 352# default timings based on a LPDDR2-1066 4 Gbit part in a 1x32 353# configuration. 354class LPDDR2_S4_1066_x32(DRAMCtrl): 355 # 1x32 configuration, 1 device with a 32-bit interface 356 device_bus_width = 32 357 358 # LPDDR2_S4 is a BL4 and BL8 device 359 burst_length = 8 360 361 # Each device has a page (row buffer) size of 1KB 362 # (this depends on the memory density) 363 device_rowbuffer_size = '1kB' 364 365 # 1x32 configuration, so 1 device 366 devices_per_rank = 1 367 368 # Use a single rank 369 ranks_per_channel = 1 370 371 # LPDDR2-S4 has 8 banks in all configurations 372 banks_per_rank = 8 373 374 # 533 MHz 375 tCK = '1.876ns' 376 377 # Fixed at 15 ns 378 tRCD = '15ns' 379 380 # 8 CK read latency, 4 CK write latency @ 533 MHz, 1.876 ns cycle time 381 tCL = '15ns' 382 383 # Pre-charge one bank 15 ns (all banks 18 ns) 384 tRP = '15ns' 385 386 tRAS = '42ns' 387 tWR = '15ns' 388 389 # 6 CK read to precharge delay 390 tRTP = '11.256ns' 391 392 # 8 beats across an x32 DDR interface translates to 4 clocks @ 533 MHz. 393 # Note this is a BL8 DDR device. 394 # Requests larger than 32 bytes are broken down into multiple requests 395 # in the controller 396 tBURST = '7.5ns' 397 398 # LPDDR2-S4, 4 Gbit 399 tRFC = '130ns' 400 tREFI = '3.9us' 401 402 # Irrespective of speed grade, tWTR is 7.5 ns 403 tWTR = '7.5ns' 404 405 # Default same rank rd-to-wr bus turnaround to 2 CK, @533 MHz = 3.75 ns 406 tRTW = '3.75ns' 407 408 # Default different rank bus delay to 2 CK, @533 MHz = 3.75 ns 409 tCS = '3.75ns' 410 411 # Activate to activate irrespective of density and speed grade 412 tRRD = '10.0ns' 413 414 # Irrespective of density, tFAW is 50 ns 415 tXAW = '50ns' 416 activation_limit = 4 417 418# A single WideIO x128 interface (one command and address bus), with 419# default timings based on an estimated WIO-200 8 Gbit part. 420class WideIO_200_x128(DRAMCtrl): 421 # 1x128 configuration, 1 device with a 128-bit interface 422 device_bus_width = 128 423 424 # This is a BL4 device 425 burst_length = 4 426 427 # Each device has a page (row buffer) size of 4KB 428 # (this depends on the memory density) 429 device_rowbuffer_size = '4kB' 430 431 # 1x128 configuration, so 1 device 432 devices_per_rank = 1 433 434 # Use one rank for a one-high die stack 435 ranks_per_channel = 1 436 437 # WideIO has 4 banks in all configurations 438 banks_per_rank = 4 439 440 # 200 MHz 441 tCK = '5ns' 442 443 # WIO-200 444 tRCD = '18ns' 445 tCL = '18ns' 446 tRP = '18ns' 447 tRAS = '42ns' 448 tWR = '15ns' 449 # Read to precharge is same as the burst 450 tRTP = '20ns' 451 452 # 4 beats across an x128 SDR interface translates to 4 clocks @ 200 MHz. 453 # Note this is a BL4 SDR device. 454 tBURST = '20ns' 455 456 # WIO 8 Gb 457 tRFC = '210ns' 458 459 # WIO 8 Gb, <=85C, half for >85C 460 tREFI = '3.9us' 461 462 # Greater of 2 CK or 15 ns, 2 CK @ 200 MHz = 10 ns 463 tWTR = '15ns' 464 465 # Default same rank rd-to-wr bus turnaround to 2 CK, @200 MHz = 10 ns 466 tRTW = '10ns' 467 468 # Default different rank bus delay to 2 CK, @200 MHz = 10 ns 469 tCS = '10ns' 470 471 # Activate to activate irrespective of density and speed grade 472 tRRD = '10.0ns' 473 474 # Two instead of four activation window 475 tXAW = '50ns' 476 activation_limit = 2 477 478# A single LPDDR3 x32 interface (one command/address bus), with 479# default timings based on a LPDDR3-1600 4 Gbit part in a 1x32 480# configuration 481class LPDDR3_1600_x32(DRAMCtrl): 482 # 1x32 configuration, 1 device with a 32-bit interface 483 device_bus_width = 32 484 485 # LPDDR3 is a BL8 device 486 burst_length = 8 487 488 # Each device has a page (row buffer) size of 4KB 489 device_rowbuffer_size = '4kB' 490 491 # 1x32 configuration, so 1 device 492 devices_per_rank = 1 493 494 # Use a single rank 495 ranks_per_channel = 1 496 497 # LPDDR3 has 8 banks in all configurations 498 banks_per_rank = 8 499 500 # 800 MHz 501 tCK = '1.25ns' 502 503 # Fixed at 15 ns 504 tRCD = '15ns' 505 506 # 12 CK read latency, 6 CK write latency @ 800 MHz, 1.25 ns cycle time 507 tCL = '15ns' 508 509 tRAS = '42ns' 510 tWR = '15ns' 511 512 # Greater of 4 CK or 7.5 ns, 4 CK @ 800 MHz = 5 ns 513 tRTP = '7.5ns' 514 515 # Pre-charge one bank 15 ns (all banks 18 ns) 516 tRP = '15ns' 517 518 # 8 beats across a x32 DDR interface translates to 4 clocks @ 800 MHz. 519 # Note this is a BL8 DDR device. 520 # Requests larger than 32 bytes are broken down into multiple requests 521 # in the controller 522 tBURST = '5ns' 523 524 # LPDDR3, 4 Gb 525 tRFC = '130ns' 526 tREFI = '3.9us' 527 528 # Irrespective of speed grade, tWTR is 7.5 ns 529 tWTR = '7.5ns' 530 531 # Default same rank rd-to-wr bus turnaround to 2 CK, @800 MHz = 2.5 ns 532 tRTW = '2.5ns' 533 534 # Default different rank bus delay to 2 CK, @800 MHz = 2.5 ns 535 tCS = '2.5ns' 536 537 # Activate to activate irrespective of density and speed grade 538 tRRD = '10.0ns' 539 540 # Irrespective of size, tFAW is 50 ns 541 tXAW = '50ns' 542 activation_limit = 4 543