fetch_unit.cc revision 11697
1/*
2 * Copyright (c) 2014-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Author: Brad Beckmann, Sooraj Puthoor
34 */
35
36#include "gpu-compute/fetch_unit.hh"
37
38#include "debug/GPUFetch.hh"
39#include "debug/GPUPort.hh"
40#include "debug/GPUTLB.hh"
41#include "gpu-compute/compute_unit.hh"
42#include "gpu-compute/gpu_dyn_inst.hh"
43#include "gpu-compute/gpu_static_inst.hh"
44#include "gpu-compute/shader.hh"
45#include "gpu-compute/wavefront.hh"
46#include "mem/ruby/system/RubySystem.hh"
47
48uint32_t FetchUnit::globalFetchUnitID;
49
50FetchUnit::FetchUnit(const ComputeUnitParams* params) :
51    timingSim(true),
52    computeUnit(nullptr),
53    fetchScheduler(params),
54    waveList(nullptr)
55{
56}
57
58FetchUnit::~FetchUnit()
59{
60    fetchQueue.clear();
61    fetchStatusQueue.clear();
62}
63
64void
65FetchUnit::init(ComputeUnit *cu)
66{
67    computeUnit = cu;
68    timingSim = computeUnit->shader->timingSim;
69    fetchQueue.clear();
70    fetchStatusQueue.resize(computeUnit->shader->n_wf);
71
72    for (int j = 0; j < computeUnit->shader->n_wf; ++j) {
73        fetchStatusQueue[j] = std::make_pair(waveList->at(j), false);
74    }
75
76    fetchScheduler.bindList(&fetchQueue);
77}
78
79void
80FetchUnit::exec()
81{
82    // re-evaluate waves which are marked as not ready for fetch
83    for (int j = 0; j < computeUnit->shader->n_wf; ++j) {
84        // Following code assumes 64-bit opertaion and all insts are
85        // represented by 64-bit pointers to inst objects.
86        Wavefront *curWave = fetchStatusQueue[j].first;
87        assert (curWave);
88
89        // The wavefront has to be active, the IB occupancy has to be
90        // 4 or less instructions and it can not have any branches to
91        // prevent speculative instruction fetches
92        if (!fetchStatusQueue[j].second) {
93            if (curWave->status == Wavefront::S_RUNNING &&
94                curWave->instructionBuffer.size() <= 4 &&
95                !curWave->instructionBufferHasBranch() &&
96                !curWave->pendingFetch) {
97                fetchQueue.push_back(curWave);
98                fetchStatusQueue[j].second = true;
99            }
100        }
101    }
102
103    // Fetch only if there is some wave ready to be fetched
104    // An empty fetchQueue will cause the schedular to panic
105    if (fetchQueue.size()) {
106        Wavefront *waveToBeFetched = fetchScheduler.chooseWave();
107        waveToBeFetched->pendingFetch = true;
108        fetchStatusQueue[waveToBeFetched->wfSlotId].second = false;
109        initiateFetch(waveToBeFetched);
110    }
111}
112
113void
114FetchUnit::initiateFetch(Wavefront *wavefront)
115{
116    // calculate the virtual address to fetch from the SQC
117    Addr vaddr = wavefront->pc();
118
119    /**
120     * the instruction buffer holds one instruction per entry, regardless
121     * of the underlying instruction's size. the PC, however, addresses
122     * instrutions on a 32b granularity so we must account for that here.
123    */
124    for (int i = 0; i < wavefront->instructionBuffer.size(); ++i) {
125        vaddr +=
126            wavefront->instructionBuffer.at(i)->staticInstruction()->instSize();
127    }
128    vaddr = wavefront->basePtr +  vaddr;
129
130    DPRINTF(GPUTLB, "CU%d: WF[%d][%d]: Initiating fetch translation: %#x\n",
131            computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId, vaddr);
132
133    // Since this is an instruction prefetch, if you're split then just finish
134    // out the current line.
135    unsigned block_size = RubySystem::getBlockSizeBytes();
136    // check for split accesses
137    Addr split_addr = roundDown(vaddr + block_size - 1, block_size);
138    unsigned size = block_size;
139
140    if (split_addr > vaddr) {
141        // misaligned access, just grab the rest of the line
142        size = split_addr - vaddr;
143    }
144
145    // set up virtual request
146    Request *req = new Request(0, vaddr, size, Request::INST_FETCH,
147                               computeUnit->masterId(), 0, 0, 0);
148
149    PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
150    // This fetchBlock is kind of faux right now - because the translations so
151    // far don't actually return Data
152    uint64_t fetchBlock;
153    pkt->dataStatic(&fetchBlock);
154
155    if (timingSim) {
156        // SenderState needed on Return
157        pkt->senderState = new ComputeUnit::ITLBPort::SenderState(wavefront);
158
159        // Sender State needed by TLB hierarchy
160        pkt->senderState =
161            new TheISA::GpuTLB::TranslationState(BaseTLB::Execute,
162                                                 computeUnit->shader->gpuTc,
163                                                 false, pkt->senderState);
164
165        if (computeUnit->sqcTLBPort->isStalled()) {
166            assert(computeUnit->sqcTLBPort->retries.size() > 0);
167
168            DPRINTF(GPUTLB, "Failed to send TLB req for FETCH addr %#x\n",
169                    vaddr);
170
171            computeUnit->sqcTLBPort->retries.push_back(pkt);
172        } else if (!computeUnit->sqcTLBPort->sendTimingReq(pkt)) {
173            // Stall the data port;
174            // No more packet is issued till
175            // ruby indicates resources are freed by
176            // a recvReqRetry() call back on this port.
177            computeUnit->sqcTLBPort->stallPort();
178
179            DPRINTF(GPUTLB, "Failed to send TLB req for FETCH addr %#x\n",
180                    vaddr);
181
182            computeUnit->sqcTLBPort->retries.push_back(pkt);
183        } else {
184            DPRINTF(GPUTLB, "sent FETCH translation request for %#x\n", vaddr);
185        }
186    } else {
187        pkt->senderState =
188            new TheISA::GpuTLB::TranslationState(BaseTLB::Execute,
189                                                 computeUnit->shader->gpuTc);
190
191        computeUnit->sqcTLBPort->sendFunctional(pkt);
192
193        TheISA::GpuTLB::TranslationState *sender_state =
194             safe_cast<TheISA::GpuTLB::TranslationState*>(pkt->senderState);
195
196        delete sender_state->tlbEntry;
197        delete sender_state;
198        // fetch the instructions from the SQC when we operate in
199        // functional mode only
200        fetch(pkt, wavefront);
201    }
202}
203
204void
205FetchUnit::fetch(PacketPtr pkt, Wavefront *wavefront)
206{
207    assert(pkt->req->hasPaddr());
208    assert(pkt->req->hasSize());
209
210    DPRINTF(GPUFetch, "CU%d: WF[%d][%d]: Fetch Access: %#x\n",
211            computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId,
212            pkt->req->getPaddr());
213
214    // this is necessary because the GPU TLB receives packets instead of
215    // requests. when the translation is complete, all relevent fields in the
216    // request will be populated, but not in the packet. here we create the
217    // new packet so we can set the size, addr, and proper flags.
218    PacketPtr oldPkt = pkt;
219    pkt = new Packet(oldPkt->req, oldPkt->cmd);
220    delete oldPkt;
221
222    TheGpuISA::RawMachInst *data =
223        new TheGpuISA::RawMachInst[pkt->req->getSize() /
224        sizeof(TheGpuISA::RawMachInst)];
225
226    pkt->dataDynamic<TheGpuISA::RawMachInst>(data);
227
228    // New SenderState for the memory access
229    pkt->senderState = new ComputeUnit::SQCPort::SenderState(wavefront);
230
231    if (timingSim) {
232        // translation is done. Send the appropriate timing memory request.
233
234        if (!computeUnit->sqcPort->sendTimingReq(pkt)) {
235            computeUnit->sqcPort->retries.push_back(std::make_pair(pkt,
236                                                                   wavefront));
237
238            DPRINTF(GPUPort, "CU%d: WF[%d][%d]: Fetch addr %#x failed!\n",
239                    computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId,
240                    pkt->req->getPaddr());
241        } else {
242            DPRINTF(GPUPort, "CU%d: WF[%d][%d]: Fetch addr %#x sent!\n",
243                    computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId,
244                    pkt->req->getPaddr());
245        }
246    } else {
247        computeUnit->sqcPort->sendFunctional(pkt);
248        processFetchReturn(pkt);
249    }
250}
251
252void
253FetchUnit::processFetchReturn(PacketPtr pkt)
254{
255    ComputeUnit::SQCPort::SenderState *sender_state =
256        safe_cast<ComputeUnit::SQCPort::SenderState*>(pkt->senderState);
257
258    Wavefront *wavefront = sender_state->wavefront;
259
260    DPRINTF(GPUFetch, "CU%d: WF[%d][%d]: Fetch addr %#x returned "
261            "%d bytes, %d instructions!\n", computeUnit->cu_id,
262            wavefront->simdId, wavefront->wfSlotId, pkt->req->getPaddr(),
263            pkt->req->getSize(), pkt->req->getSize() /
264            sizeof(TheGpuISA::RawMachInst));
265
266    if (wavefront->dropFetch) {
267        assert(wavefront->instructionBuffer.empty());
268        wavefront->dropFetch = false;
269    } else {
270        TheGpuISA::RawMachInst *inst_index_ptr =
271            (TheGpuISA::RawMachInst*)pkt->getPtr<uint8_t>();
272
273        assert(wavefront->instructionBuffer.size() <= 4);
274
275        for (int i = 0; i < pkt->req->getSize() /
276             sizeof(TheGpuISA::RawMachInst); ++i) {
277            GPUStaticInst *inst_ptr = decoder.decode(inst_index_ptr[i]);
278
279            assert(inst_ptr);
280
281            if (inst_ptr->instSize() == 8) {
282                /**
283                 * this instruction occupies 2 consecutive
284                 * entries in the instruction array, the
285                 * second of which contains a nullptr. so if
286                 * this inst is 8 bytes we advance two entries
287                 * instead of 1
288                 */
289                ++i;
290            }
291
292            DPRINTF(GPUFetch, "CU%d: WF[%d][%d]: added %s\n",
293                    computeUnit->cu_id, wavefront->simdId,
294                    wavefront->wfSlotId, inst_ptr->disassemble());
295
296            GPUDynInstPtr gpuDynInst =
297                std::make_shared<GPUDynInst>(computeUnit, wavefront, inst_ptr,
298                                             computeUnit->getAndIncSeqNum());
299
300            wavefront->instructionBuffer.push_back(gpuDynInst);
301        }
302    }
303
304    wavefront->pendingFetch = false;
305
306    delete pkt->senderState;
307    delete pkt->req;
308    delete pkt;
309}
310
311void
312FetchUnit::bindWaveList(std::vector<Wavefront*> *wave_list)
313{
314    waveList = wave_list;
315}
316