ns_gige.cc revision 1224
1/*
2 * Copyright (c) 2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/* @file
30 * Device module for modelling the National Semiconductor
31 * DP83820 ethernet controller.  Does not support priority queueing
32 */
33#include <cstdio>
34#include <deque>
35#include <string>
36
37#include "base/inet.hh"
38#include "cpu/exec_context.hh"
39#include "cpu/intr_control.hh"
40#include "dev/dma.hh"
41#include "dev/etherlink.hh"
42#include "dev/ns_gige.hh"
43#include "dev/pciconfigall.hh"
44#include "mem/bus/bus.hh"
45#include "mem/bus/dma_interface.hh"
46#include "mem/bus/pio_interface.hh"
47#include "mem/bus/pio_interface_impl.hh"
48#include "mem/functional_mem/memory_control.hh"
49#include "mem/functional_mem/physical_memory.hh"
50#include "sim/builder.hh"
51#include "sim/debug.hh"
52#include "sim/host.hh"
53#include "sim/stats.hh"
54#include "targetarch/vtophys.hh"
55
56const char *NsRxStateStrings[] =
57{
58    "rxIdle",
59    "rxDescRefr",
60    "rxDescRead",
61    "rxFifoBlock",
62    "rxFragWrite",
63    "rxDescWrite",
64    "rxAdvance"
65};
66
67const char *NsTxStateStrings[] =
68{
69    "txIdle",
70    "txDescRefr",
71    "txDescRead",
72    "txFifoBlock",
73    "txFragRead",
74    "txDescWrite",
75    "txAdvance"
76};
77
78const char *NsDmaState[] =
79{
80    "dmaIdle",
81    "dmaReading",
82    "dmaWriting",
83    "dmaReadWaiting",
84    "dmaWriteWaiting"
85};
86
87using namespace std;
88using namespace Net;
89
90///////////////////////////////////////////////////////////////////////
91//
92// NSGigE PCI Device
93//
94NSGigE::NSGigE(Params *p)
95    : PciDev(p), ioEnable(false),
96      txFifo(p->tx_fifo_size), rxFifo(p->rx_fifo_size),
97      txPacket(0), rxPacket(0), txPacketBufPtr(NULL), rxPacketBufPtr(NULL),
98      txXferLen(0), rxXferLen(0), txState(txIdle), txEnable(false),
99      CTDD(false),
100      txFragPtr(0), txDescCnt(0), txDmaState(dmaIdle), rxState(rxIdle),
101      rxEnable(false), CRDD(false), rxPktBytes(0),
102      rxFragPtr(0), rxDescCnt(0), rxDmaState(dmaIdle), extstsEnable(false),
103      rxDmaReadEvent(this), rxDmaWriteEvent(this),
104      txDmaReadEvent(this), txDmaWriteEvent(this),
105      dmaDescFree(p->dma_desc_free), dmaDataFree(p->dma_data_free),
106      txDelay(p->tx_delay), rxDelay(p->rx_delay),
107      rxKickTick(0), txKickTick(0),
108      txEvent(this), rxFilterEnable(p->rx_filter), acceptBroadcast(false),
109      acceptMulticast(false), acceptUnicast(false),
110      acceptPerfect(false), acceptArp(false),
111      physmem(p->pmem), intrTick(0), cpuPendingIntr(false),
112      intrEvent(0), interface(0)
113{
114    if (p->header_bus) {
115        pioInterface = newPioInterface(name(), p->hier,
116                                       p->header_bus, this,
117                                       &NSGigE::cacheAccess);
118
119        pioLatency = p->pio_latency * p->header_bus->clockRatio;
120
121        if (p->payload_bus)
122            dmaInterface = new DMAInterface<Bus>(name() + ".dma",
123                                                 p->header_bus,
124                                                 p->payload_bus, 1);
125        else
126            dmaInterface = new DMAInterface<Bus>(name() + ".dma",
127                                                 p->header_bus,
128                                                 p->header_bus, 1);
129    } else if (p->payload_bus) {
130        pioInterface = newPioInterface(name(), p->hier,
131                                       p->payload_bus, this,
132                                       &NSGigE::cacheAccess);
133
134        pioLatency = p->pio_latency * p->payload_bus->clockRatio;
135
136        dmaInterface = new DMAInterface<Bus>(name() + ".dma",
137                                             p->payload_bus,
138                                             p->payload_bus, 1);
139    }
140
141
142    intrDelay = US2Ticks(p->intr_delay);
143    dmaReadDelay = p->dma_read_delay;
144    dmaWriteDelay = p->dma_write_delay;
145    dmaReadFactor = p->dma_read_factor;
146    dmaWriteFactor = p->dma_write_factor;
147
148    regsReset();
149    memcpy(&rom.perfectMatch, p->eaddr.bytes(), ETH_ADDR_LEN);
150}
151
152NSGigE::~NSGigE()
153{}
154
155void
156NSGigE::regStats()
157{
158    txBytes
159        .name(name() + ".txBytes")
160        .desc("Bytes Transmitted")
161        .prereq(txBytes)
162        ;
163
164    rxBytes
165        .name(name() + ".rxBytes")
166        .desc("Bytes Received")
167        .prereq(rxBytes)
168        ;
169
170    txPackets
171        .name(name() + ".txPackets")
172        .desc("Number of Packets Transmitted")
173        .prereq(txBytes)
174        ;
175
176    rxPackets
177        .name(name() + ".rxPackets")
178        .desc("Number of Packets Received")
179        .prereq(rxBytes)
180        ;
181
182    txIpChecksums
183        .name(name() + ".txIpChecksums")
184        .desc("Number of tx IP Checksums done by device")
185        .precision(0)
186        .prereq(txBytes)
187        ;
188
189    rxIpChecksums
190        .name(name() + ".rxIpChecksums")
191        .desc("Number of rx IP Checksums done by device")
192        .precision(0)
193        .prereq(rxBytes)
194        ;
195
196    txTcpChecksums
197        .name(name() + ".txTcpChecksums")
198        .desc("Number of tx TCP Checksums done by device")
199        .precision(0)
200        .prereq(txBytes)
201        ;
202
203    rxTcpChecksums
204        .name(name() + ".rxTcpChecksums")
205        .desc("Number of rx TCP Checksums done by device")
206        .precision(0)
207        .prereq(rxBytes)
208        ;
209
210    txUdpChecksums
211        .name(name() + ".txUdpChecksums")
212        .desc("Number of tx UDP Checksums done by device")
213        .precision(0)
214        .prereq(txBytes)
215        ;
216
217    rxUdpChecksums
218        .name(name() + ".rxUdpChecksums")
219        .desc("Number of rx UDP Checksums done by device")
220        .precision(0)
221        .prereq(rxBytes)
222        ;
223
224    descDmaReads
225        .name(name() + ".descDMAReads")
226        .desc("Number of descriptors the device read w/ DMA")
227        .precision(0)
228        ;
229
230    descDmaWrites
231        .name(name() + ".descDMAWrites")
232        .desc("Number of descriptors the device wrote w/ DMA")
233        .precision(0)
234        ;
235
236    descDmaRdBytes
237        .name(name() + ".descDmaReadBytes")
238        .desc("number of descriptor bytes read w/ DMA")
239        .precision(0)
240        ;
241
242   descDmaWrBytes
243        .name(name() + ".descDmaWriteBytes")
244        .desc("number of descriptor bytes write w/ DMA")
245        .precision(0)
246        ;
247
248
249    txBandwidth
250        .name(name() + ".txBandwidth")
251        .desc("Transmit Bandwidth (bits/s)")
252        .precision(0)
253        .prereq(txBytes)
254        ;
255
256    rxBandwidth
257        .name(name() + ".rxBandwidth")
258        .desc("Receive Bandwidth (bits/s)")
259        .precision(0)
260        .prereq(rxBytes)
261        ;
262
263    txPacketRate
264        .name(name() + ".txPPS")
265        .desc("Packet Tranmission Rate (packets/s)")
266        .precision(0)
267        .prereq(txBytes)
268        ;
269
270    rxPacketRate
271        .name(name() + ".rxPPS")
272        .desc("Packet Reception Rate (packets/s)")
273        .precision(0)
274        .prereq(rxBytes)
275        ;
276
277    txBandwidth = txBytes * Stats::constant(8) / simSeconds;
278    rxBandwidth = rxBytes * Stats::constant(8) / simSeconds;
279    txPacketRate = txPackets / simSeconds;
280    rxPacketRate = rxPackets / simSeconds;
281}
282
283/**
284 * This is to read the PCI general configuration registers
285 */
286void
287NSGigE::ReadConfig(int offset, int size, uint8_t *data)
288{
289    if (offset < PCI_DEVICE_SPECIFIC)
290        PciDev::ReadConfig(offset, size, data);
291    else
292        panic("Device specific PCI config space not implemented!\n");
293}
294
295/**
296 * This is to write to the PCI general configuration registers
297 */
298void
299NSGigE::WriteConfig(int offset, int size, uint32_t data)
300{
301    if (offset < PCI_DEVICE_SPECIFIC)
302        PciDev::WriteConfig(offset, size, data);
303    else
304        panic("Device specific PCI config space not implemented!\n");
305
306    // Need to catch writes to BARs to update the PIO interface
307    switch (offset) {
308        // seems to work fine without all these PCI settings, but i
309        // put in the IO to double check, an assertion will fail if we
310        // need to properly implement it
311      case PCI_COMMAND:
312        if (config.data[offset] & PCI_CMD_IOSE)
313            ioEnable = true;
314        else
315            ioEnable = false;
316
317#if 0
318        if (config.data[offset] & PCI_CMD_BME) {
319            bmEnabled = true;
320        }
321        else {
322            bmEnabled = false;
323        }
324
325        if (config.data[offset] & PCI_CMD_MSE) {
326            memEnable = true;
327        }
328        else {
329            memEnable = false;
330        }
331#endif
332        break;
333
334      case PCI0_BASE_ADDR0:
335        if (BARAddrs[0] != 0) {
336            if (pioInterface)
337                pioInterface->addAddrRange(RangeSize(BARAddrs[0], BARSize[0]));
338
339            BARAddrs[0] &= EV5::PAddrUncachedMask;
340        }
341        break;
342      case PCI0_BASE_ADDR1:
343        if (BARAddrs[1] != 0) {
344            if (pioInterface)
345                pioInterface->addAddrRange(RangeSize(BARAddrs[1], BARSize[1]));
346
347            BARAddrs[1] &= EV5::PAddrUncachedMask;
348        }
349        break;
350    }
351}
352
353/**
354 * This reads the device registers, which are detailed in the NS83820
355 * spec sheet
356 */
357Fault
358NSGigE::read(MemReqPtr &req, uint8_t *data)
359{
360    assert(ioEnable);
361
362    //The mask is to give you only the offset into the device register file
363    Addr daddr = req->paddr & 0xfff;
364    DPRINTF(EthernetPIO, "read  da=%#x pa=%#x va=%#x size=%d\n",
365            daddr, req->paddr, req->vaddr, req->size);
366
367
368    // there are some reserved registers, you can see ns_gige_reg.h and
369    // the spec sheet for details
370    if (daddr > LAST && daddr <=  RESERVED) {
371        panic("Accessing reserved register");
372    } else if (daddr > RESERVED && daddr <= 0x3FC) {
373        ReadConfig(daddr & 0xff, req->size, data);
374        return No_Fault;
375    } else if (daddr >= MIB_START && daddr <= MIB_END) {
376        // don't implement all the MIB's.  hopefully the kernel
377        // doesn't actually DEPEND upon their values
378        // MIB are just hardware stats keepers
379        uint32_t &reg = *(uint32_t *) data;
380        reg = 0;
381        return No_Fault;
382    } else if (daddr > 0x3FC)
383        panic("Something is messed up!\n");
384
385    switch (req->size) {
386      case sizeof(uint32_t):
387        {
388            uint32_t &reg = *(uint32_t *)data;
389
390            switch (daddr) {
391              case CR:
392                reg = regs.command;
393                //these are supposed to be cleared on a read
394                reg &= ~(CR_RXD | CR_TXD | CR_TXR | CR_RXR);
395                break;
396
397              case CFG:
398                reg = regs.config;
399                break;
400
401              case MEAR:
402                reg = regs.mear;
403                break;
404
405              case PTSCR:
406                reg = regs.ptscr;
407                break;
408
409              case ISR:
410                reg = regs.isr;
411                devIntrClear(ISR_ALL);
412                break;
413
414              case IMR:
415                reg = regs.imr;
416                break;
417
418              case IER:
419                reg = regs.ier;
420                break;
421
422              case IHR:
423                reg = regs.ihr;
424                break;
425
426              case TXDP:
427                reg = regs.txdp;
428                break;
429
430              case TXDP_HI:
431                reg = regs.txdp_hi;
432                break;
433
434              case TXCFG:
435                reg = regs.txcfg;
436                break;
437
438              case GPIOR:
439                reg = regs.gpior;
440                break;
441
442              case RXDP:
443                reg = regs.rxdp;
444                break;
445
446              case RXDP_HI:
447                reg = regs.rxdp_hi;
448                break;
449
450              case RXCFG:
451                reg = regs.rxcfg;
452                break;
453
454              case PQCR:
455                reg = regs.pqcr;
456                break;
457
458              case WCSR:
459                reg = regs.wcsr;
460                break;
461
462              case PCR:
463                reg = regs.pcr;
464                break;
465
466                // see the spec sheet for how RFCR and RFDR work
467                // basically, you write to RFCR to tell the machine
468                // what you want to do next, then you act upon RFDR,
469                // and the device will be prepared b/c of what you
470                // wrote to RFCR
471              case RFCR:
472                reg = regs.rfcr;
473                break;
474
475              case RFDR:
476                switch (regs.rfcr & RFCR_RFADDR) {
477                  case 0x000:
478                    reg = rom.perfectMatch[1];
479                    reg = reg << 8;
480                    reg += rom.perfectMatch[0];
481                    break;
482                  case 0x002:
483                    reg = rom.perfectMatch[3] << 8;
484                    reg += rom.perfectMatch[2];
485                    break;
486                  case 0x004:
487                    reg = rom.perfectMatch[5] << 8;
488                    reg += rom.perfectMatch[4];
489                    break;
490                  default:
491                    panic("reading RFDR for something other than PMATCH!\n");
492                    // didn't implement other RFDR functionality b/c
493                    // driver didn't use it
494                }
495                break;
496
497              case SRR:
498                reg = regs.srr;
499                break;
500
501              case MIBC:
502                reg = regs.mibc;
503                reg &= ~(MIBC_MIBS | MIBC_ACLR);
504                break;
505
506              case VRCR:
507                reg = regs.vrcr;
508                break;
509
510              case VTCR:
511                reg = regs.vtcr;
512                break;
513
514              case VDR:
515                reg = regs.vdr;
516                break;
517
518              case CCSR:
519                reg = regs.ccsr;
520                break;
521
522              case TBICR:
523                reg = regs.tbicr;
524                break;
525
526              case TBISR:
527                reg = regs.tbisr;
528                break;
529
530              case TANAR:
531                reg = regs.tanar;
532                break;
533
534              case TANLPAR:
535                reg = regs.tanlpar;
536                break;
537
538              case TANER:
539                reg = regs.taner;
540                break;
541
542              case TESR:
543                reg = regs.tesr;
544                break;
545
546              default:
547                panic("reading unimplemented register: addr=%#x", daddr);
548            }
549
550            DPRINTF(EthernetPIO, "read from %#x: data=%d data=%#x\n",
551                    daddr, reg, reg);
552        }
553        break;
554
555      default:
556        panic("accessing register with invalid size: addr=%#x, size=%d",
557              daddr, req->size);
558    }
559
560    return No_Fault;
561}
562
563Fault
564NSGigE::write(MemReqPtr &req, const uint8_t *data)
565{
566    assert(ioEnable);
567
568    Addr daddr = req->paddr & 0xfff;
569    DPRINTF(EthernetPIO, "write da=%#x pa=%#x va=%#x size=%d\n",
570            daddr, req->paddr, req->vaddr, req->size);
571
572    if (daddr > LAST && daddr <=  RESERVED) {
573        panic("Accessing reserved register");
574    } else if (daddr > RESERVED && daddr <= 0x3FC) {
575        WriteConfig(daddr & 0xff, req->size, *(uint32_t *)data);
576        return No_Fault;
577    } else if (daddr > 0x3FC)
578        panic("Something is messed up!\n");
579
580    if (req->size == sizeof(uint32_t)) {
581        uint32_t reg = *(uint32_t *)data;
582        DPRINTF(EthernetPIO, "write data=%d data=%#x\n", reg, reg);
583
584        switch (daddr) {
585          case CR:
586            regs.command = reg;
587            if (reg & CR_TXD) {
588                txEnable = false;
589            } else if (reg & CR_TXE) {
590                txEnable = true;
591
592                // the kernel is enabling the transmit machine
593                if (txState == txIdle)
594                    txKick();
595            }
596
597            if (reg & CR_RXD) {
598                rxEnable = false;
599            } else if (reg & CR_RXE) {
600                rxEnable = true;
601
602                if (rxState == rxIdle)
603                    rxKick();
604            }
605
606            if (reg & CR_TXR)
607                txReset();
608
609            if (reg & CR_RXR)
610                rxReset();
611
612            if (reg & CR_SWI)
613                devIntrPost(ISR_SWI);
614
615            if (reg & CR_RST) {
616                txReset();
617                rxReset();
618
619                regsReset();
620            }
621            break;
622
623          case CFG:
624            if (reg & CFG_LNKSTS ||
625                reg & CFG_SPDSTS ||
626                reg & CFG_DUPSTS ||
627                reg & CFG_RESERVED ||
628                reg & CFG_T64ADDR ||
629                reg & CFG_PCI64_DET)
630                panic("writing to read-only or reserved CFG bits!\n");
631
632            regs.config |= reg & ~(CFG_LNKSTS | CFG_SPDSTS | CFG_DUPSTS |
633                                   CFG_RESERVED | CFG_T64ADDR | CFG_PCI64_DET);
634
635// all these #if 0's are because i don't THINK the kernel needs to
636// have these implemented. if there is a problem relating to one of
637// these, you may need to add functionality in.
638#if 0
639            if (reg & CFG_TBI_EN) ;
640            if (reg & CFG_MODE_1000) ;
641#endif
642
643            if (reg & CFG_AUTO_1000)
644                panic("CFG_AUTO_1000 not implemented!\n");
645
646#if 0
647            if (reg & CFG_PINT_DUPSTS ||
648                reg & CFG_PINT_LNKSTS ||
649                reg & CFG_PINT_SPDSTS)
650                ;
651
652            if (reg & CFG_TMRTEST) ;
653            if (reg & CFG_MRM_DIS) ;
654            if (reg & CFG_MWI_DIS) ;
655
656            if (reg & CFG_T64ADDR)
657                panic("CFG_T64ADDR is read only register!\n");
658
659            if (reg & CFG_PCI64_DET)
660                panic("CFG_PCI64_DET is read only register!\n");
661
662            if (reg & CFG_DATA64_EN) ;
663            if (reg & CFG_M64ADDR) ;
664            if (reg & CFG_PHY_RST) ;
665            if (reg & CFG_PHY_DIS) ;
666#endif
667
668            if (reg & CFG_EXTSTS_EN)
669                extstsEnable = true;
670            else
671                extstsEnable = false;
672
673#if 0
674              if (reg & CFG_REQALG) ;
675              if (reg & CFG_SB) ;
676              if (reg & CFG_POW) ;
677              if (reg & CFG_EXD) ;
678              if (reg & CFG_PESEL) ;
679              if (reg & CFG_BROM_DIS) ;
680              if (reg & CFG_EXT_125) ;
681              if (reg & CFG_BEM) ;
682#endif
683            break;
684
685          case MEAR:
686            regs.mear = reg;
687            // since phy is completely faked, MEAR_MD* don't matter
688            // and since the driver never uses MEAR_EE*, they don't
689            // matter
690#if 0
691            if (reg & MEAR_EEDI) ;
692            if (reg & MEAR_EEDO) ; // this one is read only
693            if (reg & MEAR_EECLK) ;
694            if (reg & MEAR_EESEL) ;
695            if (reg & MEAR_MDIO) ;
696            if (reg & MEAR_MDDIR) ;
697            if (reg & MEAR_MDC) ;
698#endif
699            break;
700
701          case PTSCR:
702            regs.ptscr = reg & ~(PTSCR_RBIST_RDONLY);
703            // these control BISTs for various parts of chip - we
704            // don't care or do just fake that the BIST is done
705            if (reg & PTSCR_RBIST_EN)
706                regs.ptscr |= PTSCR_RBIST_DONE;
707            if (reg & PTSCR_EEBIST_EN)
708                regs.ptscr &= ~PTSCR_EEBIST_EN;
709            if (reg & PTSCR_EELOAD_EN)
710                regs.ptscr &= ~PTSCR_EELOAD_EN;
711            break;
712
713          case ISR: /* writing to the ISR has no effect */
714            panic("ISR is a read only register!\n");
715
716          case IMR:
717            regs.imr = reg;
718            devIntrChangeMask();
719            break;
720
721          case IER:
722            regs.ier = reg;
723            break;
724
725          case IHR:
726            regs.ihr = reg;
727            /* not going to implement real interrupt holdoff */
728            break;
729
730          case TXDP:
731            regs.txdp = (reg & 0xFFFFFFFC);
732            assert(txState == txIdle);
733            CTDD = false;
734            break;
735
736          case TXDP_HI:
737            regs.txdp_hi = reg;
738            break;
739
740          case TXCFG:
741            regs.txcfg = reg;
742#if 0
743            if (reg & TXCFG_CSI) ;
744            if (reg & TXCFG_HBI) ;
745            if (reg & TXCFG_MLB) ;
746            if (reg & TXCFG_ATP) ;
747            if (reg & TXCFG_ECRETRY) {
748                /*
749                 * this could easily be implemented, but considering
750                 * the network is just a fake pipe, wouldn't make
751                 * sense to do this
752                 */
753            }
754
755            if (reg & TXCFG_BRST_DIS) ;
756#endif
757
758#if 0
759            /* we handle our own DMA, ignore the kernel's exhortations */
760            if (reg & TXCFG_MXDMA) ;
761#endif
762
763            // also, we currently don't care about fill/drain
764            // thresholds though this may change in the future with
765            // more realistic networks or a driver which changes it
766            // according to feedback
767
768            break;
769
770          case GPIOR:
771            regs.gpior = reg;
772            /* these just control general purpose i/o pins, don't matter */
773            break;
774
775          case RXDP:
776            regs.rxdp = reg;
777            CRDD = false;
778            break;
779
780          case RXDP_HI:
781            regs.rxdp_hi = reg;
782            break;
783
784          case RXCFG:
785            regs.rxcfg = reg;
786#if 0
787            if (reg & RXCFG_AEP) ;
788            if (reg & RXCFG_ARP) ;
789            if (reg & RXCFG_STRIPCRC) ;
790            if (reg & RXCFG_RX_RD) ;
791            if (reg & RXCFG_ALP) ;
792            if (reg & RXCFG_AIRL) ;
793
794            /* we handle our own DMA, ignore what kernel says about it */
795            if (reg & RXCFG_MXDMA) ;
796
797            //also, we currently don't care about fill/drain thresholds
798            //though this may change in the future with more realistic
799            //networks or a driver which changes it according to feedback
800            if (reg & (RXCFG_DRTH | RXCFG_DRTH0)) ;
801#endif
802            break;
803
804          case PQCR:
805            /* there is no priority queueing used in the linux 2.6 driver */
806            regs.pqcr = reg;
807            break;
808
809          case WCSR:
810            /* not going to implement wake on LAN */
811            regs.wcsr = reg;
812            break;
813
814          case PCR:
815            /* not going to implement pause control */
816            regs.pcr = reg;
817            break;
818
819          case RFCR:
820            regs.rfcr = reg;
821
822            rxFilterEnable = (reg & RFCR_RFEN) ? true : false;
823            acceptBroadcast = (reg & RFCR_AAB) ? true : false;
824            acceptMulticast = (reg & RFCR_AAM) ? true : false;
825            acceptUnicast = (reg & RFCR_AAU) ? true : false;
826            acceptPerfect = (reg & RFCR_APM) ? true : false;
827            acceptArp = (reg & RFCR_AARP) ? true : false;
828
829#if 0
830            if (reg & RFCR_APAT)
831                panic("RFCR_APAT not implemented!\n");
832#endif
833
834            if (reg & RFCR_MHEN || reg & RFCR_UHEN)
835                panic("hash filtering not implemented!\n");
836
837            if (reg & RFCR_ULM)
838                panic("RFCR_ULM not implemented!\n");
839
840            break;
841
842          case RFDR:
843            panic("the driver never writes to RFDR, something is wrong!\n");
844
845          case BRAR:
846            panic("the driver never uses BRAR, something is wrong!\n");
847
848          case BRDR:
849            panic("the driver never uses BRDR, something is wrong!\n");
850
851          case SRR:
852            panic("SRR is read only register!\n");
853
854          case MIBC:
855            panic("the driver never uses MIBC, something is wrong!\n");
856
857          case VRCR:
858            regs.vrcr = reg;
859            break;
860
861          case VTCR:
862            regs.vtcr = reg;
863            break;
864
865          case VDR:
866            panic("the driver never uses VDR, something is wrong!\n");
867            break;
868
869          case CCSR:
870            /* not going to implement clockrun stuff */
871            regs.ccsr = reg;
872            break;
873
874          case TBICR:
875            regs.tbicr = reg;
876            if (reg & TBICR_MR_LOOPBACK)
877                panic("TBICR_MR_LOOPBACK never used, something wrong!\n");
878
879            if (reg & TBICR_MR_AN_ENABLE) {
880                regs.tanlpar = regs.tanar;
881                regs.tbisr |= (TBISR_MR_AN_COMPLETE | TBISR_MR_LINK_STATUS);
882            }
883
884#if 0
885            if (reg & TBICR_MR_RESTART_AN) ;
886#endif
887
888            break;
889
890          case TBISR:
891            panic("TBISR is read only register!\n");
892
893          case TANAR:
894            regs.tanar = reg;
895            if (reg & TANAR_PS2)
896                panic("this isn't used in driver, something wrong!\n");
897
898            if (reg & TANAR_PS1)
899                panic("this isn't used in driver, something wrong!\n");
900            break;
901
902          case TANLPAR:
903            panic("this should only be written to by the fake phy!\n");
904
905          case TANER:
906            panic("TANER is read only register!\n");
907
908          case TESR:
909            regs.tesr = reg;
910            break;
911
912          default:
913            panic("invalid register access daddr=%#x", daddr);
914        }
915    } else {
916        panic("Invalid Request Size");
917    }
918
919    return No_Fault;
920}
921
922void
923NSGigE::devIntrPost(uint32_t interrupts)
924{
925    if (interrupts & ISR_RESERVE)
926        panic("Cannot set a reserved interrupt");
927
928    if (interrupts & ISR_NOIMPL)
929        warn("interrupt not implemented %#x\n", interrupts);
930
931    interrupts &= ~ISR_NOIMPL;
932    regs.isr |= interrupts;
933
934    DPRINTF(EthernetIntr,
935            "interrupt written to ISR: intr=%#x isr=%#x imr=%#x\n",
936            interrupts, regs.isr, regs.imr);
937
938    if ((regs.isr & regs.imr)) {
939        Tick when = curTick;
940        if (!(regs.isr & regs.imr & ISR_NODELAY))
941            when += intrDelay;
942        cpuIntrPost(when);
943    }
944}
945
946void
947NSGigE::devIntrClear(uint32_t interrupts)
948{
949    if (interrupts & ISR_RESERVE)
950        panic("Cannot clear a reserved interrupt");
951
952    interrupts &= ~ISR_NOIMPL;
953    regs.isr &= ~interrupts;
954
955    DPRINTF(EthernetIntr,
956            "interrupt cleared from ISR: intr=%x isr=%x imr=%x\n",
957            interrupts, regs.isr, regs.imr);
958
959    if (!(regs.isr & regs.imr))
960        cpuIntrClear();
961}
962
963void
964NSGigE::devIntrChangeMask()
965{
966    DPRINTF(EthernetIntr, "interrupt mask changed: isr=%x imr=%x masked=%x\n",
967            regs.isr, regs.imr, regs.isr & regs.imr);
968
969    if (regs.isr & regs.imr)
970        cpuIntrPost(curTick);
971    else
972        cpuIntrClear();
973}
974
975void
976NSGigE::cpuIntrPost(Tick when)
977{
978    // If the interrupt you want to post is later than an interrupt
979    // already scheduled, just let it post in the coming one and don't
980    // schedule another.
981    // HOWEVER, must be sure that the scheduled intrTick is in the
982    // future (this was formerly the source of a bug)
983    /**
984     * @todo this warning should be removed and the intrTick code should
985     * be fixed.
986     */
987    assert(when >= curTick);
988    assert(intrTick >= curTick || intrTick == 0);
989    if (when > intrTick && intrTick != 0) {
990        DPRINTF(EthernetIntr, "don't need to schedule event...intrTick=%d\n",
991                intrTick);
992        return;
993    }
994
995    intrTick = when;
996    if (intrTick < curTick) {
997        debug_break();
998        intrTick = curTick;
999    }
1000
1001    DPRINTF(EthernetIntr, "going to schedule an interrupt for intrTick=%d\n",
1002            intrTick);
1003
1004    if (intrEvent)
1005        intrEvent->squash();
1006    intrEvent = new IntrEvent(this, true);
1007    intrEvent->schedule(intrTick);
1008}
1009
1010void
1011NSGigE::cpuInterrupt()
1012{
1013    assert(intrTick == curTick);
1014
1015    // Whether or not there's a pending interrupt, we don't care about
1016    // it anymore
1017    intrEvent = 0;
1018    intrTick = 0;
1019
1020    // Don't send an interrupt if there's already one
1021    if (cpuPendingIntr) {
1022        DPRINTF(EthernetIntr,
1023                "would send an interrupt now, but there's already pending\n");
1024    } else {
1025        // Send interrupt
1026        cpuPendingIntr = true;
1027
1028        DPRINTF(EthernetIntr, "posting interrupt\n");
1029        intrPost();
1030    }
1031}
1032
1033void
1034NSGigE::cpuIntrClear()
1035{
1036    if (!cpuPendingIntr)
1037        return;
1038
1039    if (intrEvent) {
1040        intrEvent->squash();
1041        intrEvent = 0;
1042    }
1043
1044    intrTick = 0;
1045
1046    cpuPendingIntr = false;
1047
1048    DPRINTF(EthernetIntr, "clearing interrupt\n");
1049    intrClear();
1050}
1051
1052bool
1053NSGigE::cpuIntrPending() const
1054{ return cpuPendingIntr; }
1055
1056void
1057NSGigE::txReset()
1058{
1059
1060    DPRINTF(Ethernet, "transmit reset\n");
1061
1062    CTDD = false;
1063    txEnable = false;;
1064    txFragPtr = 0;
1065    assert(txDescCnt == 0);
1066    txFifo.clear();
1067    txState = txIdle;
1068    assert(txDmaState == dmaIdle);
1069}
1070
1071void
1072NSGigE::rxReset()
1073{
1074    DPRINTF(Ethernet, "receive reset\n");
1075
1076    CRDD = false;
1077    assert(rxPktBytes == 0);
1078    rxEnable = false;
1079    rxFragPtr = 0;
1080    assert(rxDescCnt == 0);
1081    assert(rxDmaState == dmaIdle);
1082    rxFifo.clear();
1083    rxState = rxIdle;
1084}
1085
1086void
1087NSGigE::regsReset()
1088{
1089    memset(&regs, 0, sizeof(regs));
1090    regs.config = CFG_LNKSTS;
1091    regs.mear = MEAR_MDDIR | MEAR_EEDO;
1092    regs.txcfg = 0x120; // set drain threshold to 1024 bytes and
1093                        // fill threshold to 32 bytes
1094    regs.rxcfg = 0x4;   // set drain threshold to 16 bytes
1095    regs.srr = 0x0103;  // set the silicon revision to rev B or 0x103
1096    regs.mibc = MIBC_FRZ;
1097    regs.vdr = 0x81;    // set the vlan tag type to 802.1q
1098    regs.tesr = 0xc000; // TBI capable of both full and half duplex
1099
1100    extstsEnable = false;
1101    acceptBroadcast = false;
1102    acceptMulticast = false;
1103    acceptUnicast = false;
1104    acceptPerfect = false;
1105    acceptArp = false;
1106}
1107
1108void
1109NSGigE::rxDmaReadCopy()
1110{
1111    assert(rxDmaState == dmaReading);
1112
1113    physmem->dma_read((uint8_t *)rxDmaData, rxDmaAddr, rxDmaLen);
1114    rxDmaState = dmaIdle;
1115
1116    DPRINTF(EthernetDMA, "rx dma read  paddr=%#x len=%d\n",
1117            rxDmaAddr, rxDmaLen);
1118    DDUMP(EthernetDMA, rxDmaData, rxDmaLen);
1119}
1120
1121bool
1122NSGigE::doRxDmaRead()
1123{
1124    assert(rxDmaState == dmaIdle || rxDmaState == dmaReadWaiting);
1125    rxDmaState = dmaReading;
1126
1127    if (dmaInterface && !rxDmaFree) {
1128        if (dmaInterface->busy())
1129            rxDmaState = dmaReadWaiting;
1130        else
1131            dmaInterface->doDMA(Read, rxDmaAddr, rxDmaLen, curTick,
1132                                &rxDmaReadEvent, true);
1133        return true;
1134    }
1135
1136    if (dmaReadDelay == 0 && dmaReadFactor == 0) {
1137        rxDmaReadCopy();
1138        return false;
1139    }
1140
1141    Tick factor = ((rxDmaLen + ULL(63)) >> ULL(6)) * dmaReadFactor;
1142    Tick start = curTick + dmaReadDelay + factor;
1143    rxDmaReadEvent.schedule(start);
1144    return true;
1145}
1146
1147void
1148NSGigE::rxDmaReadDone()
1149{
1150    assert(rxDmaState == dmaReading);
1151    rxDmaReadCopy();
1152
1153    // If the transmit state machine has a pending DMA, let it go first
1154    if (txDmaState == dmaReadWaiting || txDmaState == dmaWriteWaiting)
1155        txKick();
1156
1157    rxKick();
1158}
1159
1160void
1161NSGigE::rxDmaWriteCopy()
1162{
1163    assert(rxDmaState == dmaWriting);
1164
1165    physmem->dma_write(rxDmaAddr, (uint8_t *)rxDmaData, rxDmaLen);
1166    rxDmaState = dmaIdle;
1167
1168    DPRINTF(EthernetDMA, "rx dma write paddr=%#x len=%d\n",
1169            rxDmaAddr, rxDmaLen);
1170    DDUMP(EthernetDMA, rxDmaData, rxDmaLen);
1171}
1172
1173bool
1174NSGigE::doRxDmaWrite()
1175{
1176    assert(rxDmaState == dmaIdle || rxDmaState == dmaWriteWaiting);
1177    rxDmaState = dmaWriting;
1178
1179    if (dmaInterface && !rxDmaFree) {
1180        if (dmaInterface->busy())
1181            rxDmaState = dmaWriteWaiting;
1182        else
1183            dmaInterface->doDMA(WriteInvalidate, rxDmaAddr, rxDmaLen, curTick,
1184                                &rxDmaWriteEvent, true);
1185        return true;
1186    }
1187
1188    if (dmaWriteDelay == 0 && dmaWriteFactor == 0) {
1189        rxDmaWriteCopy();
1190        return false;
1191    }
1192
1193    Tick factor = ((rxDmaLen + ULL(63)) >> ULL(6)) * dmaWriteFactor;
1194    Tick start = curTick + dmaWriteDelay + factor;
1195    rxDmaWriteEvent.schedule(start);
1196    return true;
1197}
1198
1199void
1200NSGigE::rxDmaWriteDone()
1201{
1202    assert(rxDmaState == dmaWriting);
1203    rxDmaWriteCopy();
1204
1205    // If the transmit state machine has a pending DMA, let it go first
1206    if (txDmaState == dmaReadWaiting || txDmaState == dmaWriteWaiting)
1207        txKick();
1208
1209    rxKick();
1210}
1211
1212void
1213NSGigE::rxKick()
1214{
1215    DPRINTF(EthernetSM, "receive kick rxState=%s (rxBuf.size=%d)\n",
1216            NsRxStateStrings[rxState], rxFifo.size());
1217
1218    if (rxKickTick > curTick) {
1219        DPRINTF(EthernetSM, "receive kick exiting, can't run till %d\n",
1220                rxKickTick);
1221        return;
1222    }
1223
1224  next:
1225    switch(rxDmaState) {
1226      case dmaReadWaiting:
1227        if (doRxDmaRead())
1228            goto exit;
1229        break;
1230      case dmaWriteWaiting:
1231        if (doRxDmaWrite())
1232            goto exit;
1233        break;
1234      default:
1235        break;
1236    }
1237
1238    // see state machine from spec for details
1239    // the way this works is, if you finish work on one state and can
1240    // go directly to another, you do that through jumping to the
1241    // label "next".  however, if you have intermediate work, like DMA
1242    // so that you can't go to the next state yet, you go to exit and
1243    // exit the loop.  however, when the DMA is done it will trigger
1244    // an event and come back to this loop.
1245    switch (rxState) {
1246      case rxIdle:
1247        if (!rxEnable) {
1248            DPRINTF(EthernetSM, "Receive Disabled! Nothing to do.\n");
1249            goto exit;
1250        }
1251
1252        if (CRDD) {
1253            rxState = rxDescRefr;
1254
1255            rxDmaAddr = regs.rxdp & 0x3fffffff;
1256            rxDmaData = &rxDescCache + offsetof(ns_desc, link);
1257            rxDmaLen = sizeof(rxDescCache.link);
1258            rxDmaFree = dmaDescFree;
1259
1260            descDmaReads++;
1261            descDmaRdBytes += rxDmaLen;
1262
1263            if (doRxDmaRead())
1264                goto exit;
1265        } else {
1266            rxState = rxDescRead;
1267
1268            rxDmaAddr = regs.rxdp & 0x3fffffff;
1269            rxDmaData = &rxDescCache;
1270            rxDmaLen = sizeof(ns_desc);
1271            rxDmaFree = dmaDescFree;
1272
1273            descDmaReads++;
1274            descDmaRdBytes += rxDmaLen;
1275
1276            if (doRxDmaRead())
1277                goto exit;
1278        }
1279        break;
1280
1281      case rxDescRefr:
1282        if (rxDmaState != dmaIdle)
1283            goto exit;
1284
1285        rxState = rxAdvance;
1286        break;
1287
1288     case rxDescRead:
1289        if (rxDmaState != dmaIdle)
1290            goto exit;
1291
1292        DPRINTF(EthernetDesc,
1293                "rxDescCache: addr=%08x read descriptor\n",
1294                regs.rxdp & 0x3fffffff);
1295        DPRINTF(EthernetDesc,
1296                "rxDescCache: link=%08x bufptr=%08x cmdsts=%08x extsts=%08x\n",
1297                rxDescCache.link, rxDescCache.bufptr, rxDescCache.cmdsts,
1298                rxDescCache.extsts);
1299
1300        if (rxDescCache.cmdsts & CMDSTS_OWN) {
1301            devIntrPost(ISR_RXIDLE);
1302            rxState = rxIdle;
1303            goto exit;
1304        } else {
1305            rxState = rxFifoBlock;
1306            rxFragPtr = rxDescCache.bufptr;
1307            rxDescCnt = rxDescCache.cmdsts & CMDSTS_LEN_MASK;
1308        }
1309        break;
1310
1311      case rxFifoBlock:
1312        if (!rxPacket) {
1313            /**
1314             * @todo in reality, we should be able to start processing
1315             * the packet as it arrives, and not have to wait for the
1316             * full packet ot be in the receive fifo.
1317             */
1318            if (rxFifo.empty())
1319                goto exit;
1320
1321            DPRINTF(EthernetSM, "****processing receive of new packet****\n");
1322
1323            // If we don't have a packet, grab a new one from the fifo.
1324            rxPacket = rxFifo.front();
1325            rxPktBytes = rxPacket->length;
1326            rxPacketBufPtr = rxPacket->data;
1327
1328#if TRACING_ON
1329            if (DTRACE(Ethernet)) {
1330                IpPtr ip(rxPacket);
1331                if (ip) {
1332                    DPRINTF(Ethernet, "ID is %d\n", ip->id());
1333                    TcpPtr tcp(ip);
1334                    if (tcp) {
1335                        DPRINTF(Ethernet, "Src Port=%d, Dest Port=%d\n",
1336                                tcp->sport(), tcp->dport());
1337                    }
1338                }
1339            }
1340#endif
1341
1342            // sanity check - i think the driver behaves like this
1343            assert(rxDescCnt >= rxPktBytes);
1344            rxFifo.pop();
1345        }
1346
1347
1348        // dont' need the && rxDescCnt > 0 if driver sanity check
1349        // above holds
1350        if (rxPktBytes > 0) {
1351            rxState = rxFragWrite;
1352            // don't need min<>(rxPktBytes,rxDescCnt) if above sanity
1353            // check holds
1354            rxXferLen = rxPktBytes;
1355
1356            rxDmaAddr = rxFragPtr & 0x3fffffff;
1357            rxDmaData = rxPacketBufPtr;
1358            rxDmaLen = rxXferLen;
1359            rxDmaFree = dmaDataFree;
1360
1361            if (doRxDmaWrite())
1362                goto exit;
1363
1364        } else {
1365            rxState = rxDescWrite;
1366
1367            //if (rxPktBytes == 0) {  /* packet is done */
1368            assert(rxPktBytes == 0);
1369            DPRINTF(EthernetSM, "done with receiving packet\n");
1370
1371            rxDescCache.cmdsts |= CMDSTS_OWN;
1372            rxDescCache.cmdsts &= ~CMDSTS_MORE;
1373            rxDescCache.cmdsts |= CMDSTS_OK;
1374            rxDescCache.cmdsts &= 0xffff0000;
1375            rxDescCache.cmdsts += rxPacket->length;   //i.e. set CMDSTS_SIZE
1376
1377#if 0
1378            /*
1379             * all the driver uses these are for its own stats keeping
1380             * which we don't care about, aren't necessary for
1381             * functionality and doing this would just slow us down.
1382             * if they end up using this in a later version for
1383             * functional purposes, just undef
1384             */
1385            if (rxFilterEnable) {
1386                rxDescCache.cmdsts &= ~CMDSTS_DEST_MASK;
1387                const EthAddr &dst = rxFifoFront()->dst();
1388                if (dst->unicast())
1389                    rxDescCache.cmdsts |= CMDSTS_DEST_SELF;
1390                if (dst->multicast())
1391                    rxDescCache.cmdsts |= CMDSTS_DEST_MULTI;
1392                if (dst->broadcast())
1393                    rxDescCache.cmdsts |= CMDSTS_DEST_MASK;
1394            }
1395#endif
1396
1397            IpPtr ip(rxPacket);
1398            if (extstsEnable && ip) {
1399                rxDescCache.extsts |= EXTSTS_IPPKT;
1400                rxIpChecksums++;
1401                if (cksum(ip) != 0) {
1402                    DPRINTF(EthernetCksum, "Rx IP Checksum Error\n");
1403                    rxDescCache.extsts |= EXTSTS_IPERR;
1404                }
1405                TcpPtr tcp(ip);
1406                UdpPtr udp(ip);
1407                if (tcp) {
1408                    rxDescCache.extsts |= EXTSTS_TCPPKT;
1409                    rxTcpChecksums++;
1410                    if (cksum(tcp) != 0) {
1411                        DPRINTF(EthernetCksum, "Rx TCP Checksum Error\n");
1412                        rxDescCache.extsts |= EXTSTS_TCPERR;
1413
1414                    }
1415                } else if (udp) {
1416                    rxDescCache.extsts |= EXTSTS_UDPPKT;
1417                    rxUdpChecksums++;
1418                    if (cksum(udp) != 0) {
1419                        DPRINTF(EthernetCksum, "Rx UDP Checksum Error\n");
1420                        rxDescCache.extsts |= EXTSTS_UDPERR;
1421                    }
1422                }
1423            }
1424            rxPacket = 0;
1425
1426            /*
1427             * the driver seems to always receive into desc buffers
1428             * of size 1514, so you never have a pkt that is split
1429             * into multiple descriptors on the receive side, so
1430             * i don't implement that case, hence the assert above.
1431             */
1432
1433            DPRINTF(EthernetDesc,
1434                    "rxDescCache: addr=%08x writeback cmdsts extsts\n",
1435                    regs.rxdp & 0x3fffffff);
1436            DPRINTF(EthernetDesc,
1437                    "rxDescCache: link=%08x bufptr=%08x cmdsts=%08x extsts=%08x\n",
1438                    rxDescCache.link, rxDescCache.bufptr, rxDescCache.cmdsts,
1439                    rxDescCache.extsts);
1440
1441            rxDmaAddr = (regs.rxdp + offsetof(ns_desc, cmdsts)) & 0x3fffffff;
1442            rxDmaData = &(rxDescCache.cmdsts);
1443            rxDmaLen = sizeof(rxDescCache.cmdsts) + sizeof(rxDescCache.extsts);
1444            rxDmaFree = dmaDescFree;
1445
1446            descDmaWrites++;
1447            descDmaWrBytes += rxDmaLen;
1448
1449            if (doRxDmaWrite())
1450                goto exit;
1451        }
1452        break;
1453
1454      case rxFragWrite:
1455        if (rxDmaState != dmaIdle)
1456            goto exit;
1457
1458        rxPacketBufPtr += rxXferLen;
1459        rxFragPtr += rxXferLen;
1460        rxPktBytes -= rxXferLen;
1461
1462        rxState = rxFifoBlock;
1463        break;
1464
1465      case rxDescWrite:
1466        if (rxDmaState != dmaIdle)
1467            goto exit;
1468
1469        assert(rxDescCache.cmdsts & CMDSTS_OWN);
1470
1471        assert(rxPacket == 0);
1472        devIntrPost(ISR_RXOK);
1473
1474        if (rxDescCache.cmdsts & CMDSTS_INTR)
1475            devIntrPost(ISR_RXDESC);
1476
1477        if (!rxEnable) {
1478            DPRINTF(EthernetSM, "Halting the RX state machine\n");
1479            rxState = rxIdle;
1480            goto exit;
1481        } else
1482            rxState = rxAdvance;
1483        break;
1484
1485      case rxAdvance:
1486        if (rxDescCache.link == 0) {
1487            devIntrPost(ISR_RXIDLE);
1488            rxState = rxIdle;
1489            CRDD = true;
1490            goto exit;
1491        } else {
1492            rxState = rxDescRead;
1493            regs.rxdp = rxDescCache.link;
1494            CRDD = false;
1495
1496            rxDmaAddr = regs.rxdp & 0x3fffffff;
1497            rxDmaData = &rxDescCache;
1498            rxDmaLen = sizeof(ns_desc);
1499            rxDmaFree = dmaDescFree;
1500
1501            if (doRxDmaRead())
1502                goto exit;
1503        }
1504        break;
1505
1506      default:
1507        panic("Invalid rxState!");
1508    }
1509
1510    DPRINTF(EthernetSM, "entering next rxState=%s\n",
1511            NsRxStateStrings[rxState]);
1512
1513    goto next;
1514
1515  exit:
1516    /**
1517     * @todo do we want to schedule a future kick?
1518     */
1519    DPRINTF(EthernetSM, "rx state machine exited rxState=%s\n",
1520            NsRxStateStrings[rxState]);
1521}
1522
1523void
1524NSGigE::transmit()
1525{
1526    if (txFifo.empty()) {
1527        DPRINTF(Ethernet, "nothing to transmit\n");
1528        return;
1529    }
1530
1531    DPRINTF(Ethernet, "Attempt Pkt Transmit: txFifo length=%d\n",
1532            txFifo.size());
1533    if (interface->sendPacket(txFifo.front())) {
1534#if TRACING_ON
1535        if (DTRACE(Ethernet)) {
1536            IpPtr ip(txFifo.front());
1537            if (ip) {
1538                DPRINTF(Ethernet, "ID is %d\n", ip->id());
1539                TcpPtr tcp(ip);
1540                if (tcp) {
1541                    DPRINTF(Ethernet, "Src Port=%d, Dest Port=%d\n",
1542                            tcp->sport(), tcp->dport());
1543                }
1544            }
1545        }
1546#endif
1547
1548        DDUMP(Ethernet, txFifo.front()->data, txFifo.front()->length);
1549        txBytes += txFifo.front()->length;
1550        txPackets++;
1551
1552        DPRINTF(Ethernet, "Successful Xmit! now txFifoAvail is %d\n",
1553                txFifo.avail());
1554        txFifo.pop();
1555
1556        /*
1557         * normally do a writeback of the descriptor here, and ONLY
1558         * after that is done, send this interrupt.  but since our
1559         * stuff never actually fails, just do this interrupt here,
1560         * otherwise the code has to stray from this nice format.
1561         * besides, it's functionally the same.
1562         */
1563        devIntrPost(ISR_TXOK);
1564    }
1565
1566   if (!txFifo.empty() && !txEvent.scheduled()) {
1567       DPRINTF(Ethernet, "reschedule transmit\n");
1568       txEvent.schedule(curTick + 1000);
1569   }
1570}
1571
1572void
1573NSGigE::txDmaReadCopy()
1574{
1575    assert(txDmaState == dmaReading);
1576
1577    physmem->dma_read((uint8_t *)txDmaData, txDmaAddr, txDmaLen);
1578    txDmaState = dmaIdle;
1579
1580    DPRINTF(EthernetDMA, "tx dma read  paddr=%#x len=%d\n",
1581            txDmaAddr, txDmaLen);
1582    DDUMP(EthernetDMA, txDmaData, txDmaLen);
1583}
1584
1585bool
1586NSGigE::doTxDmaRead()
1587{
1588    assert(txDmaState == dmaIdle || txDmaState == dmaReadWaiting);
1589    txDmaState = dmaReading;
1590
1591    if (dmaInterface && !txDmaFree) {
1592        if (dmaInterface->busy())
1593            txDmaState = dmaReadWaiting;
1594        else
1595            dmaInterface->doDMA(Read, txDmaAddr, txDmaLen, curTick,
1596                                &txDmaReadEvent, true);
1597        return true;
1598    }
1599
1600    if (dmaReadDelay == 0 && dmaReadFactor == 0.0) {
1601        txDmaReadCopy();
1602        return false;
1603    }
1604
1605    Tick factor = ((txDmaLen + ULL(63)) >> ULL(6)) * dmaReadFactor;
1606    Tick start = curTick + dmaReadDelay + factor;
1607    txDmaReadEvent.schedule(start);
1608    return true;
1609}
1610
1611void
1612NSGigE::txDmaReadDone()
1613{
1614    assert(txDmaState == dmaReading);
1615    txDmaReadCopy();
1616
1617    // If the receive state machine  has a pending DMA, let it go first
1618    if (rxDmaState == dmaReadWaiting || rxDmaState == dmaWriteWaiting)
1619        rxKick();
1620
1621    txKick();
1622}
1623
1624void
1625NSGigE::txDmaWriteCopy()
1626{
1627    assert(txDmaState == dmaWriting);
1628
1629    physmem->dma_write(txDmaAddr, (uint8_t *)txDmaData, txDmaLen);
1630    txDmaState = dmaIdle;
1631
1632    DPRINTF(EthernetDMA, "tx dma write paddr=%#x len=%d\n",
1633            txDmaAddr, txDmaLen);
1634    DDUMP(EthernetDMA, txDmaData, txDmaLen);
1635}
1636
1637bool
1638NSGigE::doTxDmaWrite()
1639{
1640    assert(txDmaState == dmaIdle || txDmaState == dmaWriteWaiting);
1641    txDmaState = dmaWriting;
1642
1643    if (dmaInterface && !txDmaFree) {
1644        if (dmaInterface->busy())
1645            txDmaState = dmaWriteWaiting;
1646        else
1647            dmaInterface->doDMA(WriteInvalidate, txDmaAddr, txDmaLen, curTick,
1648                                &txDmaWriteEvent, true);
1649        return true;
1650    }
1651
1652    if (dmaWriteDelay == 0 && dmaWriteFactor == 0.0) {
1653        txDmaWriteCopy();
1654        return false;
1655    }
1656
1657    Tick factor = ((txDmaLen + ULL(63)) >> ULL(6)) * dmaWriteFactor;
1658    Tick start = curTick + dmaWriteDelay + factor;
1659    txDmaWriteEvent.schedule(start);
1660    return true;
1661}
1662
1663void
1664NSGigE::txDmaWriteDone()
1665{
1666    assert(txDmaState == dmaWriting);
1667    txDmaWriteCopy();
1668
1669    // If the receive state machine  has a pending DMA, let it go first
1670    if (rxDmaState == dmaReadWaiting || rxDmaState == dmaWriteWaiting)
1671        rxKick();
1672
1673    txKick();
1674}
1675
1676void
1677NSGigE::txKick()
1678{
1679    DPRINTF(EthernetSM, "transmit kick txState=%s\n",
1680            NsTxStateStrings[txState]);
1681
1682    if (txKickTick > curTick) {
1683        DPRINTF(EthernetSM, "transmit kick exiting, can't run till %d\n",
1684                txKickTick);
1685
1686        return;
1687    }
1688
1689  next:
1690    switch(txDmaState) {
1691      case dmaReadWaiting:
1692        if (doTxDmaRead())
1693            goto exit;
1694        break;
1695      case dmaWriteWaiting:
1696        if (doTxDmaWrite())
1697            goto exit;
1698        break;
1699      default:
1700        break;
1701    }
1702
1703    switch (txState) {
1704      case txIdle:
1705        if (!txEnable) {
1706            DPRINTF(EthernetSM, "Transmit disabled.  Nothing to do.\n");
1707            goto exit;
1708        }
1709
1710        if (CTDD) {
1711            txState = txDescRefr;
1712
1713            txDmaAddr = regs.txdp & 0x3fffffff;
1714            txDmaData = &txDescCache + offsetof(ns_desc, link);
1715            txDmaLen = sizeof(txDescCache.link);
1716            txDmaFree = dmaDescFree;
1717
1718            descDmaReads++;
1719            descDmaRdBytes += txDmaLen;
1720
1721            if (doTxDmaRead())
1722                goto exit;
1723
1724        } else {
1725            txState = txDescRead;
1726
1727            txDmaAddr = regs.txdp & 0x3fffffff;
1728            txDmaData = &txDescCache;
1729            txDmaLen = sizeof(ns_desc);
1730            txDmaFree = dmaDescFree;
1731
1732            descDmaReads++;
1733            descDmaRdBytes += txDmaLen;
1734
1735            if (doTxDmaRead())
1736                goto exit;
1737        }
1738        break;
1739
1740      case txDescRefr:
1741        if (txDmaState != dmaIdle)
1742            goto exit;
1743
1744        txState = txAdvance;
1745        break;
1746
1747      case txDescRead:
1748        if (txDmaState != dmaIdle)
1749            goto exit;
1750
1751        DPRINTF(EthernetDesc,
1752                "txDescCache: link=%08x bufptr=%08x cmdsts=%08x extsts=%08x\n",
1753                txDescCache.link, txDescCache.bufptr, txDescCache.cmdsts,
1754                txDescCache.extsts);
1755
1756        if (txDescCache.cmdsts & CMDSTS_OWN) {
1757            txState = txFifoBlock;
1758            txFragPtr = txDescCache.bufptr;
1759            txDescCnt = txDescCache.cmdsts & CMDSTS_LEN_MASK;
1760        } else {
1761            devIntrPost(ISR_TXIDLE);
1762            txState = txIdle;
1763            goto exit;
1764        }
1765        break;
1766
1767      case txFifoBlock:
1768        if (!txPacket) {
1769            DPRINTF(EthernetSM, "****starting the tx of a new packet****\n");
1770            txPacket = new PacketData;
1771            txPacket->data = new uint8_t[16384];
1772            txPacketBufPtr = txPacket->data;
1773        }
1774
1775        if (txDescCnt == 0) {
1776            DPRINTF(EthernetSM, "the txDescCnt == 0, done with descriptor\n");
1777            if (txDescCache.cmdsts & CMDSTS_MORE) {
1778                DPRINTF(EthernetSM, "there are more descriptors to come\n");
1779                txState = txDescWrite;
1780
1781                txDescCache.cmdsts &= ~CMDSTS_OWN;
1782
1783                txDmaAddr = regs.txdp + offsetof(ns_desc, cmdsts);
1784                txDmaAddr &= 0x3fffffff;
1785                txDmaData = &(txDescCache.cmdsts);
1786                txDmaLen = sizeof(txDescCache.cmdsts);
1787                txDmaFree = dmaDescFree;
1788
1789                if (doTxDmaWrite())
1790                    goto exit;
1791
1792            } else { /* this packet is totally done */
1793                DPRINTF(EthernetSM, "This packet is done, let's wrap it up\n");
1794                /* deal with the the packet that just finished */
1795                if ((regs.vtcr & VTCR_PPCHK) && extstsEnable) {
1796                    IpPtr ip(txPacket);
1797                    if (txDescCache.extsts & EXTSTS_UDPPKT) {
1798                        UdpPtr udp(ip);
1799                        udp->sum(0);
1800                        udp->sum(cksum(udp));
1801                        txUdpChecksums++;
1802                    } else if (txDescCache.extsts & EXTSTS_TCPPKT) {
1803                        TcpPtr tcp(ip);
1804                        tcp->sum(0);
1805                        tcp->sum(cksum(tcp));
1806                        txTcpChecksums++;
1807                    }
1808                    if (txDescCache.extsts & EXTSTS_IPPKT) {
1809                        ip->sum(0);
1810                        ip->sum(cksum(ip));
1811                        txIpChecksums++;
1812                    }
1813                }
1814
1815                txPacket->length = txPacketBufPtr - txPacket->data;
1816                // this is just because the receive can't handle a
1817                // packet bigger want to make sure
1818                assert(txPacket->length <= 1514);
1819#ifndef NDEBUG
1820                bool success =
1821#endif
1822                    txFifo.push(txPacket);
1823                assert(success);
1824
1825                /*
1826                 * this following section is not tqo spec, but
1827                 * functionally shouldn't be any different.  normally,
1828                 * the chip will wait til the transmit has occurred
1829                 * before writing back the descriptor because it has
1830                 * to wait to see that it was successfully transmitted
1831                 * to decide whether to set CMDSTS_OK or not.
1832                 * however, in the simulator since it is always
1833                 * successfully transmitted, and writing it exactly to
1834                 * spec would complicate the code, we just do it here
1835                 */
1836
1837                txDescCache.cmdsts &= ~CMDSTS_OWN;
1838                txDescCache.cmdsts |= CMDSTS_OK;
1839
1840                DPRINTF(EthernetDesc,
1841                        "txDesc writeback: cmdsts=%08x extsts=%08x\n",
1842                        txDescCache.cmdsts, txDescCache.extsts);
1843
1844                txDmaAddr = regs.txdp + offsetof(ns_desc, cmdsts);
1845                txDmaAddr &= 0x3fffffff;
1846                txDmaData = &(txDescCache.cmdsts);
1847                txDmaLen = sizeof(txDescCache.cmdsts) +
1848                    sizeof(txDescCache.extsts);
1849                txDmaFree = dmaDescFree;
1850
1851                descDmaWrites++;
1852                descDmaWrBytes += txDmaLen;
1853
1854                transmit();
1855                txPacket = 0;
1856
1857                if (!txEnable) {
1858                    DPRINTF(EthernetSM, "halting TX state machine\n");
1859                    txState = txIdle;
1860                    goto exit;
1861                } else
1862                    txState = txAdvance;
1863
1864                if (doTxDmaWrite())
1865                    goto exit;
1866            }
1867        } else {
1868            DPRINTF(EthernetSM, "this descriptor isn't done yet\n");
1869            if (!txFifo.full()) {
1870                txState = txFragRead;
1871
1872                /*
1873                 * The number of bytes transferred is either whatever
1874                 * is left in the descriptor (txDescCnt), or if there
1875                 * is not enough room in the fifo, just whatever room
1876                 * is left in the fifo
1877                 */
1878                txXferLen = min<uint32_t>(txDescCnt, txFifo.avail());
1879
1880                txDmaAddr = txFragPtr & 0x3fffffff;
1881                txDmaData = txPacketBufPtr;
1882                txDmaLen = txXferLen;
1883                txDmaFree = dmaDataFree;
1884
1885                if (doTxDmaRead())
1886                    goto exit;
1887            } else {
1888                txState = txFifoBlock;
1889                transmit();
1890
1891                goto exit;
1892            }
1893
1894        }
1895        break;
1896
1897      case txFragRead:
1898        if (txDmaState != dmaIdle)
1899            goto exit;
1900
1901        txPacketBufPtr += txXferLen;
1902        txFragPtr += txXferLen;
1903        txDescCnt -= txXferLen;
1904        txFifo.reserve(txXferLen);
1905
1906        txState = txFifoBlock;
1907        break;
1908
1909      case txDescWrite:
1910        if (txDmaState != dmaIdle)
1911            goto exit;
1912
1913        if (txDescCache.cmdsts & CMDSTS_INTR)
1914            devIntrPost(ISR_TXDESC);
1915
1916        txState = txAdvance;
1917        break;
1918
1919      case txAdvance:
1920        if (txDescCache.link == 0) {
1921            devIntrPost(ISR_TXIDLE);
1922            txState = txIdle;
1923            goto exit;
1924        } else {
1925            txState = txDescRead;
1926            regs.txdp = txDescCache.link;
1927            CTDD = false;
1928
1929            txDmaAddr = txDescCache.link & 0x3fffffff;
1930            txDmaData = &txDescCache;
1931            txDmaLen = sizeof(ns_desc);
1932            txDmaFree = dmaDescFree;
1933
1934            if (doTxDmaRead())
1935                goto exit;
1936        }
1937        break;
1938
1939      default:
1940        panic("invalid state");
1941    }
1942
1943    DPRINTF(EthernetSM, "entering next txState=%s\n",
1944            NsTxStateStrings[txState]);
1945
1946    goto next;
1947
1948  exit:
1949    /**
1950     * @todo do we want to schedule a future kick?
1951     */
1952    DPRINTF(EthernetSM, "tx state machine exited txState=%s\n",
1953            NsTxStateStrings[txState]);
1954}
1955
1956void
1957NSGigE::transferDone()
1958{
1959    if (txFifo.empty()) {
1960        DPRINTF(Ethernet, "transfer complete: txFifo empty...nothing to do\n");
1961        return;
1962    }
1963
1964    DPRINTF(Ethernet, "transfer complete: data in txFifo...schedule xmit\n");
1965
1966    if (txEvent.scheduled())
1967        txEvent.reschedule(curTick + 1);
1968    else
1969        txEvent.schedule(curTick + 1);
1970}
1971
1972bool
1973NSGigE::rxFilter(const PacketPtr &packet)
1974{
1975    EthPtr eth = packet;
1976    bool drop = true;
1977    string type;
1978
1979    const EthAddr &dst = eth->dst();
1980    if (dst.unicast()) {
1981        // If we're accepting all unicast addresses
1982        if (acceptUnicast)
1983            drop = false;
1984
1985        // If we make a perfect match
1986        if (acceptPerfect && dst == rom.perfectMatch)
1987            drop = false;
1988
1989        if (acceptArp && eth->type() == ETH_TYPE_ARP)
1990            drop = false;
1991
1992    } else if (dst.broadcast()) {
1993        // if we're accepting broadcasts
1994        if (acceptBroadcast)
1995            drop = false;
1996
1997    } else if (dst.multicast()) {
1998        // if we're accepting all multicasts
1999        if (acceptMulticast)
2000            drop = false;
2001
2002    }
2003
2004    if (drop) {
2005        DPRINTF(Ethernet, "rxFilter drop\n");
2006        DDUMP(EthernetData, packet->data, packet->length);
2007    }
2008
2009    return drop;
2010}
2011
2012bool
2013NSGigE::recvPacket(PacketPtr packet)
2014{
2015    rxBytes += packet->length;
2016    rxPackets++;
2017
2018    DPRINTF(Ethernet, "Receiving packet from wire, rxFifoAvail=%d\n",
2019            rxFifo.avail());
2020
2021    if (!rxEnable) {
2022        DPRINTF(Ethernet, "receive disabled...packet dropped\n");
2023        debug_break();
2024        interface->recvDone();
2025        return true;
2026    }
2027
2028    if (rxFilterEnable && rxFilter(packet)) {
2029        DPRINTF(Ethernet, "packet filtered...dropped\n");
2030        interface->recvDone();
2031        return true;
2032    }
2033
2034    if (rxFifo.avail() < packet->length) {
2035        DPRINTF(Ethernet,
2036                "packet will not fit in receive buffer...packet dropped\n");
2037        devIntrPost(ISR_RXORN);
2038        return false;
2039    }
2040
2041    rxFifo.push(packet);
2042    interface->recvDone();
2043
2044    rxKick();
2045    return true;
2046}
2047
2048//=====================================================================
2049//
2050//
2051void
2052NSGigE::serialize(ostream &os)
2053{
2054    // Serialize the PciDev base class
2055    PciDev::serialize(os);
2056
2057    /*
2058     * Finalize any DMA events now.
2059     */
2060    if (rxDmaReadEvent.scheduled())
2061        rxDmaReadCopy();
2062    if (rxDmaWriteEvent.scheduled())
2063        rxDmaWriteCopy();
2064    if (txDmaReadEvent.scheduled())
2065        txDmaReadCopy();
2066    if (txDmaWriteEvent.scheduled())
2067        txDmaWriteCopy();
2068
2069    /*
2070     * Serialize the device registers
2071     */
2072    SERIALIZE_SCALAR(regs.command);
2073    SERIALIZE_SCALAR(regs.config);
2074    SERIALIZE_SCALAR(regs.mear);
2075    SERIALIZE_SCALAR(regs.ptscr);
2076    SERIALIZE_SCALAR(regs.isr);
2077    SERIALIZE_SCALAR(regs.imr);
2078    SERIALIZE_SCALAR(regs.ier);
2079    SERIALIZE_SCALAR(regs.ihr);
2080    SERIALIZE_SCALAR(regs.txdp);
2081    SERIALIZE_SCALAR(regs.txdp_hi);
2082    SERIALIZE_SCALAR(regs.txcfg);
2083    SERIALIZE_SCALAR(regs.gpior);
2084    SERIALIZE_SCALAR(regs.rxdp);
2085    SERIALIZE_SCALAR(regs.rxdp_hi);
2086    SERIALIZE_SCALAR(regs.rxcfg);
2087    SERIALIZE_SCALAR(regs.pqcr);
2088    SERIALIZE_SCALAR(regs.wcsr);
2089    SERIALIZE_SCALAR(regs.pcr);
2090    SERIALIZE_SCALAR(regs.rfcr);
2091    SERIALIZE_SCALAR(regs.rfdr);
2092    SERIALIZE_SCALAR(regs.srr);
2093    SERIALIZE_SCALAR(regs.mibc);
2094    SERIALIZE_SCALAR(regs.vrcr);
2095    SERIALIZE_SCALAR(regs.vtcr);
2096    SERIALIZE_SCALAR(regs.vdr);
2097    SERIALIZE_SCALAR(regs.ccsr);
2098    SERIALIZE_SCALAR(regs.tbicr);
2099    SERIALIZE_SCALAR(regs.tbisr);
2100    SERIALIZE_SCALAR(regs.tanar);
2101    SERIALIZE_SCALAR(regs.tanlpar);
2102    SERIALIZE_SCALAR(regs.taner);
2103    SERIALIZE_SCALAR(regs.tesr);
2104
2105    SERIALIZE_ARRAY(rom.perfectMatch, ETH_ADDR_LEN);
2106
2107    SERIALIZE_SCALAR(ioEnable);
2108
2109    /*
2110     * Serialize the data Fifos
2111     */
2112    rxFifo.serialize("rxFifo", os);
2113    txFifo.serialize("txFifo", os);
2114
2115    /*
2116     * Serialize the various helper variables
2117     */
2118    bool txPacketExists = txPacket;
2119    SERIALIZE_SCALAR(txPacketExists);
2120    if (txPacketExists) {
2121        txPacket->serialize("txPacket", os);
2122        uint32_t txPktBufPtr = (uint32_t) (txPacketBufPtr - txPacket->data);
2123        SERIALIZE_SCALAR(txPktBufPtr);
2124    }
2125
2126    bool rxPacketExists = rxPacket;
2127    SERIALIZE_SCALAR(rxPacketExists);
2128    if (rxPacketExists) {
2129        rxPacket->serialize("rxPacket", os);
2130        uint32_t rxPktBufPtr = (uint32_t) (rxPacketBufPtr - rxPacket->data);
2131        SERIALIZE_SCALAR(rxPktBufPtr);
2132    }
2133
2134    SERIALIZE_SCALAR(txXferLen);
2135    SERIALIZE_SCALAR(rxXferLen);
2136
2137    /*
2138     * Serialize DescCaches
2139     */
2140    SERIALIZE_SCALAR(txDescCache.link);
2141    SERIALIZE_SCALAR(txDescCache.bufptr);
2142    SERIALIZE_SCALAR(txDescCache.cmdsts);
2143    SERIALIZE_SCALAR(txDescCache.extsts);
2144    SERIALIZE_SCALAR(rxDescCache.link);
2145    SERIALIZE_SCALAR(rxDescCache.bufptr);
2146    SERIALIZE_SCALAR(rxDescCache.cmdsts);
2147    SERIALIZE_SCALAR(rxDescCache.extsts);
2148
2149    /*
2150     * Serialize tx state machine
2151     */
2152    int txState = this->txState;
2153    SERIALIZE_SCALAR(txState);
2154    SERIALIZE_SCALAR(txEnable);
2155    SERIALIZE_SCALAR(CTDD);
2156    SERIALIZE_SCALAR(txFragPtr);
2157    SERIALIZE_SCALAR(txDescCnt);
2158    int txDmaState = this->txDmaState;
2159    SERIALIZE_SCALAR(txDmaState);
2160
2161    /*
2162     * Serialize rx state machine
2163     */
2164    int rxState = this->rxState;
2165    SERIALIZE_SCALAR(rxState);
2166    SERIALIZE_SCALAR(rxEnable);
2167    SERIALIZE_SCALAR(CRDD);
2168    SERIALIZE_SCALAR(rxPktBytes);
2169    SERIALIZE_SCALAR(rxFragPtr);
2170    SERIALIZE_SCALAR(rxDescCnt);
2171    int rxDmaState = this->rxDmaState;
2172    SERIALIZE_SCALAR(rxDmaState);
2173
2174    SERIALIZE_SCALAR(extstsEnable);
2175
2176    /*
2177     * If there's a pending transmit, store the time so we can
2178     * reschedule it later
2179     */
2180    Tick transmitTick = txEvent.scheduled() ? txEvent.when() - curTick : 0;
2181    SERIALIZE_SCALAR(transmitTick);
2182
2183    /*
2184     * receive address filter settings
2185     */
2186    SERIALIZE_SCALAR(rxFilterEnable);
2187    SERIALIZE_SCALAR(acceptBroadcast);
2188    SERIALIZE_SCALAR(acceptMulticast);
2189    SERIALIZE_SCALAR(acceptUnicast);
2190    SERIALIZE_SCALAR(acceptPerfect);
2191    SERIALIZE_SCALAR(acceptArp);
2192
2193    /*
2194     * Keep track of pending interrupt status.
2195     */
2196    SERIALIZE_SCALAR(intrTick);
2197    SERIALIZE_SCALAR(cpuPendingIntr);
2198    Tick intrEventTick = 0;
2199    if (intrEvent)
2200        intrEventTick = intrEvent->when();
2201    SERIALIZE_SCALAR(intrEventTick);
2202
2203}
2204
2205void
2206NSGigE::unserialize(Checkpoint *cp, const std::string &section)
2207{
2208    // Unserialize the PciDev base class
2209    PciDev::unserialize(cp, section);
2210
2211    UNSERIALIZE_SCALAR(regs.command);
2212    UNSERIALIZE_SCALAR(regs.config);
2213    UNSERIALIZE_SCALAR(regs.mear);
2214    UNSERIALIZE_SCALAR(regs.ptscr);
2215    UNSERIALIZE_SCALAR(regs.isr);
2216    UNSERIALIZE_SCALAR(regs.imr);
2217    UNSERIALIZE_SCALAR(regs.ier);
2218    UNSERIALIZE_SCALAR(regs.ihr);
2219    UNSERIALIZE_SCALAR(regs.txdp);
2220    UNSERIALIZE_SCALAR(regs.txdp_hi);
2221    UNSERIALIZE_SCALAR(regs.txcfg);
2222    UNSERIALIZE_SCALAR(regs.gpior);
2223    UNSERIALIZE_SCALAR(regs.rxdp);
2224    UNSERIALIZE_SCALAR(regs.rxdp_hi);
2225    UNSERIALIZE_SCALAR(regs.rxcfg);
2226    UNSERIALIZE_SCALAR(regs.pqcr);
2227    UNSERIALIZE_SCALAR(regs.wcsr);
2228    UNSERIALIZE_SCALAR(regs.pcr);
2229    UNSERIALIZE_SCALAR(regs.rfcr);
2230    UNSERIALIZE_SCALAR(regs.rfdr);
2231    UNSERIALIZE_SCALAR(regs.srr);
2232    UNSERIALIZE_SCALAR(regs.mibc);
2233    UNSERIALIZE_SCALAR(regs.vrcr);
2234    UNSERIALIZE_SCALAR(regs.vtcr);
2235    UNSERIALIZE_SCALAR(regs.vdr);
2236    UNSERIALIZE_SCALAR(regs.ccsr);
2237    UNSERIALIZE_SCALAR(regs.tbicr);
2238    UNSERIALIZE_SCALAR(regs.tbisr);
2239    UNSERIALIZE_SCALAR(regs.tanar);
2240    UNSERIALIZE_SCALAR(regs.tanlpar);
2241    UNSERIALIZE_SCALAR(regs.taner);
2242    UNSERIALIZE_SCALAR(regs.tesr);
2243
2244    UNSERIALIZE_ARRAY(rom.perfectMatch, ETH_ADDR_LEN);
2245
2246    UNSERIALIZE_SCALAR(ioEnable);
2247
2248    /*
2249     * unserialize the data fifos
2250     */
2251    rxFifo.unserialize("rxFifo", cp, section);
2252    txFifo.unserialize("txFifo", cp, section);
2253
2254    /*
2255     * unserialize the various helper variables
2256     */
2257    bool txPacketExists;
2258    UNSERIALIZE_SCALAR(txPacketExists);
2259    if (txPacketExists) {
2260        txPacket = new PacketData;
2261        txPacket->unserialize("txPacket", cp, section);
2262        uint32_t txPktBufPtr;
2263        UNSERIALIZE_SCALAR(txPktBufPtr);
2264        txPacketBufPtr = (uint8_t *) txPacket->data + txPktBufPtr;
2265    } else
2266        txPacket = 0;
2267
2268    bool rxPacketExists;
2269    UNSERIALIZE_SCALAR(rxPacketExists);
2270    rxPacket = 0;
2271    if (rxPacketExists) {
2272        rxPacket = new PacketData;
2273        rxPacket->unserialize("rxPacket", cp, section);
2274        uint32_t rxPktBufPtr;
2275        UNSERIALIZE_SCALAR(rxPktBufPtr);
2276        rxPacketBufPtr = (uint8_t *) rxPacket->data + rxPktBufPtr;
2277    } else
2278        rxPacket = 0;
2279
2280    UNSERIALIZE_SCALAR(txXferLen);
2281    UNSERIALIZE_SCALAR(rxXferLen);
2282
2283    /*
2284     * Unserialize DescCaches
2285     */
2286    UNSERIALIZE_SCALAR(txDescCache.link);
2287    UNSERIALIZE_SCALAR(txDescCache.bufptr);
2288    UNSERIALIZE_SCALAR(txDescCache.cmdsts);
2289    UNSERIALIZE_SCALAR(txDescCache.extsts);
2290    UNSERIALIZE_SCALAR(rxDescCache.link);
2291    UNSERIALIZE_SCALAR(rxDescCache.bufptr);
2292    UNSERIALIZE_SCALAR(rxDescCache.cmdsts);
2293    UNSERIALIZE_SCALAR(rxDescCache.extsts);
2294
2295    /*
2296     * unserialize tx state machine
2297     */
2298    int txState;
2299    UNSERIALIZE_SCALAR(txState);
2300    this->txState = (TxState) txState;
2301    UNSERIALIZE_SCALAR(txEnable);
2302    UNSERIALIZE_SCALAR(CTDD);
2303    UNSERIALIZE_SCALAR(txFragPtr);
2304    UNSERIALIZE_SCALAR(txDescCnt);
2305    int txDmaState;
2306    UNSERIALIZE_SCALAR(txDmaState);
2307    this->txDmaState = (DmaState) txDmaState;
2308
2309    /*
2310     * unserialize rx state machine
2311     */
2312    int rxState;
2313    UNSERIALIZE_SCALAR(rxState);
2314    this->rxState = (RxState) rxState;
2315    UNSERIALIZE_SCALAR(rxEnable);
2316    UNSERIALIZE_SCALAR(CRDD);
2317    UNSERIALIZE_SCALAR(rxPktBytes);
2318    UNSERIALIZE_SCALAR(rxFragPtr);
2319    UNSERIALIZE_SCALAR(rxDescCnt);
2320    int rxDmaState;
2321    UNSERIALIZE_SCALAR(rxDmaState);
2322    this->rxDmaState = (DmaState) rxDmaState;
2323
2324    UNSERIALIZE_SCALAR(extstsEnable);
2325
2326     /*
2327     * If there's a pending transmit, reschedule it now
2328     */
2329    Tick transmitTick;
2330    UNSERIALIZE_SCALAR(transmitTick);
2331    if (transmitTick)
2332        txEvent.schedule(curTick + transmitTick);
2333
2334    /*
2335     * unserialize receive address filter settings
2336     */
2337    UNSERIALIZE_SCALAR(rxFilterEnable);
2338    UNSERIALIZE_SCALAR(acceptBroadcast);
2339    UNSERIALIZE_SCALAR(acceptMulticast);
2340    UNSERIALIZE_SCALAR(acceptUnicast);
2341    UNSERIALIZE_SCALAR(acceptPerfect);
2342    UNSERIALIZE_SCALAR(acceptArp);
2343
2344    /*
2345     * Keep track of pending interrupt status.
2346     */
2347    UNSERIALIZE_SCALAR(intrTick);
2348    UNSERIALIZE_SCALAR(cpuPendingIntr);
2349    Tick intrEventTick;
2350    UNSERIALIZE_SCALAR(intrEventTick);
2351    if (intrEventTick) {
2352        intrEvent = new IntrEvent(this, true);
2353        intrEvent->schedule(intrEventTick);
2354    }
2355
2356    /*
2357     * re-add addrRanges to bus bridges
2358     */
2359    if (pioInterface) {
2360        pioInterface->addAddrRange(RangeSize(BARAddrs[0], BARSize[0]));
2361        pioInterface->addAddrRange(RangeSize(BARAddrs[1], BARSize[1]));
2362    }
2363}
2364
2365Tick
2366NSGigE::cacheAccess(MemReqPtr &req)
2367{
2368    DPRINTF(EthernetPIO, "timing access to paddr=%#x (daddr=%#x)\n",
2369            req->paddr, req->paddr - addr);
2370    return curTick + pioLatency;
2371}
2372
2373BEGIN_DECLARE_SIM_OBJECT_PARAMS(NSGigEInt)
2374
2375    SimObjectParam<EtherInt *> peer;
2376    SimObjectParam<NSGigE *> device;
2377
2378END_DECLARE_SIM_OBJECT_PARAMS(NSGigEInt)
2379
2380BEGIN_INIT_SIM_OBJECT_PARAMS(NSGigEInt)
2381
2382    INIT_PARAM_DFLT(peer, "peer interface", NULL),
2383    INIT_PARAM(device, "Ethernet device of this interface")
2384
2385END_INIT_SIM_OBJECT_PARAMS(NSGigEInt)
2386
2387CREATE_SIM_OBJECT(NSGigEInt)
2388{
2389    NSGigEInt *dev_int = new NSGigEInt(getInstanceName(), device);
2390
2391    EtherInt *p = (EtherInt *)peer;
2392    if (p) {
2393        dev_int->setPeer(p);
2394        p->setPeer(dev_int);
2395    }
2396
2397    return dev_int;
2398}
2399
2400REGISTER_SIM_OBJECT("NSGigEInt", NSGigEInt)
2401
2402
2403BEGIN_DECLARE_SIM_OBJECT_PARAMS(NSGigE)
2404
2405    Param<Tick> tx_delay;
2406    Param<Tick> rx_delay;
2407    Param<Tick> intr_delay;
2408    SimObjectParam<MemoryController *> mmu;
2409    SimObjectParam<PhysicalMemory *> physmem;
2410    Param<bool> rx_filter;
2411    Param<string> hardware_address;
2412    SimObjectParam<Bus*> header_bus;
2413    SimObjectParam<Bus*> payload_bus;
2414    SimObjectParam<HierParams *> hier;
2415    Param<Tick> pio_latency;
2416    Param<bool> dma_desc_free;
2417    Param<bool> dma_data_free;
2418    Param<Tick> dma_read_delay;
2419    Param<Tick> dma_write_delay;
2420    Param<Tick> dma_read_factor;
2421    Param<Tick> dma_write_factor;
2422    SimObjectParam<PciConfigAll *> configspace;
2423    SimObjectParam<PciConfigData *> configdata;
2424    SimObjectParam<Platform *> platform;
2425    Param<uint32_t> pci_bus;
2426    Param<uint32_t> pci_dev;
2427    Param<uint32_t> pci_func;
2428    Param<uint32_t> tx_fifo_size;
2429    Param<uint32_t> rx_fifo_size;
2430
2431END_DECLARE_SIM_OBJECT_PARAMS(NSGigE)
2432
2433BEGIN_INIT_SIM_OBJECT_PARAMS(NSGigE)
2434
2435    INIT_PARAM_DFLT(tx_delay, "Transmit Delay", 1000),
2436    INIT_PARAM_DFLT(rx_delay, "Receive Delay", 1000),
2437    INIT_PARAM_DFLT(intr_delay, "Interrupt Delay in microseconds", 0),
2438    INIT_PARAM(mmu, "Memory Controller"),
2439    INIT_PARAM(physmem, "Physical Memory"),
2440    INIT_PARAM_DFLT(rx_filter, "Enable Receive Filter", true),
2441    INIT_PARAM_DFLT(hardware_address, "Ethernet Hardware Address",
2442                    "00:99:00:00:00:01"),
2443    INIT_PARAM_DFLT(header_bus, "The IO Bus to attach to for headers", NULL),
2444    INIT_PARAM_DFLT(payload_bus, "The IO Bus to attach to for payload", NULL),
2445    INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
2446    INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
2447    INIT_PARAM_DFLT(dma_desc_free, "DMA of Descriptors is free", false),
2448    INIT_PARAM_DFLT(dma_data_free, "DMA of Data is free", false),
2449    INIT_PARAM_DFLT(dma_read_delay, "fixed delay for dma reads", 0),
2450    INIT_PARAM_DFLT(dma_write_delay, "fixed delay for dma writes", 0),
2451    INIT_PARAM_DFLT(dma_read_factor, "multiplier for dma reads", 0),
2452    INIT_PARAM_DFLT(dma_write_factor, "multiplier for dma writes", 0),
2453    INIT_PARAM(configspace, "PCI Configspace"),
2454    INIT_PARAM(configdata, "PCI Config data"),
2455    INIT_PARAM(platform, "Platform"),
2456    INIT_PARAM(pci_bus, "PCI bus"),
2457    INIT_PARAM(pci_dev, "PCI device number"),
2458    INIT_PARAM(pci_func, "PCI function code"),
2459    INIT_PARAM_DFLT(tx_fifo_size, "max size in bytes of txFifo", 131072),
2460    INIT_PARAM_DFLT(rx_fifo_size, "max size in bytes of rxFifo", 131072)
2461
2462END_INIT_SIM_OBJECT_PARAMS(NSGigE)
2463
2464
2465CREATE_SIM_OBJECT(NSGigE)
2466{
2467    NSGigE::Params *params = new NSGigE::Params;
2468
2469    params->name = getInstanceName();
2470    params->mmu = mmu;
2471    params->configSpace = configspace;
2472    params->configData = configdata;
2473    params->plat = platform;
2474    params->busNum = pci_bus;
2475    params->deviceNum = pci_dev;
2476    params->functionNum = pci_func;
2477
2478    params->intr_delay = intr_delay;
2479    params->pmem = physmem;
2480    params->tx_delay = tx_delay;
2481    params->rx_delay = rx_delay;
2482    params->hier = hier;
2483    params->header_bus = header_bus;
2484    params->payload_bus = payload_bus;
2485    params->pio_latency = pio_latency;
2486    params->dma_desc_free = dma_desc_free;
2487    params->dma_data_free = dma_data_free;
2488    params->dma_read_delay = dma_read_delay;
2489    params->dma_write_delay = dma_write_delay;
2490    params->dma_read_factor = dma_read_factor;
2491    params->dma_write_factor = dma_write_factor;
2492    params->rx_filter = rx_filter;
2493    params->eaddr = hardware_address;
2494    params->tx_fifo_size = tx_fifo_size;
2495    params->rx_fifo_size = rx_fifo_size;
2496    return new NSGigE(params);
2497}
2498
2499REGISTER_SIM_OBJECT("NSGigE", NSGigE)
2500