compute_unit.cc revision 12680:91f4d6668b4f
1/*
2 * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Author: John Kalamatianos, Anthony Gutierrez
34 */
35#include "gpu-compute/compute_unit.hh"
36
37#include <limits>
38
39#include "base/output.hh"
40#include "debug/GPUDisp.hh"
41#include "debug/GPUExec.hh"
42#include "debug/GPUFetch.hh"
43#include "debug/GPUMem.hh"
44#include "debug/GPUPort.hh"
45#include "debug/GPUPrefetch.hh"
46#include "debug/GPUSync.hh"
47#include "debug/GPUTLB.hh"
48#include "gpu-compute/dispatcher.hh"
49#include "gpu-compute/gpu_dyn_inst.hh"
50#include "gpu-compute/gpu_static_inst.hh"
51#include "gpu-compute/ndrange.hh"
52#include "gpu-compute/shader.hh"
53#include "gpu-compute/simple_pool_manager.hh"
54#include "gpu-compute/vector_register_file.hh"
55#include "gpu-compute/wavefront.hh"
56#include "mem/page_table.hh"
57#include "sim/process.hh"
58
59ComputeUnit::ComputeUnit(const Params *p) : MemObject(p), fetchStage(p),
60    scoreboardCheckStage(p), scheduleStage(p), execStage(p),
61    globalMemoryPipe(p), localMemoryPipe(p), rrNextMemID(0), rrNextALUWp(0),
62    cu_id(p->cu_id), vrf(p->vector_register_file), numSIMDs(p->num_SIMDs),
63    spBypassPipeLength(p->spbypass_pipe_length),
64    dpBypassPipeLength(p->dpbypass_pipe_length),
65    issuePeriod(p->issue_period),
66    numGlbMemUnits(p->num_global_mem_pipes),
67    numLocMemUnits(p->num_shared_mem_pipes),
68    perLaneTLB(p->perLaneTLB), prefetchDepth(p->prefetch_depth),
69    prefetchStride(p->prefetch_stride), prefetchType(p->prefetch_prev_type),
70    xact_cas_mode(p->xactCasMode), debugSegFault(p->debugSegFault),
71    functionalTLB(p->functionalTLB), localMemBarrier(p->localMemBarrier),
72    countPages(p->countPages), barrier_id(0),
73    vrfToCoalescerBusWidth(p->vrf_to_coalescer_bus_width),
74    coalescerToVrfBusWidth(p->coalescer_to_vrf_bus_width),
75    req_tick_latency(p->mem_req_latency * p->clk_domain->clockPeriod()),
76    resp_tick_latency(p->mem_resp_latency * p->clk_domain->clockPeriod()),
77    _masterId(p->system->getMasterId(this, "ComputeUnit")),
78    lds(*p->localDataStore), _cacheLineSize(p->system->cacheLineSize()),
79    globalSeqNum(0), wavefrontSize(p->wfSize),
80    kernelLaunchInst(new KernelLaunchStaticInst())
81{
82    /**
83     * This check is necessary because std::bitset only provides conversion
84     * to unsigned long or unsigned long long via to_ulong() or to_ullong().
85     * there are * a few places in the code where to_ullong() is used, however
86     * if VSZ is larger than a value the host can support then bitset will
87     * throw a runtime exception. we should remove all use of to_long() or
88     * to_ullong() so we can have VSZ greater than 64b, however until that is
89     * done this assert is required.
90     */
91    fatal_if(p->wfSize > std::numeric_limits<unsigned long long>::digits ||
92             p->wfSize <= 0,
93             "WF size is larger than the host can support");
94    fatal_if(!isPowerOf2(wavefrontSize),
95             "Wavefront size should be a power of 2");
96    // calculate how many cycles a vector load or store will need to transfer
97    // its data over the corresponding buses
98    numCyclesPerStoreTransfer =
99        (uint32_t)ceil((double)(wfSize() * sizeof(uint32_t)) /
100                (double)vrfToCoalescerBusWidth);
101
102    numCyclesPerLoadTransfer = (wfSize() * sizeof(uint32_t))
103                               / coalescerToVrfBusWidth;
104
105    lastVaddrWF.resize(numSIMDs);
106    wfList.resize(numSIMDs);
107
108    for (int j = 0; j < numSIMDs; ++j) {
109        lastVaddrWF[j].resize(p->n_wf);
110
111        for (int i = 0; i < p->n_wf; ++i) {
112            lastVaddrWF[j][i].resize(wfSize());
113
114            wfList[j].push_back(p->wavefronts[j * p->n_wf + i]);
115            wfList[j][i]->setParent(this);
116
117            for (int k = 0; k < wfSize(); ++k) {
118                lastVaddrWF[j][i][k] = 0;
119            }
120        }
121    }
122
123    lastVaddrSimd.resize(numSIMDs);
124
125    for (int i = 0; i < numSIMDs; ++i) {
126        lastVaddrSimd[i].resize(wfSize(), 0);
127    }
128
129    lastVaddrCU.resize(wfSize());
130
131    lds.setParent(this);
132
133    if (p->execPolicy == "OLDEST-FIRST") {
134        exec_policy = EXEC_POLICY::OLDEST;
135    } else if (p->execPolicy == "ROUND-ROBIN") {
136        exec_policy = EXEC_POLICY::RR;
137    } else {
138        fatal("Invalid WF execution policy (CU)\n");
139    }
140
141    memPort.resize(wfSize());
142
143    // resize the tlbPort vectorArray
144    int tlbPort_width = perLaneTLB ? wfSize() : 1;
145    tlbPort.resize(tlbPort_width);
146
147    cuExitCallback = new CUExitCallback(this);
148    registerExitCallback(cuExitCallback);
149
150    xactCasLoadMap.clear();
151    lastExecCycle.resize(numSIMDs, 0);
152
153    for (int i = 0; i < vrf.size(); ++i) {
154        vrf[i]->setParent(this);
155    }
156
157    numVecRegsPerSimd = vrf[0]->numRegs();
158}
159
160ComputeUnit::~ComputeUnit()
161{
162    // Delete wavefront slots
163    for (int j = 0; j < numSIMDs; ++j) {
164        for (int i = 0; i < shader->n_wf; ++i) {
165            delete wfList[j][i];
166        }
167        lastVaddrSimd[j].clear();
168    }
169    lastVaddrCU.clear();
170    readyList.clear();
171    waveStatusList.clear();
172    dispatchList.clear();
173    vectorAluInstAvail.clear();
174    delete cuExitCallback;
175    delete ldsPort;
176}
177
178void
179ComputeUnit::fillKernelState(Wavefront *w, NDRange *ndr)
180{
181    w->resizeRegFiles(ndr->q.cRegCount, ndr->q.sRegCount, ndr->q.dRegCount);
182
183    w->workGroupSz[0] = ndr->q.wgSize[0];
184    w->workGroupSz[1] = ndr->q.wgSize[1];
185    w->workGroupSz[2] = ndr->q.wgSize[2];
186    w->wgSz = w->workGroupSz[0] * w->workGroupSz[1] * w->workGroupSz[2];
187    w->gridSz[0] = ndr->q.gdSize[0];
188    w->gridSz[1] = ndr->q.gdSize[1];
189    w->gridSz[2] = ndr->q.gdSize[2];
190    w->kernelArgs = ndr->q.args;
191    w->privSizePerItem = ndr->q.privMemPerItem;
192    w->spillSizePerItem = ndr->q.spillMemPerItem;
193    w->roBase = ndr->q.roMemStart;
194    w->roSize = ndr->q.roMemTotal;
195    w->computeActualWgSz(ndr);
196}
197
198void
199ComputeUnit::updateEvents() {
200
201    if (!timestampVec.empty()) {
202        uint32_t vecSize = timestampVec.size();
203        uint32_t i = 0;
204        while (i < vecSize) {
205            if (timestampVec[i] <= shader->tick_cnt) {
206                std::pair<uint32_t, uint32_t> regInfo = regIdxVec[i];
207                vrf[regInfo.first]->markReg(regInfo.second, sizeof(uint32_t),
208                                            statusVec[i]);
209                timestampVec.erase(timestampVec.begin() + i);
210                regIdxVec.erase(regIdxVec.begin() + i);
211                statusVec.erase(statusVec.begin() + i);
212                --vecSize;
213                --i;
214            }
215            ++i;
216        }
217    }
218
219    for (int i = 0; i< numSIMDs; ++i) {
220        vrf[i]->updateEvents();
221    }
222}
223
224
225void
226ComputeUnit::startWavefront(Wavefront *w, int waveId, LdsChunk *ldsChunk,
227                            NDRange *ndr)
228{
229    static int _n_wave = 0;
230
231    VectorMask init_mask;
232    init_mask.reset();
233
234    for (int k = 0; k < wfSize(); ++k) {
235        if (k + waveId * wfSize() < w->actualWgSzTotal)
236            init_mask[k] = 1;
237    }
238
239    w->kernId = ndr->dispatchId;
240    w->wfId = waveId;
241    w->initMask = init_mask.to_ullong();
242
243    for (int k = 0; k < wfSize(); ++k) {
244        w->workItemId[0][k] = (k + waveId * wfSize()) % w->actualWgSz[0];
245        w->workItemId[1][k] = ((k + waveId * wfSize()) / w->actualWgSz[0]) %
246                             w->actualWgSz[1];
247        w->workItemId[2][k] = (k + waveId * wfSize()) /
248                              (w->actualWgSz[0] * w->actualWgSz[1]);
249
250        w->workItemFlatId[k] = w->workItemId[2][k] * w->actualWgSz[0] *
251            w->actualWgSz[1] + w->workItemId[1][k] * w->actualWgSz[0] +
252            w->workItemId[0][k];
253    }
254
255    w->barrierSlots = divCeil(w->actualWgSzTotal, wfSize());
256
257    w->barCnt.resize(wfSize(), 0);
258
259    w->maxBarCnt = 0;
260    w->oldBarrierCnt = 0;
261    w->barrierCnt = 0;
262
263    w->privBase = ndr->q.privMemStart;
264    ndr->q.privMemStart += ndr->q.privMemPerItem * wfSize();
265
266    w->spillBase = ndr->q.spillMemStart;
267    ndr->q.spillMemStart += ndr->q.spillMemPerItem * wfSize();
268
269    w->pushToReconvergenceStack(0, UINT32_MAX, init_mask.to_ulong());
270
271    // WG state
272    w->wgId = ndr->globalWgId;
273    w->dispatchId = ndr->dispatchId;
274    w->workGroupId[0] = w->wgId % ndr->numWg[0];
275    w->workGroupId[1] = (w->wgId / ndr->numWg[0]) % ndr->numWg[1];
276    w->workGroupId[2] = w->wgId / (ndr->numWg[0] * ndr->numWg[1]);
277
278    w->barrierId = barrier_id;
279    w->stalledAtBarrier = false;
280
281    // set the wavefront context to have a pointer to this section of the LDS
282    w->ldsChunk = ldsChunk;
283
284    int32_t refCount M5_VAR_USED =
285                    lds.increaseRefCounter(w->dispatchId, w->wgId);
286    DPRINTF(GPUDisp, "CU%d: increase ref ctr wg[%d] to [%d]\n",
287                    cu_id, w->wgId, refCount);
288
289    w->instructionBuffer.clear();
290
291    if (w->pendingFetch)
292        w->dropFetch = true;
293
294    // is this the last wavefront in the workgroup
295    // if set the spillWidth to be the remaining work-items
296    // so that the vector access is correct
297    if ((waveId + 1) * wfSize() >= w->actualWgSzTotal) {
298        w->spillWidth = w->actualWgSzTotal - (waveId * wfSize());
299    } else {
300        w->spillWidth = wfSize();
301    }
302
303    DPRINTF(GPUDisp, "Scheduling wfDynId/barrier_id %d/%d on CU%d: "
304            "WF[%d][%d]\n", _n_wave, barrier_id, cu_id, w->simdId, w->wfSlotId);
305
306    w->start(++_n_wave, ndr->q.code_ptr);
307}
308
309void
310ComputeUnit::StartWorkgroup(NDRange *ndr)
311{
312    // reserve the LDS capacity allocated to the work group
313    // disambiguated by the dispatch ID and workgroup ID, which should be
314    // globally unique
315    LdsChunk *ldsChunk = lds.reserveSpace(ndr->dispatchId, ndr->globalWgId,
316                                          ndr->q.ldsSize);
317
318    // Send L1 cache acquire
319    // isKernel + isAcquire = Kernel Begin
320    if (shader->impl_kern_boundary_sync) {
321        GPUDynInstPtr gpuDynInst =
322            std::make_shared<GPUDynInst>(this, nullptr, kernelLaunchInst,
323                                         getAndIncSeqNum());
324
325        gpuDynInst->useContinuation = false;
326        injectGlobalMemFence(gpuDynInst, true);
327    }
328
329    // calculate the number of 32-bit vector registers required by wavefront
330    int vregDemand = ndr->q.sRegCount + (2 * ndr->q.dRegCount);
331    int wave_id = 0;
332
333    // Assign WFs by spreading them across SIMDs, 1 WF per SIMD at a time
334    for (int m = 0; m < shader->n_wf * numSIMDs; ++m) {
335        Wavefront *w = wfList[m % numSIMDs][m / numSIMDs];
336        // Check if this wavefront slot is available:
337        // It must be stopped and not waiting
338        // for a release to complete S_RETURNING
339        if (w->status == Wavefront::S_STOPPED) {
340            fillKernelState(w, ndr);
341            // if we have scheduled all work items then stop
342            // scheduling wavefronts
343            if (wave_id * wfSize() >= w->actualWgSzTotal)
344                break;
345
346            // reserve vector registers for the scheduled wavefront
347            assert(vectorRegsReserved[m % numSIMDs] <= numVecRegsPerSimd);
348            uint32_t normSize = 0;
349
350            w->startVgprIndex = vrf[m % numSIMDs]->manager->
351                                    allocateRegion(vregDemand, &normSize);
352
353            w->reservedVectorRegs = normSize;
354            vectorRegsReserved[m % numSIMDs] += w->reservedVectorRegs;
355
356            startWavefront(w, wave_id, ldsChunk, ndr);
357            ++wave_id;
358        }
359    }
360    ++barrier_id;
361}
362
363int
364ComputeUnit::ReadyWorkgroup(NDRange *ndr)
365{
366    // Get true size of workgroup (after clamping to grid size)
367    int trueWgSize[3];
368    int trueWgSizeTotal = 1;
369
370    for (int d = 0; d < 3; ++d) {
371        trueWgSize[d] = std::min(ndr->q.wgSize[d], ndr->q.gdSize[d] -
372                                 ndr->wgId[d] * ndr->q.wgSize[d]);
373
374        trueWgSizeTotal *= trueWgSize[d];
375        DPRINTF(GPUDisp, "trueWgSize[%d] =  %d\n", d, trueWgSize[d]);
376    }
377
378    DPRINTF(GPUDisp, "trueWgSizeTotal =  %d\n", trueWgSizeTotal);
379
380    // calculate the number of 32-bit vector registers required by each
381    // work item of the work group
382    int vregDemandPerWI = ndr->q.sRegCount + (2 * ndr->q.dRegCount);
383    bool vregAvail = true;
384    int numWfs = (trueWgSizeTotal + wfSize() - 1) / wfSize();
385    int freeWfSlots = 0;
386    // check if the total number of VGPRs required by all WFs of the WG
387    // fit in the VRFs of all SIMD units
388    assert((numWfs * vregDemandPerWI) <= (numSIMDs * numVecRegsPerSimd));
389    int numMappedWfs = 0;
390    std::vector<int> numWfsPerSimd;
391    numWfsPerSimd.resize(numSIMDs, 0);
392    // find how many free WF slots we have across all SIMDs
393    for (int j = 0; j < shader->n_wf; ++j) {
394        for (int i = 0; i < numSIMDs; ++i) {
395            if (wfList[i][j]->status == Wavefront::S_STOPPED) {
396                // count the number of free WF slots
397                ++freeWfSlots;
398                if (numMappedWfs < numWfs) {
399                    // count the WFs to be assigned per SIMD
400                    numWfsPerSimd[i]++;
401                }
402                numMappedWfs++;
403            }
404        }
405    }
406
407    // if there are enough free WF slots then find if there are enough
408    // free VGPRs per SIMD based on the WF->SIMD mapping
409    if (freeWfSlots >= numWfs) {
410        for (int j = 0; j < numSIMDs; ++j) {
411            // find if there are enough free VGPR regions in the SIMD's VRF
412            // to accommodate the WFs of the new WG that would be mapped to
413            // this SIMD unit
414            vregAvail = vrf[j]->manager->canAllocate(numWfsPerSimd[j],
415                                                     vregDemandPerWI);
416
417            // stop searching if there is at least one SIMD
418            // whose VRF does not have enough free VGPR pools.
419            // This is because a WG is scheduled only if ALL
420            // of its WFs can be scheduled
421            if (!vregAvail)
422                break;
423        }
424    }
425
426    DPRINTF(GPUDisp, "Free WF slots =  %d, VGPR Availability = %d\n",
427            freeWfSlots, vregAvail);
428
429    if (!vregAvail) {
430        ++numTimesWgBlockedDueVgprAlloc;
431    }
432
433    // Return true if enough WF slots to submit workgroup and if there are
434    // enough VGPRs to schedule all WFs to their SIMD units
435    if (!lds.canReserve(ndr->q.ldsSize)) {
436        wgBlockedDueLdsAllocation++;
437    }
438
439    // Return true if (a) there are enough free WF slots to submit
440    // workgrounp and (b) if there are enough VGPRs to schedule all WFs to their
441    // SIMD units and (c) if there is enough space in LDS
442    return freeWfSlots >= numWfs && vregAvail && lds.canReserve(ndr->q.ldsSize);
443}
444
445int
446ComputeUnit::AllAtBarrier(uint32_t _barrier_id, uint32_t bcnt, uint32_t bslots)
447{
448    DPRINTF(GPUSync, "CU%d: Checking for All At Barrier\n", cu_id);
449    int ccnt = 0;
450
451    for (int i_simd = 0; i_simd < numSIMDs; ++i_simd) {
452        for (int i_wf = 0; i_wf < shader->n_wf; ++i_wf) {
453            Wavefront *w = wfList[i_simd][i_wf];
454
455            if (w->status == Wavefront::S_RUNNING) {
456                DPRINTF(GPUSync, "Checking WF[%d][%d]\n", i_simd, i_wf);
457
458                DPRINTF(GPUSync, "wf->barrier_id = %d, _barrier_id = %d\n",
459                        w->barrierId, _barrier_id);
460
461                DPRINTF(GPUSync, "wf->barrier_cnt %d, bcnt = %d\n",
462                        w->barrierCnt, bcnt);
463            }
464
465            if (w->status == Wavefront::S_RUNNING &&
466                w->barrierId == _barrier_id && w->barrierCnt == bcnt &&
467                !w->outstandingReqs) {
468                ++ccnt;
469
470                DPRINTF(GPUSync, "WF[%d][%d] at barrier, increment ccnt to "
471                        "%d\n", i_simd, i_wf, ccnt);
472            }
473        }
474    }
475
476    DPRINTF(GPUSync, "CU%d: returning allAtBarrier ccnt = %d, bslots = %d\n",
477            cu_id, ccnt, bslots);
478
479    return ccnt == bslots;
480}
481
482//  Check if the current wavefront is blocked on additional resources.
483bool
484ComputeUnit::cedeSIMD(int simdId, int wfSlotId)
485{
486    bool cede = false;
487
488    // If --xact-cas-mode option is enabled in run.py, then xact_cas_ld
489    // magic instructions will impact the scheduling of wavefronts
490    if (xact_cas_mode) {
491        /*
492         * When a wavefront calls xact_cas_ld, it adds itself to a per address
493         * queue. All per address queues are managed by the xactCasLoadMap.
494         *
495         * A wavefront is not blocked if: it is not in ANY per address queue or
496         * if it is at the head of a per address queue.
497         */
498        for (auto itMap : xactCasLoadMap) {
499            std::list<waveIdentifier> curWaveIDQueue = itMap.second.waveIDQueue;
500
501            if (!curWaveIDQueue.empty()) {
502                for (auto it : curWaveIDQueue) {
503                    waveIdentifier cur_wave = it;
504
505                    if (cur_wave.simdId == simdId &&
506                        cur_wave.wfSlotId == wfSlotId) {
507                        // 2 possibilities
508                        // 1: this WF has a green light
509                        // 2: another WF has a green light
510                        waveIdentifier owner_wave = curWaveIDQueue.front();
511
512                        if (owner_wave.simdId != cur_wave.simdId ||
513                            owner_wave.wfSlotId != cur_wave.wfSlotId) {
514                            // possibility 2
515                            cede = true;
516                            break;
517                        } else {
518                            // possibility 1
519                            break;
520                        }
521                    }
522                }
523            }
524        }
525    }
526
527    return cede;
528}
529
530// Execute one clock worth of work on the ComputeUnit.
531void
532ComputeUnit::exec()
533{
534    updateEvents();
535    // Execute pipeline stages in reverse order to simulate
536    // the pipeline latency
537    globalMemoryPipe.exec();
538    localMemoryPipe.exec();
539    execStage.exec();
540    scheduleStage.exec();
541    scoreboardCheckStage.exec();
542    fetchStage.exec();
543
544    totalCycles++;
545}
546
547void
548ComputeUnit::init()
549{
550    // Initialize CU Bus models
551    glbMemToVrfBus.init(&shader->tick_cnt, shader->ticks(1));
552    locMemToVrfBus.init(&shader->tick_cnt, shader->ticks(1));
553    nextGlbMemBus = 0;
554    nextLocMemBus = 0;
555    fatal_if(numGlbMemUnits > 1,
556             "No support for multiple Global Memory Pipelines exists!!!");
557    vrfToGlobalMemPipeBus.resize(numGlbMemUnits);
558    for (int j = 0; j < numGlbMemUnits; ++j) {
559        vrfToGlobalMemPipeBus[j] = WaitClass();
560        vrfToGlobalMemPipeBus[j].init(&shader->tick_cnt, shader->ticks(1));
561    }
562
563    fatal_if(numLocMemUnits > 1,
564             "No support for multiple Local Memory Pipelines exists!!!");
565    vrfToLocalMemPipeBus.resize(numLocMemUnits);
566    for (int j = 0; j < numLocMemUnits; ++j) {
567        vrfToLocalMemPipeBus[j] = WaitClass();
568        vrfToLocalMemPipeBus[j].init(&shader->tick_cnt, shader->ticks(1));
569    }
570    vectorRegsReserved.resize(numSIMDs, 0);
571    aluPipe.resize(numSIMDs);
572    wfWait.resize(numSIMDs + numLocMemUnits + numGlbMemUnits);
573
574    for (int i = 0; i < numSIMDs + numLocMemUnits + numGlbMemUnits; ++i) {
575        wfWait[i] = WaitClass();
576        wfWait[i].init(&shader->tick_cnt, shader->ticks(1));
577    }
578
579    for (int i = 0; i < numSIMDs; ++i) {
580        aluPipe[i] = WaitClass();
581        aluPipe[i].init(&shader->tick_cnt, shader->ticks(1));
582    }
583
584    // Setup space for call args
585    for (int j = 0; j < numSIMDs; ++j) {
586        for (int i = 0; i < shader->n_wf; ++i) {
587            wfList[j][i]->initCallArgMem(shader->funcargs_size, wavefrontSize);
588        }
589    }
590
591    // Initializing pipeline resources
592    readyList.resize(numSIMDs + numGlbMemUnits + numLocMemUnits);
593    waveStatusList.resize(numSIMDs);
594
595    for (int j = 0; j < numSIMDs; ++j) {
596        for (int i = 0; i < shader->n_wf; ++i) {
597            waveStatusList[j].push_back(
598                std::make_pair(wfList[j][i], BLOCKED));
599        }
600    }
601
602    for (int j = 0; j < (numSIMDs + numGlbMemUnits + numLocMemUnits); ++j) {
603        dispatchList.push_back(std::make_pair((Wavefront*)nullptr, EMPTY));
604    }
605
606    fetchStage.init(this);
607    scoreboardCheckStage.init(this);
608    scheduleStage.init(this);
609    execStage.init(this);
610    globalMemoryPipe.init(this);
611    localMemoryPipe.init(this);
612    // initialize state for statistics calculation
613    vectorAluInstAvail.resize(numSIMDs, false);
614    shrMemInstAvail = 0;
615    glbMemInstAvail = 0;
616}
617
618bool
619ComputeUnit::DataPort::recvTimingResp(PacketPtr pkt)
620{
621    // Ruby has completed the memory op. Schedule the mem_resp_event at the
622    // appropriate cycle to process the timing memory response
623    // This delay represents the pipeline delay
624    SenderState *sender_state = safe_cast<SenderState*>(pkt->senderState);
625    int index = sender_state->port_index;
626    GPUDynInstPtr gpuDynInst = sender_state->_gpuDynInst;
627
628    // Is the packet returned a Kernel End or Barrier
629    if (pkt->req->isKernel() && pkt->req->isRelease()) {
630        Wavefront *w =
631            computeUnit->wfList[gpuDynInst->simdId][gpuDynInst->wfSlotId];
632
633        // Check if we are waiting on Kernel End Release
634        if (w->status == Wavefront::S_RETURNING) {
635            DPRINTF(GPUDisp, "CU%d: WF[%d][%d][wv=%d]: WG id completed %d\n",
636                    computeUnit->cu_id, w->simdId, w->wfSlotId,
637                    w->wfDynId, w->kernId);
638
639            computeUnit->shader->dispatcher->notifyWgCompl(w);
640            w->status = Wavefront::S_STOPPED;
641        } else {
642            w->outstandingReqs--;
643        }
644
645        DPRINTF(GPUSync, "CU%d: WF[%d][%d]: barrier_cnt = %d\n",
646                computeUnit->cu_id, gpuDynInst->simdId,
647                gpuDynInst->wfSlotId, w->barrierCnt);
648
649        if (gpuDynInst->useContinuation) {
650            assert(!gpuDynInst->isNoScope());
651            gpuDynInst->execContinuation(gpuDynInst->staticInstruction(),
652                                           gpuDynInst);
653        }
654
655        delete pkt->senderState;
656        delete pkt->req;
657        delete pkt;
658        return true;
659    } else if (pkt->req->isKernel() && pkt->req->isAcquire()) {
660        if (gpuDynInst->useContinuation) {
661            assert(!gpuDynInst->isNoScope());
662            gpuDynInst->execContinuation(gpuDynInst->staticInstruction(),
663                                           gpuDynInst);
664        }
665
666        delete pkt->senderState;
667        delete pkt->req;
668        delete pkt;
669        return true;
670    }
671
672    EventFunctionWrapper *mem_resp_event =
673        computeUnit->memPort[index]->createMemRespEvent(pkt);
674
675    DPRINTF(GPUPort, "CU%d: WF[%d][%d]: index %d, addr %#x received!\n",
676            computeUnit->cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
677            index, pkt->req->getPaddr());
678
679    computeUnit->schedule(mem_resp_event,
680                          curTick() + computeUnit->resp_tick_latency);
681    return true;
682}
683
684void
685ComputeUnit::DataPort::recvReqRetry()
686{
687    int len = retries.size();
688
689    assert(len > 0);
690
691    for (int i = 0; i < len; ++i) {
692        PacketPtr pkt = retries.front().first;
693        GPUDynInstPtr gpuDynInst M5_VAR_USED = retries.front().second;
694        DPRINTF(GPUMem, "CU%d: WF[%d][%d]: retry mem inst addr %#x\n",
695                computeUnit->cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
696                pkt->req->getPaddr());
697
698        /** Currently Ruby can return false due to conflicts for the particular
699         *  cache block or address.  Thus other requests should be allowed to
700         *  pass and the data port should expect multiple retries. */
701        if (!sendTimingReq(pkt)) {
702            DPRINTF(GPUMem, "failed again!\n");
703            break;
704        } else {
705            DPRINTF(GPUMem, "successful!\n");
706            retries.pop_front();
707        }
708    }
709}
710
711bool
712ComputeUnit::SQCPort::recvTimingResp(PacketPtr pkt)
713{
714    computeUnit->fetchStage.processFetchReturn(pkt);
715
716    return true;
717}
718
719void
720ComputeUnit::SQCPort::recvReqRetry()
721{
722    int len = retries.size();
723
724    assert(len > 0);
725
726    for (int i = 0; i < len; ++i) {
727        PacketPtr pkt = retries.front().first;
728        Wavefront *wavefront M5_VAR_USED = retries.front().second;
729        DPRINTF(GPUFetch, "CU%d: WF[%d][%d]: retrying FETCH addr %#x\n",
730                computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId,
731                pkt->req->getPaddr());
732        if (!sendTimingReq(pkt)) {
733            DPRINTF(GPUFetch, "failed again!\n");
734            break;
735        } else {
736            DPRINTF(GPUFetch, "successful!\n");
737            retries.pop_front();
738        }
739    }
740}
741
742void
743ComputeUnit::sendRequest(GPUDynInstPtr gpuDynInst, int index, PacketPtr pkt)
744{
745    // There must be a way around this check to do the globalMemStart...
746    Addr tmp_vaddr = pkt->req->getVaddr();
747
748    updatePageDivergenceDist(tmp_vaddr);
749
750    pkt->req->setVirt(pkt->req->getAsid(), tmp_vaddr, pkt->req->getSize(),
751                      pkt->req->getFlags(), pkt->req->masterId(),
752                      pkt->req->getPC());
753
754    // figure out the type of the request to set read/write
755    BaseTLB::Mode TLB_mode;
756    assert(pkt->isRead() || pkt->isWrite());
757
758    // Check write before read for atomic operations
759    // since atomic operations should use BaseTLB::Write
760    if (pkt->isWrite()){
761        TLB_mode = BaseTLB::Write;
762    } else if (pkt->isRead()) {
763        TLB_mode = BaseTLB::Read;
764    } else {
765        fatal("pkt is not a read nor a write\n");
766    }
767
768    tlbCycles -= curTick();
769    ++tlbRequests;
770
771    int tlbPort_index = perLaneTLB ? index : 0;
772
773    if (shader->timingSim) {
774        if (debugSegFault) {
775            Process *p = shader->gpuTc->getProcessPtr();
776            Addr vaddr = pkt->req->getVaddr();
777            unsigned size = pkt->getSize();
778
779            if ((vaddr + size - 1) % 64 < vaddr % 64) {
780                panic("CU%d: WF[%d][%d]: Access to addr %#x is unaligned!\n",
781                      cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId, vaddr);
782            }
783
784            Addr paddr;
785
786            if (!p->pTable->translate(vaddr, paddr)) {
787                if (!p->fixupStackFault(vaddr)) {
788                    panic("CU%d: WF[%d][%d]: Fault on addr %#x!\n",
789                          cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
790                          vaddr);
791                }
792            }
793        }
794
795        // This is the SenderState needed upon return
796        pkt->senderState = new DTLBPort::SenderState(gpuDynInst, index);
797
798        // This is the senderState needed by the TLB hierarchy to function
799        TheISA::GpuTLB::TranslationState *translation_state =
800          new TheISA::GpuTLB::TranslationState(TLB_mode, shader->gpuTc, false,
801                                               pkt->senderState);
802
803        pkt->senderState = translation_state;
804
805        if (functionalTLB) {
806            tlbPort[tlbPort_index]->sendFunctional(pkt);
807
808            // update the hitLevel distribution
809            int hit_level = translation_state->hitLevel;
810            assert(hit_level != -1);
811            hitsPerTLBLevel[hit_level]++;
812
813            // New SenderState for the memory access
814            X86ISA::GpuTLB::TranslationState *sender_state =
815                safe_cast<X86ISA::GpuTLB::TranslationState*>(pkt->senderState);
816
817            delete sender_state->tlbEntry;
818            delete sender_state->saved;
819            delete sender_state;
820
821            assert(pkt->req->hasPaddr());
822            assert(pkt->req->hasSize());
823
824            uint8_t *tmpData = pkt->getPtr<uint8_t>();
825
826            // this is necessary because the GPU TLB receives packets instead
827            // of requests. when the translation is complete, all relevent
828            // fields in the request will be populated, but not in the packet.
829            // here we create the new packet so we can set the size, addr,
830            // and proper flags.
831            PacketPtr oldPkt = pkt;
832            pkt = new Packet(oldPkt->req, oldPkt->cmd);
833            delete oldPkt;
834            pkt->dataStatic(tmpData);
835
836
837            // New SenderState for the memory access
838            pkt->senderState = new ComputeUnit::DataPort::SenderState(gpuDynInst,
839                                                             index, nullptr);
840
841            gpuDynInst->memStatusVector[pkt->getAddr()].push_back(index);
842            gpuDynInst->tlbHitLevel[index] = hit_level;
843
844
845            // translation is done. Schedule the mem_req_event at the
846            // appropriate cycle to send the timing memory request to ruby
847            EventFunctionWrapper *mem_req_event =
848                memPort[index]->createMemReqEvent(pkt);
849
850            DPRINTF(GPUPort, "CU%d: WF[%d][%d]: index %d, addr %#x data "
851                    "scheduled\n", cu_id, gpuDynInst->simdId,
852                    gpuDynInst->wfSlotId, index, pkt->req->getPaddr());
853
854            schedule(mem_req_event, curTick() + req_tick_latency);
855        } else if (tlbPort[tlbPort_index]->isStalled()) {
856            assert(tlbPort[tlbPort_index]->retries.size() > 0);
857
858            DPRINTF(GPUTLB, "CU%d: WF[%d][%d]: Translation for addr %#x "
859                    "failed!\n", cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
860                    tmp_vaddr);
861
862            tlbPort[tlbPort_index]->retries.push_back(pkt);
863        } else if (!tlbPort[tlbPort_index]->sendTimingReq(pkt)) {
864            // Stall the data port;
865            // No more packet will be issued till
866            // ruby indicates resources are freed by
867            // a recvReqRetry() call back on this port.
868            tlbPort[tlbPort_index]->stallPort();
869
870            DPRINTF(GPUTLB, "CU%d: WF[%d][%d]: Translation for addr %#x "
871                    "failed!\n", cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
872                    tmp_vaddr);
873
874            tlbPort[tlbPort_index]->retries.push_back(pkt);
875        } else {
876           DPRINTF(GPUTLB,
877                   "CU%d: WF[%d][%d]: Translation for addr %#x sent!\n",
878                   cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId, tmp_vaddr);
879        }
880    } else {
881        if (pkt->cmd == MemCmd::MemFenceReq) {
882            gpuDynInst->statusBitVector = VectorMask(0);
883        } else {
884            gpuDynInst->statusBitVector &= (~(1ll << index));
885        }
886
887        // New SenderState for the memory access
888        delete pkt->senderState;
889
890        // Because it's atomic operation, only need TLB translation state
891        pkt->senderState = new TheISA::GpuTLB::TranslationState(TLB_mode,
892                                                                shader->gpuTc);
893
894        tlbPort[tlbPort_index]->sendFunctional(pkt);
895
896        // the addr of the packet is not modified, so we need to create a new
897        // packet, or otherwise the memory access will have the old virtual
898        // address sent in the translation packet, instead of the physical
899        // address returned by the translation.
900        PacketPtr new_pkt = new Packet(pkt->req, pkt->cmd);
901        new_pkt->dataStatic(pkt->getPtr<uint8_t>());
902
903        // Translation is done. It is safe to send the packet to memory.
904        memPort[0]->sendFunctional(new_pkt);
905
906        DPRINTF(GPUMem, "CU%d: WF[%d][%d]: index %d: addr %#x\n", cu_id,
907                gpuDynInst->simdId, gpuDynInst->wfSlotId, index,
908                new_pkt->req->getPaddr());
909
910        // safe_cast the senderState
911        TheISA::GpuTLB::TranslationState *sender_state =
912             safe_cast<TheISA::GpuTLB::TranslationState*>(pkt->senderState);
913
914        delete sender_state->tlbEntry;
915        delete new_pkt;
916        delete pkt->senderState;
917        delete pkt->req;
918        delete pkt;
919    }
920}
921
922void
923ComputeUnit::sendSyncRequest(GPUDynInstPtr gpuDynInst, int index, PacketPtr pkt)
924{
925    EventFunctionWrapper *mem_req_event =
926        memPort[index]->createMemReqEvent(pkt);
927
928
929    // New SenderState for the memory access
930    pkt->senderState = new ComputeUnit::DataPort::SenderState(gpuDynInst, index,
931                                                              nullptr);
932
933    DPRINTF(GPUPort, "CU%d: WF[%d][%d]: index %d, addr %#x sync scheduled\n",
934            cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId, index,
935            pkt->req->getPaddr());
936
937    schedule(mem_req_event, curTick() + req_tick_latency);
938}
939
940void
941ComputeUnit::injectGlobalMemFence(GPUDynInstPtr gpuDynInst, bool kernelLaunch,
942                                  Request* req)
943{
944    assert(gpuDynInst->isGlobalSeg());
945
946    if (!req) {
947        req = new Request(0, 0, 0, 0, masterId(), 0, gpuDynInst->wfDynId);
948    }
949    req->setPaddr(0);
950    if (kernelLaunch) {
951        req->setFlags(Request::KERNEL);
952    }
953
954    // for non-kernel MemFence operations, memorder flags are set depending
955    // on which type of request is currently being sent, so this
956    // should be set by the caller (e.g. if an inst has acq-rel
957    // semantics, it will send one acquire req an one release req)
958    gpuDynInst->setRequestFlags(req, kernelLaunch);
959
960    // a mem fence must correspond to an acquire/release request
961    assert(req->isAcquire() || req->isRelease());
962
963    // create packet
964    PacketPtr pkt = new Packet(req, MemCmd::MemFenceReq);
965
966    // set packet's sender state
967    pkt->senderState =
968        new ComputeUnit::DataPort::SenderState(gpuDynInst, 0, nullptr);
969
970    // send the packet
971    sendSyncRequest(gpuDynInst, 0, pkt);
972}
973
974void
975ComputeUnit::DataPort::processMemRespEvent(PacketPtr pkt)
976{
977    DataPort::SenderState *sender_state =
978        safe_cast<DataPort::SenderState*>(pkt->senderState);
979
980    GPUDynInstPtr gpuDynInst = sender_state->_gpuDynInst;
981    ComputeUnit *compute_unit = computeUnit;
982
983    assert(gpuDynInst);
984
985    DPRINTF(GPUPort, "CU%d: WF[%d][%d]: Response for addr %#x, index %d\n",
986            compute_unit->cu_id, gpuDynInst->simdId, gpuDynInst->wfSlotId,
987            pkt->req->getPaddr(), index);
988
989    Addr paddr = pkt->req->getPaddr();
990
991    if (pkt->cmd != MemCmd::MemFenceResp) {
992        int index = gpuDynInst->memStatusVector[paddr].back();
993
994        DPRINTF(GPUMem, "Response for addr %#x, index %d\n",
995                pkt->req->getPaddr(), index);
996
997        gpuDynInst->memStatusVector[paddr].pop_back();
998        gpuDynInst->pAddr = pkt->req->getPaddr();
999
1000        if (pkt->isRead() || pkt->isWrite()) {
1001
1002            if (gpuDynInst->n_reg <= MAX_REGS_FOR_NON_VEC_MEM_INST) {
1003                gpuDynInst->statusBitVector &= (~(1ULL << index));
1004            } else {
1005                assert(gpuDynInst->statusVector[index] > 0);
1006                gpuDynInst->statusVector[index]--;
1007
1008                if (!gpuDynInst->statusVector[index])
1009                    gpuDynInst->statusBitVector &= (~(1ULL << index));
1010            }
1011
1012            DPRINTF(GPUMem, "bitvector is now %#x\n",
1013                    gpuDynInst->statusBitVector);
1014
1015            if (gpuDynInst->statusBitVector == VectorMask(0)) {
1016                auto iter = gpuDynInst->memStatusVector.begin();
1017                auto end = gpuDynInst->memStatusVector.end();
1018
1019                while (iter != end) {
1020                    assert(iter->second.empty());
1021                    ++iter;
1022                }
1023
1024                gpuDynInst->memStatusVector.clear();
1025
1026                if (gpuDynInst->n_reg > MAX_REGS_FOR_NON_VEC_MEM_INST)
1027                    gpuDynInst->statusVector.clear();
1028
1029                compute_unit->globalMemoryPipe.handleResponse(gpuDynInst);
1030
1031                DPRINTF(GPUMem, "CU%d: WF[%d][%d]: packet totally complete\n",
1032                        compute_unit->cu_id, gpuDynInst->simdId,
1033                        gpuDynInst->wfSlotId);
1034
1035                // after clearing the status vectors,
1036                // see if there is a continuation to perform
1037                // the continuation may generate more work for
1038                // this memory request
1039                if (gpuDynInst->useContinuation) {
1040                    assert(!gpuDynInst->isNoScope());
1041                    gpuDynInst->execContinuation(
1042                        gpuDynInst->staticInstruction(),
1043                        gpuDynInst);
1044                }
1045            }
1046        }
1047    } else {
1048        gpuDynInst->statusBitVector = VectorMask(0);
1049
1050        if (gpuDynInst->useContinuation) {
1051            assert(!gpuDynInst->isNoScope());
1052            gpuDynInst->execContinuation(gpuDynInst->staticInstruction(),
1053                                         gpuDynInst);
1054        }
1055    }
1056
1057    delete pkt->senderState;
1058    delete pkt->req;
1059    delete pkt;
1060}
1061
1062ComputeUnit*
1063ComputeUnitParams::create()
1064{
1065    return new ComputeUnit(this);
1066}
1067
1068bool
1069ComputeUnit::DTLBPort::recvTimingResp(PacketPtr pkt)
1070{
1071    Addr line = pkt->req->getPaddr();
1072
1073    DPRINTF(GPUTLB, "CU%d: DTLBPort received %#x->%#x\n", computeUnit->cu_id,
1074            pkt->req->getVaddr(), line);
1075
1076    assert(pkt->senderState);
1077    computeUnit->tlbCycles += curTick();
1078
1079    // pop off the TLB translation state
1080    TheISA::GpuTLB::TranslationState *translation_state =
1081               safe_cast<TheISA::GpuTLB::TranslationState*>(pkt->senderState);
1082
1083    // no PageFaults are permitted for data accesses
1084    if (!translation_state->tlbEntry->valid) {
1085        DTLBPort::SenderState *sender_state =
1086            safe_cast<DTLBPort::SenderState*>(translation_state->saved);
1087
1088        Wavefront *w M5_VAR_USED =
1089            computeUnit->wfList[sender_state->_gpuDynInst->simdId]
1090            [sender_state->_gpuDynInst->wfSlotId];
1091
1092        DPRINTFN("Wave %d couldn't tranlate vaddr %#x\n", w->wfDynId,
1093                 pkt->req->getVaddr());
1094    }
1095
1096    assert(translation_state->tlbEntry->valid);
1097
1098    // update the hitLevel distribution
1099    int hit_level = translation_state->hitLevel;
1100    computeUnit->hitsPerTLBLevel[hit_level]++;
1101
1102    delete translation_state->tlbEntry;
1103    assert(!translation_state->ports.size());
1104    pkt->senderState = translation_state->saved;
1105
1106    // for prefetch pkt
1107    BaseTLB::Mode TLB_mode = translation_state->tlbMode;
1108
1109    delete translation_state;
1110
1111    // use the original sender state to know how to close this transaction
1112    DTLBPort::SenderState *sender_state =
1113        safe_cast<DTLBPort::SenderState*>(pkt->senderState);
1114
1115    GPUDynInstPtr gpuDynInst = sender_state->_gpuDynInst;
1116    int mp_index = sender_state->portIndex;
1117    Addr vaddr = pkt->req->getVaddr();
1118    gpuDynInst->memStatusVector[line].push_back(mp_index);
1119    gpuDynInst->tlbHitLevel[mp_index] = hit_level;
1120
1121    MemCmd requestCmd;
1122
1123    if (pkt->cmd == MemCmd::ReadResp) {
1124        requestCmd = MemCmd::ReadReq;
1125    } else if (pkt->cmd == MemCmd::WriteResp) {
1126        requestCmd = MemCmd::WriteReq;
1127    } else if (pkt->cmd == MemCmd::SwapResp) {
1128        requestCmd = MemCmd::SwapReq;
1129    } else {
1130        panic("unsupported response to request conversion %s\n",
1131              pkt->cmd.toString());
1132    }
1133
1134    if (computeUnit->prefetchDepth) {
1135        int simdId = gpuDynInst->simdId;
1136        int wfSlotId = gpuDynInst->wfSlotId;
1137        Addr last = 0;
1138
1139        switch(computeUnit->prefetchType) {
1140        case Enums::PF_CU:
1141            last = computeUnit->lastVaddrCU[mp_index];
1142            break;
1143        case Enums::PF_PHASE:
1144            last = computeUnit->lastVaddrSimd[simdId][mp_index];
1145            break;
1146        case Enums::PF_WF:
1147            last = computeUnit->lastVaddrWF[simdId][wfSlotId][mp_index];
1148        default:
1149            break;
1150        }
1151
1152        DPRINTF(GPUPrefetch, "CU[%d][%d][%d][%d]: %#x was last\n",
1153                computeUnit->cu_id, simdId, wfSlotId, mp_index, last);
1154
1155        int stride = last ? (roundDown(vaddr, TheISA::PageBytes) -
1156                     roundDown(last, TheISA::PageBytes)) >> TheISA::PageShift
1157                     : 0;
1158
1159        DPRINTF(GPUPrefetch, "Stride is %d\n", stride);
1160
1161        computeUnit->lastVaddrCU[mp_index] = vaddr;
1162        computeUnit->lastVaddrSimd[simdId][mp_index] = vaddr;
1163        computeUnit->lastVaddrWF[simdId][wfSlotId][mp_index] = vaddr;
1164
1165        stride = (computeUnit->prefetchType == Enums::PF_STRIDE) ?
1166            computeUnit->prefetchStride: stride;
1167
1168        DPRINTF(GPUPrefetch, "%#x to: CU[%d][%d][%d][%d]\n", vaddr,
1169                computeUnit->cu_id, simdId, wfSlotId, mp_index);
1170
1171        DPRINTF(GPUPrefetch, "Prefetching from %#x:", vaddr);
1172
1173        // Prefetch Next few pages atomically
1174        for (int pf = 1; pf <= computeUnit->prefetchDepth; ++pf) {
1175            DPRINTF(GPUPrefetch, "%d * %d: %#x\n", pf, stride,
1176                    vaddr+stride*pf*TheISA::PageBytes);
1177
1178            if (!stride)
1179                break;
1180
1181            Request *prefetch_req = new Request(0, vaddr + stride * pf *
1182                                                TheISA::PageBytes,
1183                                                sizeof(uint8_t), 0,
1184                                                computeUnit->masterId(),
1185                                                0, 0, 0);
1186
1187            PacketPtr prefetch_pkt = new Packet(prefetch_req, requestCmd);
1188            uint8_t foo = 0;
1189            prefetch_pkt->dataStatic(&foo);
1190
1191            // Because it's atomic operation, only need TLB translation state
1192            prefetch_pkt->senderState =
1193                new TheISA::GpuTLB::TranslationState(TLB_mode,
1194                                                     computeUnit->shader->gpuTc,
1195                                                     true);
1196
1197            // Currently prefetches are zero-latency, hence the sendFunctional
1198            sendFunctional(prefetch_pkt);
1199
1200            /* safe_cast the senderState */
1201            TheISA::GpuTLB::TranslationState *tlb_state =
1202                 safe_cast<TheISA::GpuTLB::TranslationState*>(
1203                         prefetch_pkt->senderState);
1204
1205
1206            delete tlb_state->tlbEntry;
1207            delete tlb_state;
1208            delete prefetch_pkt->req;
1209            delete prefetch_pkt;
1210        }
1211    }
1212
1213    // First we must convert the response cmd back to a request cmd so that
1214    // the request can be sent through the cu's master port
1215    PacketPtr new_pkt = new Packet(pkt->req, requestCmd);
1216    new_pkt->dataStatic(pkt->getPtr<uint8_t>());
1217    delete pkt->senderState;
1218    delete pkt;
1219
1220    // New SenderState for the memory access
1221    new_pkt->senderState =
1222            new ComputeUnit::DataPort::SenderState(gpuDynInst, mp_index,
1223                                                   nullptr);
1224
1225    // translation is done. Schedule the mem_req_event at the appropriate
1226    // cycle to send the timing memory request to ruby
1227    EventFunctionWrapper *mem_req_event =
1228        computeUnit->memPort[mp_index]->createMemReqEvent(new_pkt);
1229
1230    DPRINTF(GPUPort, "CU%d: WF[%d][%d]: index %d, addr %#x data scheduled\n",
1231            computeUnit->cu_id, gpuDynInst->simdId,
1232            gpuDynInst->wfSlotId, mp_index, new_pkt->req->getPaddr());
1233
1234    computeUnit->schedule(mem_req_event, curTick() +
1235                          computeUnit->req_tick_latency);
1236
1237    return true;
1238}
1239
1240EventFunctionWrapper*
1241ComputeUnit::DataPort::createMemReqEvent(PacketPtr pkt)
1242{
1243    return new EventFunctionWrapper(
1244        [this, pkt]{ processMemReqEvent(pkt); },
1245        "ComputeUnit memory request event", true);
1246}
1247
1248EventFunctionWrapper*
1249ComputeUnit::DataPort::createMemRespEvent(PacketPtr pkt)
1250{
1251    return new EventFunctionWrapper(
1252        [this, pkt]{ processMemRespEvent(pkt); },
1253        "ComputeUnit memory response event", true);
1254}
1255
1256void
1257ComputeUnit::DataPort::processMemReqEvent(PacketPtr pkt)
1258{
1259    SenderState *sender_state = safe_cast<SenderState*>(pkt->senderState);
1260    GPUDynInstPtr gpuDynInst = sender_state->_gpuDynInst;
1261    ComputeUnit *compute_unit M5_VAR_USED = computeUnit;
1262
1263    if (!(sendTimingReq(pkt))) {
1264        retries.push_back(std::make_pair(pkt, gpuDynInst));
1265
1266        DPRINTF(GPUPort,
1267                "CU%d: WF[%d][%d]: index %d, addr %#x data req failed!\n",
1268                compute_unit->cu_id, gpuDynInst->simdId,
1269                gpuDynInst->wfSlotId, index,
1270                pkt->req->getPaddr());
1271    } else {
1272        DPRINTF(GPUPort,
1273                "CU%d: WF[%d][%d]: index %d, addr %#x data req sent!\n",
1274                compute_unit->cu_id, gpuDynInst->simdId,
1275                gpuDynInst->wfSlotId, index,
1276                pkt->req->getPaddr());
1277    }
1278}
1279
1280/*
1281 * The initial translation request could have been rejected,
1282 * if <retries> queue is not Retry sending the translation
1283 * request. sendRetry() is called from the peer port whenever
1284 * a translation completes.
1285 */
1286void
1287ComputeUnit::DTLBPort::recvReqRetry()
1288{
1289    int len = retries.size();
1290
1291    DPRINTF(GPUTLB, "CU%d: DTLB recvReqRetry - %d pending requests\n",
1292            computeUnit->cu_id, len);
1293
1294    assert(len > 0);
1295    assert(isStalled());
1296    // recvReqRetry is an indication that the resource on which this
1297    // port was stalling on is freed. So, remove the stall first
1298    unstallPort();
1299
1300    for (int i = 0; i < len; ++i) {
1301        PacketPtr pkt = retries.front();
1302        Addr vaddr M5_VAR_USED = pkt->req->getVaddr();
1303        DPRINTF(GPUTLB, "CU%d: retrying D-translaton for address%#x", vaddr);
1304
1305        if (!sendTimingReq(pkt)) {
1306            // Stall port
1307            stallPort();
1308            DPRINTF(GPUTLB, ": failed again\n");
1309            break;
1310        } else {
1311            DPRINTF(GPUTLB, ": successful\n");
1312            retries.pop_front();
1313        }
1314    }
1315}
1316
1317bool
1318ComputeUnit::ITLBPort::recvTimingResp(PacketPtr pkt)
1319{
1320    Addr line M5_VAR_USED = pkt->req->getPaddr();
1321    DPRINTF(GPUTLB, "CU%d: ITLBPort received %#x->%#x\n",
1322            computeUnit->cu_id, pkt->req->getVaddr(), line);
1323
1324    assert(pkt->senderState);
1325
1326    // pop off the TLB translation state
1327    TheISA::GpuTLB::TranslationState *translation_state =
1328                 safe_cast<TheISA::GpuTLB::TranslationState*>(pkt->senderState);
1329
1330    bool success = translation_state->tlbEntry->valid;
1331    delete translation_state->tlbEntry;
1332    assert(!translation_state->ports.size());
1333    pkt->senderState = translation_state->saved;
1334    delete translation_state;
1335
1336    // use the original sender state to know how to close this transaction
1337    ITLBPort::SenderState *sender_state =
1338        safe_cast<ITLBPort::SenderState*>(pkt->senderState);
1339
1340    // get the wavefront associated with this translation request
1341    Wavefront *wavefront = sender_state->wavefront;
1342    delete pkt->senderState;
1343
1344    if (success) {
1345        // pkt is reused in fetch(), don't delete it here.  However, we must
1346        // reset the command to be a request so that it can be sent through
1347        // the cu's master port
1348        assert(pkt->cmd == MemCmd::ReadResp);
1349        pkt->cmd = MemCmd::ReadReq;
1350
1351        computeUnit->fetchStage.fetch(pkt, wavefront);
1352    } else {
1353        if (wavefront->dropFetch) {
1354            assert(wavefront->instructionBuffer.empty());
1355            wavefront->dropFetch = false;
1356        }
1357
1358        wavefront->pendingFetch = 0;
1359    }
1360
1361    return true;
1362}
1363
1364/*
1365 * The initial translation request could have been rejected, if
1366 * <retries> queue is not empty. Retry sending the translation
1367 * request. sendRetry() is called from the peer port whenever
1368 * a translation completes.
1369 */
1370void
1371ComputeUnit::ITLBPort::recvReqRetry()
1372{
1373
1374    int len = retries.size();
1375    DPRINTF(GPUTLB, "CU%d: ITLB recvReqRetry - %d pending requests\n", len);
1376
1377    assert(len > 0);
1378    assert(isStalled());
1379
1380    // recvReqRetry is an indication that the resource on which this
1381    // port was stalling on is freed. So, remove the stall first
1382    unstallPort();
1383
1384    for (int i = 0; i < len; ++i) {
1385        PacketPtr pkt = retries.front();
1386        Addr vaddr M5_VAR_USED = pkt->req->getVaddr();
1387        DPRINTF(GPUTLB, "CU%d: retrying I-translaton for address%#x", vaddr);
1388
1389        if (!sendTimingReq(pkt)) {
1390            stallPort(); // Stall port
1391            DPRINTF(GPUTLB, ": failed again\n");
1392            break;
1393        } else {
1394            DPRINTF(GPUTLB, ": successful\n");
1395            retries.pop_front();
1396        }
1397    }
1398}
1399
1400void
1401ComputeUnit::regStats()
1402{
1403    MemObject::regStats();
1404
1405    vALUInsts
1406        .name(name() + ".valu_insts")
1407        .desc("Number of vector ALU insts issued.")
1408        ;
1409    vALUInstsPerWF
1410        .name(name() + ".valu_insts_per_wf")
1411        .desc("The avg. number of vector ALU insts issued per-wavefront.")
1412        ;
1413    sALUInsts
1414        .name(name() + ".salu_insts")
1415        .desc("Number of scalar ALU insts issued.")
1416        ;
1417    sALUInstsPerWF
1418        .name(name() + ".salu_insts_per_wf")
1419        .desc("The avg. number of scalar ALU insts issued per-wavefront.")
1420        ;
1421    instCyclesVALU
1422        .name(name() + ".inst_cycles_valu")
1423        .desc("Number of cycles needed to execute VALU insts.")
1424        ;
1425    instCyclesSALU
1426        .name(name() + ".inst_cycles_salu")
1427        .desc("Number of cycles needed to execute SALU insts.")
1428        ;
1429    threadCyclesVALU
1430        .name(name() + ".thread_cycles_valu")
1431        .desc("Number of thread cycles used to execute vector ALU ops. "
1432              "Similar to instCyclesVALU but multiplied by the number of "
1433              "active threads.")
1434        ;
1435    vALUUtilization
1436        .name(name() + ".valu_utilization")
1437        .desc("Percentage of active vector ALU threads in a wave.")
1438        ;
1439    ldsNoFlatInsts
1440        .name(name() + ".lds_no_flat_insts")
1441        .desc("Number of LDS insts issued, not including FLAT "
1442              "accesses that resolve to LDS.")
1443        ;
1444    ldsNoFlatInstsPerWF
1445        .name(name() + ".lds_no_flat_insts_per_wf")
1446        .desc("The avg. number of LDS insts (not including FLAT "
1447              "accesses that resolve to LDS) per-wavefront.")
1448        ;
1449    flatVMemInsts
1450        .name(name() + ".flat_vmem_insts")
1451        .desc("The number of FLAT insts that resolve to vmem issued.")
1452        ;
1453    flatVMemInstsPerWF
1454        .name(name() + ".flat_vmem_insts_per_wf")
1455        .desc("The average number of FLAT insts that resolve to vmem "
1456              "issued per-wavefront.")
1457        ;
1458    flatLDSInsts
1459        .name(name() + ".flat_lds_insts")
1460        .desc("The number of FLAT insts that resolve to LDS issued.")
1461        ;
1462    flatLDSInstsPerWF
1463        .name(name() + ".flat_lds_insts_per_wf")
1464        .desc("The average number of FLAT insts that resolve to LDS "
1465              "issued per-wavefront.")
1466        ;
1467    vectorMemWrites
1468        .name(name() + ".vector_mem_writes")
1469        .desc("Number of vector mem write insts (excluding FLAT insts).")
1470        ;
1471    vectorMemWritesPerWF
1472        .name(name() + ".vector_mem_writes_per_wf")
1473        .desc("The average number of vector mem write insts "
1474              "(excluding FLAT insts) per-wavefront.")
1475        ;
1476    vectorMemReads
1477        .name(name() + ".vector_mem_reads")
1478        .desc("Number of vector mem read insts (excluding FLAT insts).")
1479        ;
1480    vectorMemReadsPerWF
1481        .name(name() + ".vector_mem_reads_per_wf")
1482        .desc("The avg. number of vector mem read insts (excluding "
1483              "FLAT insts) per-wavefront.")
1484        ;
1485    scalarMemWrites
1486        .name(name() + ".scalar_mem_writes")
1487        .desc("Number of scalar mem write insts.")
1488        ;
1489    scalarMemWritesPerWF
1490        .name(name() + ".scalar_mem_writes_per_wf")
1491        .desc("The average number of scalar mem write insts per-wavefront.")
1492        ;
1493    scalarMemReads
1494        .name(name() + ".scalar_mem_reads")
1495        .desc("Number of scalar mem read insts.")
1496        ;
1497    scalarMemReadsPerWF
1498        .name(name() + ".scalar_mem_reads_per_wf")
1499        .desc("The average number of scalar mem read insts per-wavefront.")
1500        ;
1501
1502    vALUInstsPerWF = vALUInsts / completedWfs;
1503    sALUInstsPerWF = sALUInsts / completedWfs;
1504    vALUUtilization = (threadCyclesVALU / (64 * instCyclesVALU)) * 100;
1505    ldsNoFlatInstsPerWF = ldsNoFlatInsts / completedWfs;
1506    flatVMemInstsPerWF = flatVMemInsts / completedWfs;
1507    flatLDSInstsPerWF = flatLDSInsts / completedWfs;
1508    vectorMemWritesPerWF = vectorMemWrites / completedWfs;
1509    vectorMemReadsPerWF = vectorMemReads / completedWfs;
1510    scalarMemWritesPerWF = scalarMemWrites / completedWfs;
1511    scalarMemReadsPerWF = scalarMemReads / completedWfs;
1512
1513    tlbCycles
1514        .name(name() + ".tlb_cycles")
1515        .desc("total number of cycles for all uncoalesced requests")
1516        ;
1517
1518    tlbRequests
1519        .name(name() + ".tlb_requests")
1520        .desc("number of uncoalesced requests")
1521        ;
1522
1523    tlbLatency
1524        .name(name() + ".avg_translation_latency")
1525        .desc("Avg. translation latency for data translations")
1526        ;
1527
1528    tlbLatency = tlbCycles / tlbRequests;
1529
1530    hitsPerTLBLevel
1531       .init(4)
1532       .name(name() + ".TLB_hits_distribution")
1533       .desc("TLB hits distribution (0 for page table, x for Lx-TLB")
1534       ;
1535
1536    // fixed number of TLB levels
1537    for (int i = 0; i < 4; ++i) {
1538        if (!i)
1539            hitsPerTLBLevel.subname(i,"page_table");
1540        else
1541            hitsPerTLBLevel.subname(i, csprintf("L%d_TLB",i));
1542    }
1543
1544    execRateDist
1545        .init(0, 10, 2)
1546        .name(name() + ".inst_exec_rate")
1547        .desc("Instruction Execution Rate: Number of executed vector "
1548              "instructions per cycle")
1549        ;
1550
1551    ldsBankConflictDist
1552       .init(0, wfSize(), 2)
1553       .name(name() + ".lds_bank_conflicts")
1554       .desc("Number of bank conflicts per LDS memory packet")
1555       ;
1556
1557    ldsBankAccesses
1558        .name(name() + ".lds_bank_access_cnt")
1559        .desc("Total number of LDS bank accesses")
1560        ;
1561
1562    pageDivergenceDist
1563        // A wavefront can touch up to N pages per memory instruction where
1564        // N is equal to the wavefront size
1565        // The number of pages per bin can be configured (here it's 4).
1566       .init(1, wfSize(), 4)
1567       .name(name() + ".page_divergence_dist")
1568       .desc("pages touched per wf (over all mem. instr.)")
1569       ;
1570
1571    controlFlowDivergenceDist
1572        .init(1, wfSize(), 4)
1573        .name(name() + ".warp_execution_dist")
1574        .desc("number of lanes active per instruction (oval all instructions)")
1575        ;
1576
1577    activeLanesPerGMemInstrDist
1578        .init(1, wfSize(), 4)
1579        .name(name() + ".gmem_lanes_execution_dist")
1580        .desc("number of active lanes per global memory instruction")
1581        ;
1582
1583    activeLanesPerLMemInstrDist
1584        .init(1, wfSize(), 4)
1585        .name(name() + ".lmem_lanes_execution_dist")
1586        .desc("number of active lanes per local memory instruction")
1587        ;
1588
1589    numInstrExecuted
1590        .name(name() + ".num_instr_executed")
1591        .desc("number of instructions executed")
1592        ;
1593
1594    numVecOpsExecuted
1595        .name(name() + ".num_vec_ops_executed")
1596        .desc("number of vec ops executed (e.g. WF size/inst)")
1597        ;
1598
1599    totalCycles
1600        .name(name() + ".num_total_cycles")
1601        .desc("number of cycles the CU ran for")
1602        ;
1603
1604    ipc
1605        .name(name() + ".ipc")
1606        .desc("Instructions per cycle (this CU only)")
1607        ;
1608
1609    vpc
1610        .name(name() + ".vpc")
1611        .desc("Vector Operations per cycle (this CU only)")
1612        ;
1613
1614    numALUInstsExecuted
1615        .name(name() + ".num_alu_insts_executed")
1616        .desc("Number of dynamic non-GM memory insts executed")
1617        ;
1618
1619    wgBlockedDueLdsAllocation
1620        .name(name() + ".wg_blocked_due_lds_alloc")
1621        .desc("Workgroup blocked due to LDS capacity")
1622        ;
1623
1624    ipc = numInstrExecuted / totalCycles;
1625    vpc = numVecOpsExecuted / totalCycles;
1626
1627    numTimesWgBlockedDueVgprAlloc
1628        .name(name() + ".times_wg_blocked_due_vgpr_alloc")
1629        .desc("Number of times WGs are blocked due to VGPR allocation per SIMD")
1630        ;
1631
1632    dynamicGMemInstrCnt
1633        .name(name() + ".global_mem_instr_cnt")
1634        .desc("dynamic global memory instructions count")
1635        ;
1636
1637    dynamicLMemInstrCnt
1638        .name(name() + ".local_mem_instr_cnt")
1639        .desc("dynamic local memory intruction count")
1640        ;
1641
1642    numALUInstsExecuted = numInstrExecuted - dynamicGMemInstrCnt -
1643        dynamicLMemInstrCnt;
1644
1645    completedWfs
1646        .name(name() + ".num_completed_wfs")
1647        .desc("number of completed wavefronts")
1648        ;
1649
1650    numCASOps
1651        .name(name() + ".num_CAS_ops")
1652        .desc("number of compare and swap operations")
1653        ;
1654
1655    numFailedCASOps
1656        .name(name() + ".num_failed_CAS_ops")
1657        .desc("number of compare and swap operations that failed")
1658        ;
1659
1660    // register stats of pipeline stages
1661    fetchStage.regStats();
1662    scoreboardCheckStage.regStats();
1663    scheduleStage.regStats();
1664    execStage.regStats();
1665
1666    // register stats of memory pipeline
1667    globalMemoryPipe.regStats();
1668    localMemoryPipe.regStats();
1669}
1670
1671void
1672ComputeUnit::updateInstStats(GPUDynInstPtr gpuDynInst)
1673{
1674    if (gpuDynInst->isScalar()) {
1675        if (gpuDynInst->isALU() && !gpuDynInst->isWaitcnt()) {
1676            sALUInsts++;
1677            instCyclesSALU++;
1678        } else if (gpuDynInst->isLoad()) {
1679            scalarMemReads++;
1680        } else if (gpuDynInst->isStore()) {
1681            scalarMemWrites++;
1682        }
1683    } else {
1684        if (gpuDynInst->isALU()) {
1685            vALUInsts++;
1686            instCyclesVALU++;
1687            threadCyclesVALU += gpuDynInst->wavefront()->execMask().count();
1688        } else if (gpuDynInst->isFlat()) {
1689            if (gpuDynInst->isLocalMem()) {
1690                flatLDSInsts++;
1691            } else {
1692                flatVMemInsts++;
1693            }
1694        } else if (gpuDynInst->isLocalMem()) {
1695            ldsNoFlatInsts++;
1696        } else if (gpuDynInst->isLoad()) {
1697            vectorMemReads++;
1698        } else if (gpuDynInst->isStore()) {
1699            vectorMemWrites++;
1700        }
1701    }
1702}
1703
1704void
1705ComputeUnit::updatePageDivergenceDist(Addr addr)
1706{
1707    Addr virt_page_addr = roundDown(addr, TheISA::PageBytes);
1708
1709    if (!pagesTouched.count(virt_page_addr))
1710        pagesTouched[virt_page_addr] = 1;
1711    else
1712        pagesTouched[virt_page_addr]++;
1713}
1714
1715void
1716ComputeUnit::CUExitCallback::process()
1717{
1718    if (computeUnit->countPages) {
1719        std::ostream *page_stat_file =
1720            simout.create(computeUnit->name().c_str())->stream();
1721
1722        *page_stat_file << "page, wavefront accesses, workitem accesses" <<
1723            std::endl;
1724
1725        for (auto iter : computeUnit->pageAccesses) {
1726            *page_stat_file << std::hex << iter.first << ",";
1727            *page_stat_file << std::dec << iter.second.first << ",";
1728            *page_stat_file << std::dec << iter.second.second << std::endl;
1729        }
1730    }
1731 }
1732
1733bool
1734ComputeUnit::isDone() const
1735{
1736    for (int i = 0; i < numSIMDs; ++i) {
1737        if (!isSimdDone(i)) {
1738            return false;
1739        }
1740    }
1741
1742    bool glbMemBusRdy = true;
1743    for (int j = 0; j < numGlbMemUnits; ++j) {
1744        glbMemBusRdy &= vrfToGlobalMemPipeBus[j].rdy();
1745    }
1746    bool locMemBusRdy = true;
1747    for (int j = 0; j < numLocMemUnits; ++j) {
1748        locMemBusRdy &= vrfToLocalMemPipeBus[j].rdy();
1749    }
1750
1751    if (!globalMemoryPipe.isGMLdRespFIFOWrRdy() ||
1752        !globalMemoryPipe.isGMStRespFIFOWrRdy() ||
1753        !globalMemoryPipe.isGMReqFIFOWrRdy() || !localMemoryPipe.isLMReqFIFOWrRdy()
1754        || !localMemoryPipe.isLMRespFIFOWrRdy() || !locMemToVrfBus.rdy() ||
1755        !glbMemToVrfBus.rdy() || !locMemBusRdy || !glbMemBusRdy) {
1756        return false;
1757    }
1758
1759    return true;
1760}
1761
1762int32_t
1763ComputeUnit::getRefCounter(const uint32_t dispatchId, const uint32_t wgId) const
1764{
1765    return lds.getRefCounter(dispatchId, wgId);
1766}
1767
1768bool
1769ComputeUnit::isSimdDone(uint32_t simdId) const
1770{
1771    assert(simdId < numSIMDs);
1772
1773    for (int i=0; i < numGlbMemUnits; ++i) {
1774        if (!vrfToGlobalMemPipeBus[i].rdy())
1775            return false;
1776    }
1777    for (int i=0; i < numLocMemUnits; ++i) {
1778        if (!vrfToLocalMemPipeBus[i].rdy())
1779            return false;
1780    }
1781    if (!aluPipe[simdId].rdy()) {
1782        return false;
1783    }
1784
1785    for (int i_wf = 0; i_wf < shader->n_wf; ++i_wf){
1786        if (wfList[simdId][i_wf]->status != Wavefront::S_STOPPED) {
1787            return false;
1788        }
1789    }
1790
1791    return true;
1792}
1793
1794/**
1795 * send a general request to the LDS
1796 * make sure to look at the return value here as your request might be
1797 * NACK'd and returning false means that you have to have some backup plan
1798 */
1799bool
1800ComputeUnit::sendToLds(GPUDynInstPtr gpuDynInst)
1801{
1802    // this is just a request to carry the GPUDynInstPtr
1803    // back and forth
1804    Request *newRequest = new Request();
1805    newRequest->setPaddr(0x0);
1806
1807    // ReadReq is not evaluted by the LDS but the Packet ctor requires this
1808    PacketPtr newPacket = new Packet(newRequest, MemCmd::ReadReq);
1809
1810    // This is the SenderState needed upon return
1811    newPacket->senderState = new LDSPort::SenderState(gpuDynInst);
1812
1813    return ldsPort->sendTimingReq(newPacket);
1814}
1815
1816/**
1817 * get the result of packets sent to the LDS when they return
1818 */
1819bool
1820ComputeUnit::LDSPort::recvTimingResp(PacketPtr packet)
1821{
1822    const ComputeUnit::LDSPort::SenderState *senderState =
1823        dynamic_cast<ComputeUnit::LDSPort::SenderState *>(packet->senderState);
1824
1825    fatal_if(!senderState, "did not get the right sort of sender state");
1826
1827    GPUDynInstPtr gpuDynInst = senderState->getMemInst();
1828
1829    delete packet->senderState;
1830    delete packet->req;
1831    delete packet;
1832
1833    computeUnit->localMemoryPipe.getLMRespFIFO().push(gpuDynInst);
1834    return true;
1835}
1836
1837/**
1838 * attempt to send this packet, either the port is already stalled, the request
1839 * is nack'd and must stall or the request goes through
1840 * when a request cannot be sent, add it to the retries queue
1841 */
1842bool
1843ComputeUnit::LDSPort::sendTimingReq(PacketPtr pkt)
1844{
1845    ComputeUnit::LDSPort::SenderState *sender_state =
1846            dynamic_cast<ComputeUnit::LDSPort::SenderState*>(pkt->senderState);
1847    fatal_if(!sender_state, "packet without a valid sender state");
1848
1849    GPUDynInstPtr gpuDynInst M5_VAR_USED = sender_state->getMemInst();
1850
1851    if (isStalled()) {
1852        fatal_if(retries.empty(), "must have retries waiting to be stalled");
1853
1854        retries.push(pkt);
1855
1856        DPRINTF(GPUPort, "CU%d: WF[%d][%d]: LDS send failed!\n",
1857                        computeUnit->cu_id, gpuDynInst->simdId,
1858                        gpuDynInst->wfSlotId);
1859        return false;
1860    } else if (!MasterPort::sendTimingReq(pkt)) {
1861        // need to stall the LDS port until a recvReqRetry() is received
1862        // this indicates that there is more space
1863        stallPort();
1864        retries.push(pkt);
1865
1866        DPRINTF(GPUPort, "CU%d: WF[%d][%d]: addr %#x lds req failed!\n",
1867                computeUnit->cu_id, gpuDynInst->simdId,
1868                gpuDynInst->wfSlotId, pkt->req->getPaddr());
1869        return false;
1870    } else {
1871        DPRINTF(GPUPort, "CU%d: WF[%d][%d]: addr %#x lds req sent!\n",
1872                computeUnit->cu_id, gpuDynInst->simdId,
1873                gpuDynInst->wfSlotId, pkt->req->getPaddr());
1874        return true;
1875    }
1876}
1877
1878/**
1879 * the bus is telling the port that there is now space so retrying stalled
1880 * requests should work now
1881 * this allows the port to have a request be nack'd and then have the receiver
1882 * say when there is space, rather than simply retrying the send every cycle
1883 */
1884void
1885ComputeUnit::LDSPort::recvReqRetry()
1886{
1887    auto queueSize = retries.size();
1888
1889    DPRINTF(GPUPort, "CU%d: LDSPort recvReqRetry - %d pending requests\n",
1890            computeUnit->cu_id, queueSize);
1891
1892    fatal_if(queueSize < 1,
1893             "why was there a recvReqRetry() with no pending reqs?");
1894    fatal_if(!isStalled(),
1895             "recvReqRetry() happened when the port was not stalled");
1896
1897    unstallPort();
1898
1899    while (!retries.empty()) {
1900        PacketPtr packet = retries.front();
1901
1902        DPRINTF(GPUPort, "CU%d: retrying LDS send\n", computeUnit->cu_id);
1903
1904        if (!MasterPort::sendTimingReq(packet)) {
1905            // Stall port
1906            stallPort();
1907            DPRINTF(GPUPort, ": LDS send failed again\n");
1908            break;
1909        } else {
1910            DPRINTF(GPUTLB, ": LDS send successful\n");
1911            retries.pop();
1912        }
1913    }
1914}
1915