ns_gige.cc revision 1027
1/*
2 * Copyright (c) 2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/* @file
30 * Device module for modelling the National Semiconductor
31 * DP83820 ethernet controller.  Does not support priority queueing
32 */
33#include <cstdio>
34#include <deque>
35#include <string>
36
37#include "base/inet.hh"
38#include "cpu/exec_context.hh"
39#include "cpu/intr_control.hh"
40#include "dev/dma.hh"
41#include "dev/etherlink.hh"
42#include "dev/ns_gige.hh"
43#include "dev/pciconfigall.hh"
44#include "dev/tsunami_cchip.hh"
45#include "mem/bus/bus.hh"
46#include "mem/bus/dma_interface.hh"
47#include "mem/bus/pio_interface.hh"
48#include "mem/bus/pio_interface_impl.hh"
49#include "mem/functional_mem/memory_control.hh"
50#include "mem/functional_mem/physical_memory.hh"
51#include "sim/builder.hh"
52#include "sim/host.hh"
53#include "sim/sim_stats.hh"
54#include "targetarch/vtophys.hh"
55
56const char *NsRxStateStrings[] =
57{
58    "rxIdle",
59    "rxDescRefr",
60    "rxDescRead",
61    "rxFifoBlock",
62    "rxFragWrite",
63    "rxDescWrite",
64    "rxAdvance"
65};
66
67const char *NsTxStateStrings[] =
68{
69    "txIdle",
70    "txDescRefr",
71    "txDescRead",
72    "txFifoBlock",
73    "txFragRead",
74    "txDescWrite",
75    "txAdvance"
76};
77
78const char *NsDmaState[] =
79{
80    "dmaIdle",
81    "dmaReading",
82    "dmaWriting",
83    "dmaReadWaiting",
84    "dmaWriteWaiting"
85};
86
87using namespace std;
88
89// helper function declarations
90// These functions reverse Endianness so we can evaluate network data
91// correctly
92uint16_t reverseEnd16(uint16_t);
93uint32_t reverseEnd32(uint32_t);
94
95///////////////////////////////////////////////////////////////////////
96//
97// NSGigE PCI Device
98//
99NSGigE::NSGigE(const std::string &name, IntrControl *i, Tick intr_delay,
100               PhysicalMemory *pmem, Tick tx_delay, Tick rx_delay,
101               MemoryController *mmu, HierParams *hier, Bus *header_bus,
102               Bus *payload_bus, Tick pio_latency, bool dma_desc_free,
103               bool dma_data_free, Tick dma_read_delay, Tick dma_write_delay,
104               Tick dma_read_factor, Tick dma_write_factor, PciConfigAll *cf,
105               PciConfigData *cd, Tsunami *t, uint32_t bus, uint32_t dev,
106               uint32_t func, bool rx_filter, const int eaddr[6],
107               uint32_t tx_fifo_size, uint32_t rx_fifo_size)
108    : PciDev(name, mmu, cf, cd, bus, dev, func), tsunami(t), ioEnable(false),
109      maxTxFifoSize(tx_fifo_size), maxRxFifoSize(rx_fifo_size),
110      txPacket(0), rxPacket(0), txPacketBufPtr(NULL), rxPacketBufPtr(NULL),
111      txXferLen(0), rxXferLen(0), txState(txIdle), CTDD(false),
112      txFifoAvail(tx_fifo_size), txHalt(false),
113      txFragPtr(0), txDescCnt(0), txDmaState(dmaIdle), rxState(rxIdle),
114      CRDD(false), rxPktBytes(0), rxFifoCnt(0), rxHalt(false),
115      rxFragPtr(0), rxDescCnt(0), rxDmaState(dmaIdle), extstsEnable(false),
116      rxDmaReadEvent(this), rxDmaWriteEvent(this),
117      txDmaReadEvent(this), txDmaWriteEvent(this),
118      dmaDescFree(dma_desc_free), dmaDataFree(dma_data_free),
119      txDelay(tx_delay), rxDelay(rx_delay), rxKickTick(0), txKickTick(0),
120      txEvent(this), rxFilterEnable(rx_filter), acceptBroadcast(false),
121      acceptMulticast(false), acceptUnicast(false),
122      acceptPerfect(false), acceptArp(false),
123      physmem(pmem), intctrl(i), intrTick(0), cpuPendingIntr(false),
124      intrEvent(0), interface(0)
125{
126    tsunami->ethernet = this;
127
128    if (header_bus) {
129        pioInterface = newPioInterface(name, hier, header_bus, this,
130                                       &NSGigE::cacheAccess);
131
132        pioLatency = pio_latency * header_bus->clockRatio;
133
134        if (payload_bus)
135            dmaInterface = new DMAInterface<Bus>(name + ".dma",
136                                                 header_bus, payload_bus, 1);
137        else
138            dmaInterface = new DMAInterface<Bus>(name + ".dma",
139                                                 header_bus, header_bus, 1);
140    } else if (payload_bus) {
141        pioInterface = newPioInterface(name, hier, payload_bus, this,
142                                       &NSGigE::cacheAccess);
143
144        pioLatency = pio_latency * payload_bus->clockRatio;
145
146        dmaInterface = new DMAInterface<Bus>(name + ".dma", payload_bus,
147                                         payload_bus, 1);
148    }
149
150
151    intrDelay = US2Ticks(intr_delay);
152    dmaReadDelay = dma_read_delay;
153    dmaWriteDelay = dma_write_delay;
154    dmaReadFactor = dma_read_factor;
155    dmaWriteFactor = dma_write_factor;
156
157    regsReset();
158    rom.perfectMatch[0] = eaddr[0];
159    rom.perfectMatch[1] = eaddr[1];
160    rom.perfectMatch[2] = eaddr[2];
161    rom.perfectMatch[3] = eaddr[3];
162    rom.perfectMatch[4] = eaddr[4];
163    rom.perfectMatch[5] = eaddr[5];
164}
165
166NSGigE::~NSGigE()
167{}
168
169void
170NSGigE::regStats()
171{
172    txBytes
173        .name(name() + ".txBytes")
174        .desc("Bytes Transmitted")
175        .prereq(txBytes)
176        ;
177
178    rxBytes
179        .name(name() + ".rxBytes")
180        .desc("Bytes Received")
181        .prereq(rxBytes)
182        ;
183
184    txPackets
185        .name(name() + ".txPackets")
186        .desc("Number of Packets Transmitted")
187        .prereq(txBytes)
188        ;
189
190    rxPackets
191        .name(name() + ".rxPackets")
192        .desc("Number of Packets Received")
193        .prereq(rxBytes)
194        ;
195
196    txIPChecksums
197        .name(name() + ".txIPChecksums")
198        .desc("Number of tx IP Checksums done by device")
199        .precision(0)
200        .prereq(txBytes)
201        ;
202
203    rxIPChecksums
204        .name(name() + ".rxIPChecksums")
205        .desc("Number of rx IP Checksums done by device")
206        .precision(0)
207        .prereq(rxBytes)
208        ;
209
210    txTCPChecksums
211        .name(name() + ".txTCPChecksums")
212        .desc("Number of tx TCP Checksums done by device")
213        .precision(0)
214        .prereq(txBytes)
215        ;
216
217    rxTCPChecksums
218        .name(name() + ".rxTCPChecksums")
219        .desc("Number of rx TCP Checksums done by device")
220        .precision(0)
221        .prereq(rxBytes)
222        ;
223
224    descDmaReads
225        .name(name() + ".descDMAReads")
226        .desc("Number of descriptors the device read w/ DMA")
227        .precision(0)
228        ;
229
230    descDmaWrites
231        .name(name() + ".descDMAWrites")
232        .desc("Number of descriptors the device wrote w/ DMA")
233        .precision(0)
234        ;
235
236    descDmaRdBytes
237        .name(name() + ".descDmaReadBytes")
238        .desc("number of descriptor bytes read w/ DMA")
239        .precision(0)
240        ;
241
242   descDmaWrBytes
243        .name(name() + ".descDmaWriteBytes")
244        .desc("number of descriptor bytes write w/ DMA")
245        .precision(0)
246        ;
247
248
249    txBandwidth
250        .name(name() + ".txBandwidth")
251        .desc("Transmit Bandwidth (bits/s)")
252        .precision(0)
253        .prereq(txBytes)
254        ;
255
256    rxBandwidth
257        .name(name() + ".rxBandwidth")
258        .desc("Receive Bandwidth (bits/s)")
259        .precision(0)
260        .prereq(rxBytes)
261        ;
262
263    txPacketRate
264        .name(name() + ".txPPS")
265        .desc("Packet Tranmission Rate (packets/s)")
266        .precision(0)
267        .prereq(txBytes)
268        ;
269
270    rxPacketRate
271        .name(name() + ".rxPPS")
272        .desc("Packet Reception Rate (packets/s)")
273        .precision(0)
274        .prereq(rxBytes)
275        ;
276
277    txBandwidth = txBytes * Stats::constant(8) / simSeconds;
278    rxBandwidth = rxBytes * Stats::constant(8) / simSeconds;
279    txPacketRate = txPackets / simSeconds;
280    rxPacketRate = rxPackets / simSeconds;
281}
282
283/**
284 * This is to read the PCI general configuration registers
285 */
286void
287NSGigE::ReadConfig(int offset, int size, uint8_t *data)
288{
289    if (offset < PCI_DEVICE_SPECIFIC)
290        PciDev::ReadConfig(offset, size, data);
291    else
292        panic("Device specific PCI config space not implemented!\n");
293}
294
295/**
296 * This is to write to the PCI general configuration registers
297 */
298void
299NSGigE::WriteConfig(int offset, int size, uint32_t data)
300{
301    if (offset < PCI_DEVICE_SPECIFIC)
302        PciDev::WriteConfig(offset, size, data);
303    else
304        panic("Device specific PCI config space not implemented!\n");
305
306    // Need to catch writes to BARs to update the PIO interface
307    switch (offset) {
308        // seems to work fine without all these PCI settings, but i
309        // put in the IO to double check, an assertion will fail if we
310        // need to properly implement it
311      case PCI_COMMAND:
312        if (config.data[offset] & PCI_CMD_IOSE)
313            ioEnable = true;
314        else
315            ioEnable = false;
316
317#if 0
318        if (config.data[offset] & PCI_CMD_BME) {
319            bmEnabled = true;
320        }
321        else {
322            bmEnabled = false;
323        }
324
325        if (config.data[offset] & PCI_CMD_MSE) {
326            memEnable = true;
327        }
328        else {
329            memEnable = false;
330        }
331#endif
332        break;
333
334      case PCI0_BASE_ADDR0:
335        if (BARAddrs[0] != 0) {
336            if (pioInterface)
337                pioInterface->addAddrRange(BARAddrs[0],
338                                           BARAddrs[0] + BARSize[0] - 1);
339
340            BARAddrs[0] &= PA_UNCACHED_MASK;
341        }
342        break;
343      case PCI0_BASE_ADDR1:
344        if (BARAddrs[1] != 0) {
345            if (pioInterface)
346                pioInterface->addAddrRange(BARAddrs[1],
347                                           BARAddrs[1] + BARSize[1] - 1);
348
349            BARAddrs[1] &= PA_UNCACHED_MASK;
350        }
351        break;
352    }
353}
354
355/**
356 * This reads the device registers, which are detailed in the NS83820
357 * spec sheet
358 */
359Fault
360NSGigE::read(MemReqPtr &req, uint8_t *data)
361{
362    assert(ioEnable);
363
364    //The mask is to give you only the offset into the device register file
365    Addr daddr = req->paddr & 0xfff;
366    DPRINTF(EthernetPIO, "read  da=%#x pa=%#x va=%#x size=%d\n",
367            daddr, req->paddr, req->vaddr, req->size);
368
369
370    // there are some reserved registers, you can see ns_gige_reg.h and
371    // the spec sheet for details
372    if (daddr > LAST && daddr <=  RESERVED) {
373        panic("Accessing reserved register");
374    } else if (daddr > RESERVED && daddr <= 0x3FC) {
375        ReadConfig(daddr & 0xff, req->size, data);
376        return No_Fault;
377    } else if (daddr >= MIB_START && daddr <= MIB_END) {
378        // don't implement all the MIB's.  hopefully the kernel
379        // doesn't actually DEPEND upon their values
380        // MIB are just hardware stats keepers
381        uint32_t &reg = *(uint32_t *) data;
382        reg = 0;
383        return No_Fault;
384    } else if (daddr > 0x3FC)
385        panic("Something is messed up!\n");
386
387    switch (req->size) {
388      case sizeof(uint32_t):
389        {
390            uint32_t &reg = *(uint32_t *)data;
391
392            switch (daddr) {
393              case CR:
394                reg = regs.command;
395                //these are supposed to be cleared on a read
396                reg &= ~(CR_RXD | CR_TXD | CR_TXR | CR_RXR);
397                break;
398
399              case CFG:
400                reg = regs.config;
401                break;
402
403              case MEAR:
404                reg = regs.mear;
405                break;
406
407              case PTSCR:
408                reg = regs.ptscr;
409                break;
410
411              case ISR:
412                reg = regs.isr;
413                devIntrClear(ISR_ALL);
414                break;
415
416              case IMR:
417                reg = regs.imr;
418                break;
419
420              case IER:
421                reg = regs.ier;
422                break;
423
424              case IHR:
425                reg = regs.ihr;
426                break;
427
428              case TXDP:
429                reg = regs.txdp;
430                break;
431
432              case TXDP_HI:
433                reg = regs.txdp_hi;
434                break;
435
436              case TXCFG:
437                reg = regs.txcfg;
438                break;
439
440              case GPIOR:
441                reg = regs.gpior;
442                break;
443
444              case RXDP:
445                reg = regs.rxdp;
446                break;
447
448              case RXDP_HI:
449                reg = regs.rxdp_hi;
450                break;
451
452              case RXCFG:
453                reg = regs.rxcfg;
454                break;
455
456              case PQCR:
457                reg = regs.pqcr;
458                break;
459
460              case WCSR:
461                reg = regs.wcsr;
462                break;
463
464              case PCR:
465                reg = regs.pcr;
466                break;
467
468                // see the spec sheet for how RFCR and RFDR work
469                // basically, you write to RFCR to tell the machine
470                // what you want to do next, then you act upon RFDR,
471                // and the device will be prepared b/c of what you
472                // wrote to RFCR
473              case RFCR:
474                reg = regs.rfcr;
475                break;
476
477              case RFDR:
478                switch (regs.rfcr & RFCR_RFADDR) {
479                  case 0x000:
480                    reg = rom.perfectMatch[1];
481                    reg = reg << 8;
482                    reg += rom.perfectMatch[0];
483                    break;
484                  case 0x002:
485                    reg = rom.perfectMatch[3] << 8;
486                    reg += rom.perfectMatch[2];
487                    break;
488                  case 0x004:
489                    reg = rom.perfectMatch[5] << 8;
490                    reg += rom.perfectMatch[4];
491                    break;
492                  default:
493                    panic("reading RFDR for something other than PMATCH!\n");
494                    // didn't implement other RFDR functionality b/c
495                    // driver didn't use it
496                }
497                break;
498
499              case SRR:
500                reg = regs.srr;
501                break;
502
503              case MIBC:
504                reg = regs.mibc;
505                reg &= ~(MIBC_MIBS | MIBC_ACLR);
506                break;
507
508              case VRCR:
509                reg = regs.vrcr;
510                break;
511
512              case VTCR:
513                reg = regs.vtcr;
514                break;
515
516              case VDR:
517                reg = regs.vdr;
518                break;
519
520              case CCSR:
521                reg = regs.ccsr;
522                break;
523
524              case TBICR:
525                reg = regs.tbicr;
526                break;
527
528              case TBISR:
529                reg = regs.tbisr;
530                break;
531
532              case TANAR:
533                reg = regs.tanar;
534                break;
535
536              case TANLPAR:
537                reg = regs.tanlpar;
538                break;
539
540              case TANER:
541                reg = regs.taner;
542                break;
543
544              case TESR:
545                reg = regs.tesr;
546                break;
547
548              default:
549                panic("reading unimplemented register: addr = %#x", daddr);
550            }
551
552            DPRINTF(EthernetPIO, "read from %#x: data=%d data=%#x\n",
553                    daddr, reg, reg);
554        }
555        break;
556
557      default:
558        panic("accessing register with invalid size: addr=%#x, size=%d",
559              daddr, req->size);
560    }
561
562    return No_Fault;
563}
564
565Fault
566NSGigE::write(MemReqPtr &req, const uint8_t *data)
567{
568    assert(ioEnable);
569
570    Addr daddr = req->paddr & 0xfff;
571    DPRINTF(EthernetPIO, "write da=%#x pa=%#x va=%#x size=%d\n",
572            daddr, req->paddr, req->vaddr, req->size);
573
574    if (daddr > LAST && daddr <=  RESERVED) {
575        panic("Accessing reserved register");
576    } else if (daddr > RESERVED && daddr <= 0x3FC) {
577        WriteConfig(daddr & 0xff, req->size, *(uint32_t *)data);
578        return No_Fault;
579    } else if (daddr > 0x3FC)
580        panic("Something is messed up!\n");
581
582    if (req->size == sizeof(uint32_t)) {
583        uint32_t reg = *(uint32_t *)data;
584        DPRINTF(EthernetPIO, "write data=%d data=%#x\n", reg, reg);
585
586        switch (daddr) {
587          case CR:
588            regs.command = reg;
589            if ((reg & (CR_TXE | CR_TXD)) == (CR_TXE | CR_TXD)) {
590                txHalt = true;
591            } else if (reg & CR_TXE) {
592                //the kernel is enabling the transmit machine
593                if (txState == txIdle)
594                    txKick();
595            } else if (reg & CR_TXD) {
596                txHalt = true;
597            }
598
599            if ((reg & (CR_RXE | CR_RXD)) == (CR_RXE | CR_RXD)) {
600                rxHalt = true;
601            } else if (reg & CR_RXE) {
602                if (rxState == rxIdle) {
603                    rxKick();
604                }
605            } else if (reg & CR_RXD) {
606                rxHalt = true;
607            }
608
609            if (reg & CR_TXR)
610                txReset();
611
612            if (reg & CR_RXR)
613                rxReset();
614
615            if (reg & CR_SWI)
616                devIntrPost(ISR_SWI);
617
618            if (reg & CR_RST) {
619                txReset();
620                rxReset();
621
622                regsReset();
623            }
624            break;
625
626          case CFG:
627            if (reg & CFG_LNKSTS ||
628                reg & CFG_SPDSTS ||
629                reg & CFG_DUPSTS ||
630                reg & CFG_RESERVED ||
631                reg & CFG_T64ADDR ||
632                reg & CFG_PCI64_DET)
633                panic("writing to read-only or reserved CFG bits!\n");
634
635            regs.config |= reg & ~(CFG_LNKSTS | CFG_SPDSTS | CFG_DUPSTS |
636                                   CFG_RESERVED | CFG_T64ADDR | CFG_PCI64_DET);
637
638// all these #if 0's are because i don't THINK the kernel needs to
639// have these implemented. if there is a problem relating to one of
640// these, you may need to add functionality in.
641#if 0
642            if (reg & CFG_TBI_EN) ;
643            if (reg & CFG_MODE_1000) ;
644#endif
645
646            if (reg & CFG_AUTO_1000)
647                panic("CFG_AUTO_1000 not implemented!\n");
648
649#if 0
650            if (reg & CFG_PINT_DUPSTS ||
651                reg & CFG_PINT_LNKSTS ||
652                reg & CFG_PINT_SPDSTS)
653                ;
654
655            if (reg & CFG_TMRTEST) ;
656            if (reg & CFG_MRM_DIS) ;
657            if (reg & CFG_MWI_DIS) ;
658
659            if (reg & CFG_T64ADDR)
660                panic("CFG_T64ADDR is read only register!\n");
661
662            if (reg & CFG_PCI64_DET)
663                panic("CFG_PCI64_DET is read only register!\n");
664
665            if (reg & CFG_DATA64_EN) ;
666            if (reg & CFG_M64ADDR) ;
667            if (reg & CFG_PHY_RST) ;
668            if (reg & CFG_PHY_DIS) ;
669#endif
670
671            if (reg & CFG_EXTSTS_EN)
672                extstsEnable = true;
673            else
674                extstsEnable = false;
675
676#if 0
677              if (reg & CFG_REQALG) ;
678              if (reg & CFG_SB) ;
679              if (reg & CFG_POW) ;
680              if (reg & CFG_EXD) ;
681              if (reg & CFG_PESEL) ;
682              if (reg & CFG_BROM_DIS) ;
683              if (reg & CFG_EXT_125) ;
684              if (reg & CFG_BEM) ;
685#endif
686            break;
687
688          case MEAR:
689            regs.mear = reg;
690            // since phy is completely faked, MEAR_MD* don't matter
691            // and since the driver never uses MEAR_EE*, they don't
692            // matter
693#if 0
694            if (reg & MEAR_EEDI) ;
695            if (reg & MEAR_EEDO) ; // this one is read only
696            if (reg & MEAR_EECLK) ;
697            if (reg & MEAR_EESEL) ;
698            if (reg & MEAR_MDIO) ;
699            if (reg & MEAR_MDDIR) ;
700            if (reg & MEAR_MDC) ;
701#endif
702            break;
703
704          case PTSCR:
705            regs.ptscr = reg & ~(PTSCR_RBIST_RDONLY);
706            // these control BISTs for various parts of chip - we
707            // don't care or do just fake that the BIST is done
708            if (reg & PTSCR_RBIST_EN)
709                regs.ptscr |= PTSCR_RBIST_DONE;
710            if (reg & PTSCR_EEBIST_EN)
711                regs.ptscr &= ~PTSCR_EEBIST_EN;
712            if (reg & PTSCR_EELOAD_EN)
713                regs.ptscr &= ~PTSCR_EELOAD_EN;
714            break;
715
716          case ISR: /* writing to the ISR has no effect */
717            panic("ISR is a read only register!\n");
718
719          case IMR:
720            regs.imr = reg;
721            devIntrChangeMask();
722            break;
723
724          case IER:
725            regs.ier = reg;
726            break;
727
728          case IHR:
729            regs.ihr = reg;
730            /* not going to implement real interrupt holdoff */
731            break;
732
733          case TXDP:
734            regs.txdp = (reg & 0xFFFFFFFC);
735            assert(txState == txIdle);
736            CTDD = false;
737            break;
738
739          case TXDP_HI:
740            regs.txdp_hi = reg;
741            break;
742
743          case TXCFG:
744            regs.txcfg = reg;
745#if 0
746            if (reg & TXCFG_CSI) ;
747            if (reg & TXCFG_HBI) ;
748            if (reg & TXCFG_MLB) ;
749            if (reg & TXCFG_ATP) ;
750            if (reg & TXCFG_ECRETRY) {
751                /*
752                 * this could easily be implemented, but considering
753                 * the network is just a fake pipe, wouldn't make
754                 * sense to do this
755                 */
756            }
757
758            if (reg & TXCFG_BRST_DIS) ;
759#endif
760
761#if 0
762            /* we handle our own DMA, ignore the kernel's exhortations */
763            if (reg & TXCFG_MXDMA) ;
764#endif
765
766            // also, we currently don't care about fill/drain
767            // thresholds though this may change in the future with
768            // more realistic networks or a driver which changes it
769            // according to feedback
770
771            break;
772
773          case GPIOR:
774            regs.gpior = reg;
775            /* these just control general purpose i/o pins, don't matter */
776            break;
777
778          case RXDP:
779            regs.rxdp = reg;
780            break;
781
782          case RXDP_HI:
783            regs.rxdp_hi = reg;
784            break;
785
786          case RXCFG:
787            regs.rxcfg = reg;
788#if 0
789            if (reg & RXCFG_AEP) ;
790            if (reg & RXCFG_ARP) ;
791            if (reg & RXCFG_STRIPCRC) ;
792            if (reg & RXCFG_RX_RD) ;
793            if (reg & RXCFG_ALP) ;
794            if (reg & RXCFG_AIRL) ;
795
796            /* we handle our own DMA, ignore what kernel says about it */
797            if (reg & RXCFG_MXDMA) ;
798
799            //also, we currently don't care about fill/drain thresholds
800            //though this may change in the future with more realistic
801            //networks or a driver which changes it according to feedback
802            if (reg & (RXCFG_DRTH | RXCFG_DRTH0)) ;
803#endif
804            break;
805
806          case PQCR:
807            /* there is no priority queueing used in the linux 2.6 driver */
808            regs.pqcr = reg;
809            break;
810
811          case WCSR:
812            /* not going to implement wake on LAN */
813            regs.wcsr = reg;
814            break;
815
816          case PCR:
817            /* not going to implement pause control */
818            regs.pcr = reg;
819            break;
820
821          case RFCR:
822            regs.rfcr = reg;
823
824            rxFilterEnable = (reg & RFCR_RFEN) ? true : false;
825            acceptBroadcast = (reg & RFCR_AAB) ? true : false;
826            acceptMulticast = (reg & RFCR_AAM) ? true : false;
827            acceptUnicast = (reg & RFCR_AAU) ? true : false;
828            acceptPerfect = (reg & RFCR_APM) ? true : false;
829            acceptArp = (reg & RFCR_AARP) ? true : false;
830
831#if 0
832            if (reg & RFCR_APAT)
833                panic("RFCR_APAT not implemented!\n");
834#endif
835
836            if (reg & RFCR_MHEN || reg & RFCR_UHEN)
837                panic("hash filtering not implemented!\n");
838
839            if (reg & RFCR_ULM)
840                panic("RFCR_ULM not implemented!\n");
841
842            break;
843
844          case RFDR:
845            panic("the driver never writes to RFDR, something is wrong!\n");
846
847          case BRAR:
848            panic("the driver never uses BRAR, something is wrong!\n");
849
850          case BRDR:
851            panic("the driver never uses BRDR, something is wrong!\n");
852
853          case SRR:
854            panic("SRR is read only register!\n");
855
856          case MIBC:
857            panic("the driver never uses MIBC, something is wrong!\n");
858
859          case VRCR:
860            regs.vrcr = reg;
861            break;
862
863          case VTCR:
864            regs.vtcr = reg;
865            break;
866
867          case VDR:
868            panic("the driver never uses VDR, something is wrong!\n");
869            break;
870
871          case CCSR:
872            /* not going to implement clockrun stuff */
873            regs.ccsr = reg;
874            break;
875
876          case TBICR:
877            regs.tbicr = reg;
878            if (reg & TBICR_MR_LOOPBACK)
879                panic("TBICR_MR_LOOPBACK never used, something wrong!\n");
880
881            if (reg & TBICR_MR_AN_ENABLE) {
882                regs.tanlpar = regs.tanar;
883                regs.tbisr |= (TBISR_MR_AN_COMPLETE | TBISR_MR_LINK_STATUS);
884            }
885
886#if 0
887            if (reg & TBICR_MR_RESTART_AN) ;
888#endif
889
890            break;
891
892          case TBISR:
893            panic("TBISR is read only register!\n");
894
895          case TANAR:
896            regs.tanar = reg;
897            if (reg & TANAR_PS2)
898                panic("this isn't used in driver, something wrong!\n");
899
900            if (reg & TANAR_PS1)
901                panic("this isn't used in driver, something wrong!\n");
902            break;
903
904          case TANLPAR:
905            panic("this should only be written to by the fake phy!\n");
906
907          case TANER:
908            panic("TANER is read only register!\n");
909
910          case TESR:
911            regs.tesr = reg;
912            break;
913
914          default:
915            panic("invalid register access daddr=%#x", daddr);
916        }
917    } else {
918        panic("Invalid Request Size");
919    }
920
921    return No_Fault;
922}
923
924void
925NSGigE::devIntrPost(uint32_t interrupts)
926{
927    bool delay = false;
928
929    if (interrupts & ISR_RESERVE)
930        panic("Cannot set a reserved interrupt");
931
932    if (interrupts & ISR_TXRCMP)
933        regs.isr |= ISR_TXRCMP;
934
935    if (interrupts & ISR_RXRCMP)
936        regs.isr |= ISR_RXRCMP;
937
938//ISR_DPERR  not implemented
939//ISR_SSERR not implemented
940//ISR_RMABT not implemented
941//ISR_RXSOVR not implemented
942//ISR_HIBINT not implemented
943//ISR_PHY not implemented
944//ISR_PME not implemented
945
946    if (interrupts & ISR_SWI)
947        regs.isr |= ISR_SWI;
948
949//ISR_MIB not implemented
950//ISR_TXURN not implemented
951
952    if (interrupts & ISR_TXIDLE)
953        regs.isr |= ISR_TXIDLE;
954
955    if (interrupts & ISR_TXERR)
956        regs.isr |= ISR_TXERR;
957
958    if (interrupts & ISR_TXDESC)
959        regs.isr |= ISR_TXDESC;
960
961    if (interrupts & ISR_TXOK) {
962        regs.isr |= ISR_TXOK;
963        delay = true;
964    }
965
966    if (interrupts & ISR_RXORN)
967        regs.isr |= ISR_RXORN;
968
969    if (interrupts & ISR_RXIDLE)
970        regs.isr |= ISR_RXIDLE;
971
972//ISR_RXEARLY not implemented
973
974    if (interrupts & ISR_RXERR)
975        regs.isr |= ISR_RXERR;
976
977    if (interrupts & ISR_RXDESC)
978        regs.isr |= ISR_RXDESC;
979
980    if (interrupts & ISR_RXOK) {
981        delay = true;
982        regs.isr |= ISR_RXOK;
983    }
984
985    if ((regs.isr & regs.imr)) {
986        Tick when = curTick;
987        if (delay)
988            when += intrDelay;
989        cpuIntrPost(when);
990    }
991
992    DPRINTF(EthernetIntr,
993            "interrupt written to ISR: intr=%#x isr=%#x imr=%#x\n",
994            interrupts, regs.isr, regs.imr);
995}
996
997void
998NSGigE::devIntrClear(uint32_t interrupts)
999{
1000    if (interrupts & ISR_RESERVE)
1001        panic("Cannot clear a reserved interrupt");
1002
1003    if (interrupts & ISR_TXRCMP)
1004        regs.isr &= ~ISR_TXRCMP;
1005
1006    if (interrupts & ISR_RXRCMP)
1007        regs.isr &= ~ISR_RXRCMP;
1008
1009//ISR_DPERR  not implemented
1010//ISR_SSERR not implemented
1011//ISR_RMABT not implemented
1012//ISR_RXSOVR not implemented
1013//ISR_HIBINT not implemented
1014//ISR_PHY not implemented
1015//ISR_PME not implemented
1016
1017    if (interrupts & ISR_SWI)
1018        regs.isr &= ~ISR_SWI;
1019
1020//ISR_MIB not implemented
1021//ISR_TXURN not implemented
1022
1023    if (interrupts & ISR_TXIDLE)
1024        regs.isr &= ~ISR_TXIDLE;
1025
1026    if (interrupts & ISR_TXERR)
1027        regs.isr &= ~ISR_TXERR;
1028
1029    if (interrupts & ISR_TXDESC)
1030        regs.isr &= ~ISR_TXDESC;
1031
1032    if (interrupts & ISR_TXOK)
1033        regs.isr &= ~ISR_TXOK;
1034
1035    if (interrupts & ISR_RXORN)
1036        regs.isr &= ~ISR_RXORN;
1037
1038    if (interrupts & ISR_RXIDLE)
1039        regs.isr &= ~ISR_RXIDLE;
1040
1041//ISR_RXEARLY not implemented
1042
1043    if (interrupts & ISR_RXERR)
1044        regs.isr &= ~ISR_RXERR;
1045
1046    if (interrupts & ISR_RXDESC)
1047        regs.isr &= ~ISR_RXDESC;
1048
1049    if (interrupts & ISR_RXOK)
1050        regs.isr &= ~ISR_RXOK;
1051
1052    if (!(regs.isr & regs.imr))
1053        cpuIntrClear();
1054
1055    DPRINTF(EthernetIntr,
1056            "interrupt cleared from ISR: intr=%x isr=%x imr=%x\n",
1057            interrupts, regs.isr, regs.imr);
1058}
1059
1060void
1061NSGigE::devIntrChangeMask()
1062{
1063    DPRINTF(EthernetIntr, "interrupt mask changed\n");
1064
1065    if (regs.isr & regs.imr)
1066        cpuIntrPost(curTick);
1067    else
1068        cpuIntrClear();
1069}
1070
1071void
1072NSGigE::cpuIntrPost(Tick when)
1073{
1074    // If the interrupt you want to post is later than an interrupt
1075    // already scheduled, just let it post in the coming one and don't
1076    // schedule another.
1077    // HOWEVER, must be sure that the scheduled intrTick is in the
1078    // future (this was formerly the source of a bug)
1079    assert((intrTick >= curTick) || (intrTick == 0));
1080    if (when > intrTick && intrTick != 0)
1081        return;
1082
1083    intrTick = when;
1084
1085    if (intrEvent) {
1086        intrEvent->squash();
1087        intrEvent = 0;
1088    }
1089
1090    if (when < curTick) {
1091        cpuInterrupt();
1092    } else {
1093        DPRINTF(EthernetIntr,
1094                "going to schedule an interrupt for intrTick=%d\n",
1095                intrTick);
1096        intrEvent = new IntrEvent(this, true);
1097        intrEvent->schedule(intrTick);
1098    }
1099}
1100
1101void
1102NSGigE::cpuInterrupt()
1103{
1104    // Don't send an interrupt if there's already one
1105    if (cpuPendingIntr) {
1106        DPRINTF(EthernetIntr,
1107                "would send an interrupt now, but there's already pending\n");
1108        intrTick = 0;
1109        return;
1110    }
1111    // Don't send an interrupt if it's supposed to be delayed
1112    if (intrTick > curTick) {
1113        DPRINTF(EthernetIntr,
1114                "an interrupt is scheduled for %d, wait til then\n",
1115                intrTick);
1116        return;
1117    }
1118
1119    // Whether or not there's a pending interrupt, we don't care about
1120    // it anymore
1121    intrEvent = 0;
1122    intrTick = 0;
1123
1124    // Send interrupt
1125    cpuPendingIntr = true;
1126    /** @todo rework the intctrl to be tsunami ok */
1127    //intctrl->post(TheISA::INTLEVEL_IRQ1, TheISA::INTINDEX_ETHERNET);
1128    DPRINTF(EthernetIntr, "Posting interrupts to cchip!\n");
1129    tsunami->cchip->postDRIR(configData->config.hdr.pci0.interruptLine);
1130}
1131
1132void
1133NSGigE::cpuIntrClear()
1134{
1135    if (!cpuPendingIntr)
1136        return;
1137
1138    cpuPendingIntr = false;
1139    /** @todo rework the intctrl to be tsunami ok */
1140    //intctrl->clear(TheISA::INTLEVEL_IRQ1, TheISA::INTINDEX_ETHERNET);
1141    DPRINTF(EthernetIntr, "clearing all interrupts from cchip\n");
1142    tsunami->cchip->clearDRIR(configData->config.hdr.pci0.interruptLine);
1143}
1144
1145bool
1146NSGigE::cpuIntrPending() const
1147{ return cpuPendingIntr; }
1148
1149void
1150NSGigE::txReset()
1151{
1152
1153    DPRINTF(Ethernet, "transmit reset\n");
1154
1155    CTDD = false;
1156    txFifoAvail = maxTxFifoSize;
1157    txHalt = false;
1158    txFragPtr = 0;
1159    assert(txDescCnt == 0);
1160    txFifo.clear();
1161    regs.command &= ~CR_TXE;
1162    txState = txIdle;
1163    assert(txDmaState == dmaIdle);
1164}
1165
1166void
1167NSGigE::rxReset()
1168{
1169    DPRINTF(Ethernet, "receive reset\n");
1170
1171    CRDD = false;
1172    assert(rxPktBytes == 0);
1173    rxFifoCnt = 0;
1174    rxHalt = false;
1175    rxFragPtr = 0;
1176    assert(rxDescCnt == 0);
1177    assert(rxDmaState == dmaIdle);
1178    rxFifo.clear();
1179    regs.command &= ~CR_RXE;
1180    rxState = rxIdle;
1181}
1182
1183void NSGigE::regsReset()
1184{
1185    memset(&regs, 0, sizeof(regs));
1186    regs.config = 0x80000000;
1187    regs.mear = 0x12;
1188    regs.isr = 0x00608000;
1189    regs.txcfg = 0x120;
1190    regs.rxcfg = 0x4;
1191    regs.srr = 0x0103;
1192    regs.mibc = 0x2;
1193    regs.vdr = 0x81;
1194    regs.tesr = 0xc000;
1195
1196    extstsEnable = false;
1197    acceptBroadcast = false;
1198    acceptMulticast = false;
1199    acceptUnicast = false;
1200    acceptPerfect = false;
1201    acceptArp = false;
1202}
1203
1204void
1205NSGigE::rxDmaReadCopy()
1206{
1207    assert(rxDmaState == dmaReading);
1208
1209    memcpy(rxDmaData, physmem->dma_addr(rxDmaAddr, rxDmaLen), rxDmaLen);
1210    rxDmaState = dmaIdle;
1211
1212    DPRINTF(EthernetDMA, "rx dma read  paddr=%#x len=%d\n",
1213            rxDmaAddr, rxDmaLen);
1214    DDUMP(EthernetDMA, rxDmaData, rxDmaLen);
1215}
1216
1217bool
1218NSGigE::doRxDmaRead()
1219{
1220    assert(rxDmaState == dmaIdle || rxDmaState == dmaReadWaiting);
1221    rxDmaState = dmaReading;
1222
1223    if (dmaInterface && !rxDmaFree) {
1224        if (dmaInterface->busy())
1225            rxDmaState = dmaReadWaiting;
1226        else
1227            dmaInterface->doDMA(Read, rxDmaAddr, rxDmaLen, curTick,
1228                                &rxDmaReadEvent, true);
1229        return true;
1230    }
1231
1232    if (dmaReadDelay == 0 && dmaReadFactor == 0) {
1233        rxDmaReadCopy();
1234        return false;
1235    }
1236
1237    Tick factor = ((rxDmaLen + ULL(63)) >> ULL(6)) * dmaReadFactor;
1238    Tick start = curTick + dmaReadDelay + factor;
1239    rxDmaReadEvent.schedule(start);
1240    return true;
1241}
1242
1243void
1244NSGigE::rxDmaReadDone()
1245{
1246    assert(rxDmaState == dmaReading);
1247    rxDmaReadCopy();
1248
1249    // If the transmit state machine has a pending DMA, let it go first
1250    if (txDmaState == dmaReadWaiting || txDmaState == dmaWriteWaiting)
1251        txKick();
1252
1253    rxKick();
1254}
1255
1256void
1257NSGigE::rxDmaWriteCopy()
1258{
1259    assert(rxDmaState == dmaWriting);
1260
1261    memcpy(physmem->dma_addr(rxDmaAddr, rxDmaLen), rxDmaData, rxDmaLen);
1262    rxDmaState = dmaIdle;
1263
1264    DPRINTF(EthernetDMA, "rx dma write paddr=%#x len=%d\n",
1265            rxDmaAddr, rxDmaLen);
1266    DDUMP(EthernetDMA, rxDmaData, rxDmaLen);
1267}
1268
1269bool
1270NSGigE::doRxDmaWrite()
1271{
1272    assert(rxDmaState == dmaIdle || rxDmaState == dmaWriteWaiting);
1273    rxDmaState = dmaWriting;
1274
1275    if (dmaInterface && !rxDmaFree) {
1276        if (dmaInterface->busy())
1277            rxDmaState = dmaWriteWaiting;
1278        else
1279            dmaInterface->doDMA(WriteInvalidate, rxDmaAddr, rxDmaLen, curTick,
1280                                &rxDmaWriteEvent, true);
1281        return true;
1282    }
1283
1284    if (dmaWriteDelay == 0 && dmaWriteFactor == 0) {
1285        rxDmaWriteCopy();
1286        return false;
1287    }
1288
1289    Tick factor = ((rxDmaLen + ULL(63)) >> ULL(6)) * dmaWriteFactor;
1290    Tick start = curTick + dmaWriteDelay + factor;
1291    rxDmaWriteEvent.schedule(start);
1292    return true;
1293}
1294
1295void
1296NSGigE::rxDmaWriteDone()
1297{
1298    assert(rxDmaState == dmaWriting);
1299    rxDmaWriteCopy();
1300
1301    // If the transmit state machine has a pending DMA, let it go first
1302    if (txDmaState == dmaReadWaiting || txDmaState == dmaWriteWaiting)
1303        txKick();
1304
1305    rxKick();
1306}
1307
1308void
1309NSGigE::rxKick()
1310{
1311    DPRINTF(EthernetSM, "receive kick state=%s (rxBuf.size=%d)\n",
1312            NsRxStateStrings[rxState], rxFifo.size());
1313
1314    if (rxKickTick > curTick) {
1315        DPRINTF(EthernetSM, "receive kick exiting, can't run till %d\n",
1316                rxKickTick);
1317        return;
1318    }
1319
1320  next:
1321    switch(rxDmaState) {
1322      case dmaReadWaiting:
1323        if (doRxDmaRead())
1324            goto exit;
1325        break;
1326      case dmaWriteWaiting:
1327        if (doRxDmaWrite())
1328            goto exit;
1329        break;
1330      default:
1331        break;
1332    }
1333
1334    // see state machine from spec for details
1335    // the way this works is, if you finish work on one state and can
1336    // go directly to another, you do that through jumping to the
1337    // label "next".  however, if you have intermediate work, like DMA
1338    // so that you can't go to the next state yet, you go to exit and
1339    // exit the loop.  however, when the DMA is done it will trigger
1340    // an event and come back to this loop.
1341    switch (rxState) {
1342      case rxIdle:
1343        if (!regs.command & CR_RXE) {
1344            DPRINTF(EthernetSM, "Receive Disabled! Nothing to do.\n");
1345            goto exit;
1346        }
1347
1348        if (CRDD) {
1349            rxState = rxDescRefr;
1350
1351            rxDmaAddr = regs.rxdp & 0x3fffffff;
1352            rxDmaData = &rxDescCache + offsetof(ns_desc, link);
1353            rxDmaLen = sizeof(rxDescCache.link);
1354            rxDmaFree = dmaDescFree;
1355
1356            descDmaReads++;
1357            descDmaRdBytes += rxDmaLen;
1358
1359            if (doRxDmaRead())
1360                goto exit;
1361        } else {
1362            rxState = rxDescRead;
1363
1364            rxDmaAddr = regs.rxdp & 0x3fffffff;
1365            rxDmaData = &rxDescCache;
1366            rxDmaLen = sizeof(ns_desc);
1367            rxDmaFree = dmaDescFree;
1368
1369            descDmaReads++;
1370            descDmaRdBytes += rxDmaLen;
1371
1372            if (doRxDmaRead())
1373                goto exit;
1374        }
1375        break;
1376
1377      case rxDescRefr:
1378        if (rxDmaState != dmaIdle)
1379            goto exit;
1380
1381        rxState = rxAdvance;
1382        break;
1383
1384     case rxDescRead:
1385        if (rxDmaState != dmaIdle)
1386            goto exit;
1387
1388        DPRINTF(EthernetDesc,
1389                "rxDescCache:\n"
1390                "\tlink=%08x\n"
1391                "\tbufptr=%08x\n"
1392                "\tcmdsts=%08x\n"
1393                "\textsts=%08x\n",
1394                rxDescCache.link, rxDescCache.bufptr, rxDescCache.cmdsts,
1395                rxDescCache.extsts);
1396
1397        if (rxDescCache.cmdsts & CMDSTS_OWN) {
1398            rxState = rxIdle;
1399        } else {
1400            rxState = rxFifoBlock;
1401            rxFragPtr = rxDescCache.bufptr;
1402            rxDescCnt = rxDescCache.cmdsts & CMDSTS_LEN_MASK;
1403        }
1404        break;
1405
1406      case rxFifoBlock:
1407        if (!rxPacket) {
1408            /**
1409             * @todo in reality, we should be able to start processing
1410             * the packet as it arrives, and not have to wait for the
1411             * full packet ot be in the receive fifo.
1412             */
1413            if (rxFifo.empty())
1414                goto exit;
1415
1416            DPRINTF(EthernetSM, "\n\n*****processing receive of new packet\n");
1417
1418            // If we don't have a packet, grab a new one from the fifo.
1419            rxPacket = rxFifo.front();
1420            rxPktBytes = rxPacket->length;
1421            rxPacketBufPtr = rxPacket->data;
1422
1423#if TRACING_ON
1424            if (DTRACE(Ethernet)) {
1425                if (rxPacket->isIpPkt()) {
1426                    ip_header *ip = rxPacket->getIpHdr();
1427                    DPRINTF(Ethernet, "ID is %d\n", reverseEnd16(ip->ID));
1428                    if (rxPacket->isTcpPkt()) {
1429                        tcp_header *tcp = rxPacket->getTcpHdr(ip);
1430                        DPRINTF(Ethernet, "Src Port = %d, Dest Port = %d\n",
1431                                reverseEnd16(tcp->src_port_num),
1432                                reverseEnd16(tcp->dest_port_num));
1433                    }
1434                }
1435            }
1436#endif
1437
1438            // sanity check - i think the driver behaves like this
1439            assert(rxDescCnt >= rxPktBytes);
1440
1441            // Must clear the value before popping to decrement the
1442            // reference count
1443            rxFifo.front() = NULL;
1444            rxFifo.pop_front();
1445            rxFifoCnt -= rxPacket->length;
1446        }
1447
1448
1449        // dont' need the && rxDescCnt > 0 if driver sanity check
1450        // above holds
1451        if (rxPktBytes > 0) {
1452            rxState = rxFragWrite;
1453            // don't need min<>(rxPktBytes,rxDescCnt) if above sanity
1454            // check holds
1455            rxXferLen = rxPktBytes;
1456
1457            rxDmaAddr = rxFragPtr & 0x3fffffff;
1458            rxDmaData = rxPacketBufPtr;
1459            rxDmaLen = rxXferLen;
1460            rxDmaFree = dmaDataFree;
1461
1462            if (doRxDmaWrite())
1463                goto exit;
1464
1465        } else {
1466            rxState = rxDescWrite;
1467
1468            //if (rxPktBytes == 0) {  /* packet is done */
1469            assert(rxPktBytes == 0);
1470            DPRINTF(EthernetSM, "done with receiving packet\n");
1471
1472            rxDescCache.cmdsts |= CMDSTS_OWN;
1473            rxDescCache.cmdsts &= ~CMDSTS_MORE;
1474            rxDescCache.cmdsts |= CMDSTS_OK;
1475            rxDescCache.cmdsts &= 0xffff0000;
1476            rxDescCache.cmdsts += rxPacket->length;   //i.e. set CMDSTS_SIZE
1477
1478#if 0
1479            /*
1480             * all the driver uses these are for its own stats keeping
1481             * which we don't care about, aren't necessary for
1482             * functionality and doing this would just slow us down.
1483             * if they end up using this in a later version for
1484             * functional purposes, just undef
1485             */
1486            if (rxFilterEnable) {
1487                rxDescCache.cmdsts &= ~CMDSTS_DEST_MASK;
1488                if (rxFifo.front()->IsUnicast())
1489                    rxDescCache.cmdsts |= CMDSTS_DEST_SELF;
1490                if (rxFifo.front()->IsMulticast())
1491                    rxDescCache.cmdsts |= CMDSTS_DEST_MULTI;
1492                if (rxFifo.front()->IsBroadcast())
1493                    rxDescCache.cmdsts |= CMDSTS_DEST_MASK;
1494            }
1495#endif
1496
1497            if (rxPacket->isIpPkt() && extstsEnable) {
1498                rxDescCache.extsts |= EXTSTS_IPPKT;
1499                rxIPChecksums++;
1500                if (!ipChecksum(rxPacket, false)) {
1501                    DPRINTF(EthernetCksum, "Rx IP Checksum Error\n");
1502                    rxDescCache.extsts |= EXTSTS_IPERR;
1503                }
1504                if (rxPacket->isTcpPkt()) {
1505                    rxDescCache.extsts |= EXTSTS_TCPPKT;
1506                    rxTCPChecksums++;
1507                    if (!tcpChecksum(rxPacket, false)) {
1508                        DPRINTF(EthernetCksum, "Rx TCP Checksum Error\n");
1509                        rxDescCache.extsts |= EXTSTS_TCPERR;
1510
1511                    }
1512                } else if (rxPacket->isUdpPkt()) {
1513                    rxDescCache.extsts |= EXTSTS_UDPPKT;
1514                    if (!udpChecksum(rxPacket, false)) {
1515                        DPRINTF(EthernetCksum, "Rx UDP Checksum Error\n");
1516                        rxDescCache.extsts |= EXTSTS_UDPERR;
1517                    }
1518                }
1519            }
1520            rxPacket = 0;
1521
1522            /*
1523             * the driver seems to always receive into desc buffers
1524             * of size 1514, so you never have a pkt that is split
1525             * into multiple descriptors on the receive side, so
1526             * i don't implement that case, hence the assert above.
1527             */
1528
1529            DPRINTF(EthernetDesc,
1530                    "rxDesc writeback:\n\tcmdsts=%08x\n\textsts=%08x\n",
1531                    rxDescCache.cmdsts, rxDescCache.extsts);
1532
1533            rxDmaAddr = (regs.rxdp + offsetof(ns_desc, cmdsts)) & 0x3fffffff;
1534            rxDmaData = &(rxDescCache.cmdsts);
1535            rxDmaLen = sizeof(rxDescCache.cmdsts) + sizeof(rxDescCache.extsts);
1536            rxDmaFree = dmaDescFree;
1537
1538            descDmaWrites++;
1539            descDmaWrBytes += rxDmaLen;
1540
1541            if (doRxDmaWrite())
1542                goto exit;
1543        }
1544        break;
1545
1546      case rxFragWrite:
1547        if (rxDmaState != dmaIdle)
1548            goto exit;
1549
1550        rxPacketBufPtr += rxXferLen;
1551        rxFragPtr += rxXferLen;
1552        rxPktBytes -= rxXferLen;
1553
1554        rxState = rxFifoBlock;
1555        break;
1556
1557      case rxDescWrite:
1558        if (rxDmaState != dmaIdle)
1559            goto exit;
1560
1561        assert(rxDescCache.cmdsts & CMDSTS_OWN);
1562
1563        assert(rxPacket == 0);
1564        devIntrPost(ISR_RXOK);
1565
1566        if (rxDescCache.cmdsts & CMDSTS_INTR)
1567            devIntrPost(ISR_RXDESC);
1568
1569        if (rxHalt) {
1570            DPRINTF(EthernetSM, "Halting the RX state machine\n");
1571            rxState = rxIdle;
1572            rxHalt = false;
1573        } else
1574            rxState = rxAdvance;
1575        break;
1576
1577      case rxAdvance:
1578        if (rxDescCache.link == 0) {
1579            rxState = rxIdle;
1580            return;
1581        } else {
1582            rxState = rxDescRead;
1583            regs.rxdp = rxDescCache.link;
1584            CRDD = false;
1585
1586            rxDmaAddr = regs.rxdp & 0x3fffffff;
1587            rxDmaData = &rxDescCache;
1588            rxDmaLen = sizeof(ns_desc);
1589            rxDmaFree = dmaDescFree;
1590
1591            if (doRxDmaRead())
1592                goto exit;
1593        }
1594        break;
1595
1596      default:
1597        panic("Invalid rxState!");
1598    }
1599
1600
1601    DPRINTF(EthernetSM, "entering next rx state = %s\n",
1602            NsRxStateStrings[rxState]);
1603
1604    if (rxState == rxIdle) {
1605        regs.command &= ~CR_RXE;
1606        devIntrPost(ISR_RXIDLE);
1607        return;
1608    }
1609
1610    goto next;
1611
1612  exit:
1613    /**
1614     * @todo do we want to schedule a future kick?
1615     */
1616    DPRINTF(EthernetSM, "rx state machine exited state=%s\n",
1617            NsRxStateStrings[rxState]);
1618}
1619
1620void
1621NSGigE::transmit()
1622{
1623    if (txFifo.empty()) {
1624        DPRINTF(Ethernet, "nothing to transmit\n");
1625        return;
1626    }
1627
1628    DPRINTF(Ethernet, "\n\nAttempt Pkt Transmit: txFifo length = %d\n",
1629            maxTxFifoSize - txFifoAvail);
1630    if (interface->sendPacket(txFifo.front())) {
1631#if TRACING_ON
1632        if (DTRACE(Ethernet)) {
1633            if (txFifo.front()->isIpPkt()) {
1634                ip_header *ip = txFifo.front()->getIpHdr();
1635                DPRINTF(Ethernet, "ID is %d\n", reverseEnd16(ip->ID));
1636                if (txFifo.front()->isTcpPkt()) {
1637                    tcp_header *tcp = txFifo.front()->getTcpHdr(ip);
1638                    DPRINTF(Ethernet, "Src Port = %d, Dest Port = %d\n",
1639                            reverseEnd16(tcp->src_port_num),
1640                            reverseEnd16(tcp->dest_port_num));
1641                }
1642            }
1643        }
1644#endif
1645
1646        DDUMP(Ethernet, txFifo.front()->data, txFifo.front()->length);
1647        txBytes += txFifo.front()->length;
1648        txPackets++;
1649
1650        txFifoAvail += txFifo.front()->length;
1651
1652        DPRINTF(Ethernet, "Successful Xmit! now txFifoAvail is %d\n",
1653                txFifoAvail);
1654        txFifo.front() = NULL;
1655        txFifo.pop_front();
1656
1657        /*
1658         * normally do a writeback of the descriptor here, and ONLY
1659         * after that is done, send this interrupt.  but since our
1660         * stuff never actually fails, just do this interrupt here,
1661         * otherwise the code has to stray from this nice format.
1662         * besides, it's functionally the same.
1663         */
1664        devIntrPost(ISR_TXOK);
1665    } else {
1666        DPRINTF(Ethernet,
1667                "May need to rethink always sending the descriptors back?\n");
1668    }
1669
1670   if (!txFifo.empty() && !txEvent.scheduled()) {
1671       DPRINTF(Ethernet, "reschedule transmit\n");
1672       txEvent.schedule(curTick + 1000);
1673   }
1674}
1675
1676void
1677NSGigE::txDmaReadCopy()
1678{
1679    assert(txDmaState == dmaReading);
1680
1681    memcpy(txDmaData, physmem->dma_addr(txDmaAddr, txDmaLen), txDmaLen);
1682    txDmaState = dmaIdle;
1683
1684    DPRINTF(EthernetDMA, "tx dma read  paddr=%#x len=%d\n",
1685            txDmaAddr, txDmaLen);
1686    DDUMP(EthernetDMA, txDmaData, txDmaLen);
1687}
1688
1689bool
1690NSGigE::doTxDmaRead()
1691{
1692    assert(txDmaState == dmaIdle || txDmaState == dmaReadWaiting);
1693    txDmaState = dmaReading;
1694
1695    if (dmaInterface && !txDmaFree) {
1696        if (dmaInterface->busy())
1697            txDmaState = dmaReadWaiting;
1698        else
1699            dmaInterface->doDMA(Read, txDmaAddr, txDmaLen, curTick,
1700                                &txDmaReadEvent, true);
1701        return true;
1702    }
1703
1704    if (dmaReadDelay == 0 && dmaReadFactor == 0.0) {
1705        txDmaReadCopy();
1706        return false;
1707    }
1708
1709    Tick factor = ((txDmaLen + ULL(63)) >> ULL(6)) * dmaReadFactor;
1710    Tick start = curTick + dmaReadDelay + factor;
1711    txDmaReadEvent.schedule(start);
1712    return true;
1713}
1714
1715void
1716NSGigE::txDmaReadDone()
1717{
1718    assert(txDmaState == dmaReading);
1719    txDmaReadCopy();
1720
1721    // If the receive state machine  has a pending DMA, let it go first
1722    if (rxDmaState == dmaReadWaiting || rxDmaState == dmaWriteWaiting)
1723        rxKick();
1724
1725    txKick();
1726}
1727
1728void
1729NSGigE::txDmaWriteCopy()
1730{
1731    assert(txDmaState == dmaWriting);
1732
1733    memcpy(physmem->dma_addr(txDmaAddr, txDmaLen), txDmaData, txDmaLen);
1734    txDmaState = dmaIdle;
1735
1736    DPRINTF(EthernetDMA, "tx dma write paddr=%#x len=%d\n",
1737            txDmaAddr, txDmaLen);
1738    DDUMP(EthernetDMA, txDmaData, txDmaLen);
1739}
1740
1741bool
1742NSGigE::doTxDmaWrite()
1743{
1744    assert(txDmaState == dmaIdle || txDmaState == dmaWriteWaiting);
1745    txDmaState = dmaWriting;
1746
1747    if (dmaInterface && !txDmaFree) {
1748        if (dmaInterface->busy())
1749            txDmaState = dmaWriteWaiting;
1750        else
1751            dmaInterface->doDMA(WriteInvalidate, txDmaAddr, txDmaLen, curTick,
1752                                &txDmaWriteEvent, true);
1753        return true;
1754    }
1755
1756    if (dmaWriteDelay == 0 && dmaWriteFactor == 0.0) {
1757        txDmaWriteCopy();
1758        return false;
1759    }
1760
1761    Tick factor = ((txDmaLen + ULL(63)) >> ULL(6)) * dmaWriteFactor;
1762    Tick start = curTick + dmaWriteDelay + factor;
1763    txDmaWriteEvent.schedule(start);
1764    return true;
1765}
1766
1767void
1768NSGigE::txDmaWriteDone()
1769{
1770    assert(txDmaState == dmaWriting);
1771    txDmaWriteCopy();
1772
1773    // If the receive state machine  has a pending DMA, let it go first
1774    if (rxDmaState == dmaReadWaiting || rxDmaState == dmaWriteWaiting)
1775        rxKick();
1776
1777    txKick();
1778}
1779
1780void
1781NSGigE::txKick()
1782{
1783    DPRINTF(EthernetSM, "transmit kick state=%s\n", NsTxStateStrings[txState]);
1784
1785    if (txKickTick > curTick) {
1786        DPRINTF(EthernetSM, "transmit kick exiting, can't run till %d\n",
1787                txKickTick);
1788
1789        return;
1790    }
1791
1792  next:
1793    switch(txDmaState) {
1794      case dmaReadWaiting:
1795        if (doTxDmaRead())
1796            goto exit;
1797        break;
1798      case dmaWriteWaiting:
1799        if (doTxDmaWrite())
1800            goto exit;
1801        break;
1802      default:
1803        break;
1804    }
1805
1806    switch (txState) {
1807      case txIdle:
1808        if (!regs.command & CR_TXE) {
1809            DPRINTF(EthernetSM, "Transmit disabled.  Nothing to do.\n");
1810            goto exit;
1811        }
1812
1813        if (CTDD) {
1814            txState = txDescRefr;
1815
1816            txDmaAddr = regs.txdp & 0x3fffffff;
1817            txDmaData = &txDescCache + offsetof(ns_desc, link);
1818            txDmaLen = sizeof(txDescCache.link);
1819            txDmaFree = dmaDescFree;
1820
1821            descDmaReads++;
1822            descDmaRdBytes += txDmaLen;
1823
1824            if (doTxDmaRead())
1825                goto exit;
1826
1827        } else {
1828            txState = txDescRead;
1829
1830            txDmaAddr = regs.txdp & 0x3fffffff;
1831            txDmaData = &txDescCache;
1832            txDmaLen = sizeof(ns_desc);
1833            txDmaFree = dmaDescFree;
1834
1835            descDmaReads++;
1836            descDmaRdBytes += txDmaLen;
1837
1838            if (doTxDmaRead())
1839                goto exit;
1840        }
1841        break;
1842
1843      case txDescRefr:
1844        if (txDmaState != dmaIdle)
1845            goto exit;
1846
1847        txState = txAdvance;
1848        break;
1849
1850      case txDescRead:
1851        if (txDmaState != dmaIdle)
1852            goto exit;
1853
1854        DPRINTF(EthernetDesc,
1855                "txDescCache data:\n"
1856                "\tlink=%08x\n"
1857                "\tbufptr=%08x\n"
1858                "\tcmdsts=%08x\n"
1859                "\textsts=%08x\n",
1860                txDescCache.link, txDescCache.bufptr, txDescCache.cmdsts,
1861                txDescCache.extsts);
1862
1863        if (txDescCache.cmdsts & CMDSTS_OWN) {
1864            txState = txFifoBlock;
1865            txFragPtr = txDescCache.bufptr;
1866            txDescCnt = txDescCache.cmdsts & CMDSTS_LEN_MASK;
1867        } else {
1868            txState = txIdle;
1869        }
1870        break;
1871
1872      case txFifoBlock:
1873        if (!txPacket) {
1874            DPRINTF(EthernetSM, "\n\n*****starting the tx of a new packet\n");
1875            txPacket = new EtherPacket;
1876            txPacket->data = new uint8_t[16384];
1877            txPacketBufPtr = txPacket->data;
1878        }
1879
1880        if (txDescCnt == 0) {
1881            DPRINTF(EthernetSM, "the txDescCnt == 0, done with descriptor\n");
1882            if (txDescCache.cmdsts & CMDSTS_MORE) {
1883                DPRINTF(EthernetSM, "there are more descriptors to come\n");
1884                txState = txDescWrite;
1885
1886                txDescCache.cmdsts &= ~CMDSTS_OWN;
1887
1888                txDmaAddr = regs.txdp + offsetof(ns_desc, cmdsts);
1889                txDmaAddr &= 0x3fffffff;
1890                txDmaData = &(txDescCache.cmdsts);
1891                txDmaLen = sizeof(txDescCache.cmdsts);
1892                txDmaFree = dmaDescFree;
1893
1894                if (doTxDmaWrite())
1895                    goto exit;
1896
1897            } else { /* this packet is totally done */
1898                DPRINTF(EthernetSM, "This packet is done, let's wrap it up\n");
1899                /* deal with the the packet that just finished */
1900                if ((regs.vtcr & VTCR_PPCHK) && extstsEnable) {
1901                    if (txDescCache.extsts & EXTSTS_UDPPKT) {
1902                        udpChecksum(txPacket, true);
1903                    } else if (txDescCache.extsts & EXTSTS_TCPPKT) {
1904                        tcpChecksum(txPacket, true);
1905                        txTCPChecksums++;
1906                    }
1907                    if (txDescCache.extsts & EXTSTS_IPPKT) {
1908                        ipChecksum(txPacket, true);
1909                        txIPChecksums++;
1910                    }
1911                }
1912
1913                txPacket->length = txPacketBufPtr - txPacket->data;
1914                // this is just because the receive can't handle a
1915                // packet bigger want to make sure
1916                assert(txPacket->length <= 1514);
1917                txFifo.push_back(txPacket);
1918
1919                /*
1920                 * this following section is not tqo spec, but
1921                 * functionally shouldn't be any different.  normally,
1922                 * the chip will wait til the transmit has occurred
1923                 * before writing back the descriptor because it has
1924                 * to wait to see that it was successfully transmitted
1925                 * to decide whether to set CMDSTS_OK or not.
1926                 * however, in the simulator since it is always
1927                 * successfully transmitted, and writing it exactly to
1928                 * spec would complicate the code, we just do it here
1929                 */
1930
1931                txDescCache.cmdsts &= ~CMDSTS_OWN;
1932                txDescCache.cmdsts |= CMDSTS_OK;
1933
1934                DPRINTF(EthernetDesc,
1935                        "txDesc writeback:\n\tcmdsts=%08x\n\textsts=%08x\n",
1936                        txDescCache.cmdsts, txDescCache.extsts);
1937
1938                txDmaAddr = regs.txdp + offsetof(ns_desc, cmdsts);
1939                txDmaAddr &= 0x3fffffff;
1940                txDmaData = &(txDescCache.cmdsts);
1941                txDmaLen = sizeof(txDescCache.cmdsts) +
1942                    sizeof(txDescCache.extsts);
1943                txDmaFree = dmaDescFree;
1944
1945                descDmaWrites++;
1946                descDmaWrBytes += txDmaLen;
1947
1948                transmit();
1949                txPacket = 0;
1950
1951                if (txHalt) {
1952                    DPRINTF(EthernetSM, "halting TX state machine\n");
1953                    txState = txIdle;
1954                    txHalt = false;
1955                } else
1956                    txState = txAdvance;
1957
1958                if (doTxDmaWrite())
1959                    goto exit;
1960            }
1961        } else {
1962            DPRINTF(EthernetSM, "this descriptor isn't done yet\n");
1963            if (txFifoAvail) {
1964                txState = txFragRead;
1965
1966                /*
1967                 * The number of bytes transferred is either whatever
1968                 * is left in the descriptor (txDescCnt), or if there
1969                 * is not enough room in the fifo, just whatever room
1970                 * is left in the fifo
1971                 */
1972                txXferLen = min<uint32_t>(txDescCnt, txFifoAvail);
1973
1974                txDmaAddr = txFragPtr & 0x3fffffff;
1975                txDmaData = txPacketBufPtr;
1976                txDmaLen = txXferLen;
1977                txDmaFree = dmaDataFree;
1978
1979                if (doTxDmaRead())
1980                    goto exit;
1981            } else {
1982                txState = txFifoBlock;
1983                transmit();
1984
1985                goto exit;
1986            }
1987
1988        }
1989        break;
1990
1991      case txFragRead:
1992        if (txDmaState != dmaIdle)
1993            goto exit;
1994
1995        txPacketBufPtr += txXferLen;
1996        txFragPtr += txXferLen;
1997        txDescCnt -= txXferLen;
1998        txFifoAvail -= txXferLen;
1999
2000        txState = txFifoBlock;
2001        break;
2002
2003      case txDescWrite:
2004        if (txDmaState != dmaIdle)
2005            goto exit;
2006
2007        if (txDescCache.cmdsts & CMDSTS_INTR) {
2008            devIntrPost(ISR_TXDESC);
2009        }
2010
2011        txState = txAdvance;
2012        break;
2013
2014      case txAdvance:
2015        if (txDescCache.link == 0) {
2016            txState = txIdle;
2017        } else {
2018            txState = txDescRead;
2019            regs.txdp = txDescCache.link;
2020            CTDD = false;
2021
2022            txDmaAddr = txDescCache.link & 0x3fffffff;
2023            txDmaData = &txDescCache;
2024            txDmaLen = sizeof(ns_desc);
2025            txDmaFree = dmaDescFree;
2026
2027            if (doTxDmaRead())
2028                goto exit;
2029        }
2030        break;
2031
2032      default:
2033        panic("invalid state");
2034    }
2035
2036    DPRINTF(EthernetSM, "entering next tx state=%s\n",
2037            NsTxStateStrings[txState]);
2038
2039    if (txState == txIdle) {
2040        regs.command &= ~CR_TXE;
2041        devIntrPost(ISR_TXIDLE);
2042        return;
2043    }
2044
2045    goto next;
2046
2047  exit:
2048    /**
2049     * @todo do we want to schedule a future kick?
2050     */
2051    DPRINTF(EthernetSM, "tx state machine exited state=%s\n",
2052            NsTxStateStrings[txState]);
2053}
2054
2055void
2056NSGigE::transferDone()
2057{
2058    if (txFifo.empty())
2059        return;
2060
2061    if (txEvent.scheduled())
2062        txEvent.reschedule(curTick + 1);
2063    else
2064        txEvent.schedule(curTick + 1);
2065}
2066
2067bool
2068NSGigE::rxFilter(PacketPtr packet)
2069{
2070    bool drop = true;
2071    string type;
2072
2073    if (packet->IsUnicast()) {
2074        type = "unicast";
2075
2076        // If we're accepting all unicast addresses
2077        if (acceptUnicast)
2078            drop = false;
2079
2080        // If we make a perfect match
2081        if (acceptPerfect &&
2082            memcmp(rom.perfectMatch, packet->data, EADDR_LEN) == 0)
2083            drop = false;
2084
2085        eth_header *eth = (eth_header *) packet->data;
2086        if ((acceptArp) && (eth->type == 0x608))
2087            drop = false;
2088
2089    } else if (packet->IsBroadcast()) {
2090        type = "broadcast";
2091
2092        // if we're accepting broadcasts
2093        if (acceptBroadcast)
2094            drop = false;
2095
2096    } else if (packet->IsMulticast()) {
2097        type = "multicast";
2098
2099        // if we're accepting all multicasts
2100        if (acceptMulticast)
2101            drop = false;
2102
2103    } else {
2104        type = "unknown";
2105
2106        // oh well, punt on this one
2107    }
2108
2109    if (drop) {
2110        DPRINTF(Ethernet, "rxFilter drop\n");
2111        DDUMP(EthernetData, packet->data, packet->length);
2112    }
2113
2114    return drop;
2115}
2116
2117bool
2118NSGigE::recvPacket(PacketPtr packet)
2119{
2120    rxBytes += packet->length;
2121    rxPackets++;
2122
2123    DPRINTF(Ethernet, "\n\nReceiving packet from wire, rxFifoAvail=%d\n",
2124            maxRxFifoSize - rxFifoCnt);
2125
2126    if (rxState == rxIdle) {
2127        DPRINTF(Ethernet, "receive disabled...packet dropped\n");
2128        interface->recvDone();
2129        return true;
2130    }
2131
2132    if (rxFilterEnable && rxFilter(packet)) {
2133        DPRINTF(Ethernet, "packet filtered...dropped\n");
2134        interface->recvDone();
2135        return true;
2136    }
2137
2138    if ((rxFifoCnt + packet->length) >= maxRxFifoSize) {
2139        DPRINTF(Ethernet,
2140                "packet will not fit in receive buffer...packet dropped\n");
2141        devIntrPost(ISR_RXORN);
2142        return false;
2143    }
2144
2145    rxFifo.push_back(packet);
2146    rxFifoCnt += packet->length;
2147    interface->recvDone();
2148
2149    rxKick();
2150    return true;
2151}
2152
2153/**
2154 * does a udp checksum.  if gen is true, then it generates it and puts
2155 * it in the right place else, it just checks what it calculates
2156 * against the value in the header in packet
2157 */
2158bool
2159NSGigE::udpChecksum(PacketPtr packet, bool gen)
2160{
2161    ip_header *ip = packet->getIpHdr();
2162    udp_header *hdr = packet->getUdpHdr(ip);
2163
2164    pseudo_header *pseudo = new pseudo_header;
2165
2166    pseudo->src_ip_addr = ip->src_ip_addr;
2167    pseudo->dest_ip_addr = ip->dest_ip_addr;
2168    pseudo->protocol = ip->protocol;
2169    pseudo->len = hdr->len;
2170
2171    uint16_t cksum = checksumCalc((uint16_t *) pseudo, (uint16_t *) hdr,
2172                                  (uint32_t) hdr->len);
2173
2174    delete pseudo;
2175    if (gen)
2176        hdr->chksum = cksum;
2177    else
2178        if (cksum != 0)
2179            return false;
2180
2181    return true;
2182}
2183
2184bool
2185NSGigE::tcpChecksum(PacketPtr packet, bool gen)
2186{
2187    ip_header *ip = packet->getIpHdr();
2188    tcp_header *hdr = packet->getTcpHdr(ip);
2189
2190    uint16_t cksum;
2191    pseudo_header *pseudo = new pseudo_header;
2192    if (!gen) {
2193        pseudo->src_ip_addr = ip->src_ip_addr;
2194        pseudo->dest_ip_addr = ip->dest_ip_addr;
2195        pseudo->protocol = reverseEnd16(ip->protocol);
2196        pseudo->len = reverseEnd16(reverseEnd16(ip->dgram_len) -
2197                                   (ip->vers_len & 0xf)*4);
2198
2199        cksum = checksumCalc((uint16_t *) pseudo, (uint16_t *) hdr,
2200                             (uint32_t) reverseEnd16(pseudo->len));
2201    } else {
2202        pseudo->src_ip_addr = 0;
2203        pseudo->dest_ip_addr = 0;
2204        pseudo->protocol = hdr->chksum;
2205        pseudo->len = 0;
2206        hdr->chksum = 0;
2207        cksum = checksumCalc((uint16_t *) pseudo, (uint16_t *) hdr,
2208                             (uint32_t) (reverseEnd16(ip->dgram_len) -
2209                                         (ip->vers_len & 0xf)*4));
2210    }
2211
2212    delete pseudo;
2213    if (gen)
2214        hdr->chksum = cksum;
2215    else
2216        if (cksum != 0)
2217            return false;
2218
2219    return true;
2220}
2221
2222bool
2223NSGigE::ipChecksum(PacketPtr packet, bool gen)
2224{
2225    ip_header *hdr = packet->getIpHdr();
2226
2227    uint16_t cksum = checksumCalc(NULL, (uint16_t *) hdr,
2228                                  (hdr->vers_len & 0xf)*4);
2229
2230    if (gen) {
2231        DPRINTF(EthernetCksum, "generated checksum: %#x\n", cksum);
2232        hdr->hdr_chksum = cksum;
2233    }
2234    else
2235        if (cksum != 0)
2236            return false;
2237
2238    return true;
2239}
2240
2241uint16_t
2242NSGigE::checksumCalc(uint16_t *pseudo, uint16_t *buf, uint32_t len)
2243{
2244    uint32_t sum = 0;
2245
2246    uint16_t last_pad = 0;
2247    if (len & 1) {
2248        last_pad = buf[len/2] & 0xff;
2249        len--;
2250        sum += last_pad;
2251    }
2252
2253    if (pseudo) {
2254        sum = pseudo[0] + pseudo[1] + pseudo[2] +
2255            pseudo[3] + pseudo[4] + pseudo[5];
2256    }
2257
2258    for (int i=0; i < (len/2); ++i) {
2259        sum += buf[i];
2260    }
2261
2262    while (sum >> 16)
2263        sum = (sum >> 16) + (sum & 0xffff);
2264
2265    return ~sum;
2266}
2267
2268//=====================================================================
2269//
2270//
2271void
2272NSGigE::serialize(ostream &os)
2273{
2274    // Serialize the PciDev base class
2275    PciDev::serialize(os);
2276
2277    /*
2278     * Finalize any DMA events now.
2279     */
2280    if (rxDmaReadEvent.scheduled())
2281        rxDmaReadCopy();
2282    if (rxDmaWriteEvent.scheduled())
2283        rxDmaWriteCopy();
2284    if (txDmaReadEvent.scheduled())
2285        txDmaReadCopy();
2286    if (txDmaWriteEvent.scheduled())
2287        txDmaWriteCopy();
2288
2289    /*
2290     * Serialize the device registers
2291     */
2292    SERIALIZE_SCALAR(regs.command);
2293    SERIALIZE_SCALAR(regs.config);
2294    SERIALIZE_SCALAR(regs.mear);
2295    SERIALIZE_SCALAR(regs.ptscr);
2296    SERIALIZE_SCALAR(regs.isr);
2297    SERIALIZE_SCALAR(regs.imr);
2298    SERIALIZE_SCALAR(regs.ier);
2299    SERIALIZE_SCALAR(regs.ihr);
2300    SERIALIZE_SCALAR(regs.txdp);
2301    SERIALIZE_SCALAR(regs.txdp_hi);
2302    SERIALIZE_SCALAR(regs.txcfg);
2303    SERIALIZE_SCALAR(regs.gpior);
2304    SERIALIZE_SCALAR(regs.rxdp);
2305    SERIALIZE_SCALAR(regs.rxdp_hi);
2306    SERIALIZE_SCALAR(regs.rxcfg);
2307    SERIALIZE_SCALAR(regs.pqcr);
2308    SERIALIZE_SCALAR(regs.wcsr);
2309    SERIALIZE_SCALAR(regs.pcr);
2310    SERIALIZE_SCALAR(regs.rfcr);
2311    SERIALIZE_SCALAR(regs.rfdr);
2312    SERIALIZE_SCALAR(regs.srr);
2313    SERIALIZE_SCALAR(regs.mibc);
2314    SERIALIZE_SCALAR(regs.vrcr);
2315    SERIALIZE_SCALAR(regs.vtcr);
2316    SERIALIZE_SCALAR(regs.vdr);
2317    SERIALIZE_SCALAR(regs.ccsr);
2318    SERIALIZE_SCALAR(regs.tbicr);
2319    SERIALIZE_SCALAR(regs.tbisr);
2320    SERIALIZE_SCALAR(regs.tanar);
2321    SERIALIZE_SCALAR(regs.tanlpar);
2322    SERIALIZE_SCALAR(regs.taner);
2323    SERIALIZE_SCALAR(regs.tesr);
2324
2325    SERIALIZE_ARRAY(rom.perfectMatch, EADDR_LEN);
2326
2327    SERIALIZE_SCALAR(ioEnable);
2328
2329    /*
2330     * Serialize the data Fifos
2331     */
2332    int txNumPkts = txFifo.size();
2333    SERIALIZE_SCALAR(txNumPkts);
2334    int i = 0;
2335    pktiter_t end = txFifo.end();
2336    for (pktiter_t p = txFifo.begin(); p != end; ++p) {
2337        nameOut(os, csprintf("%s.txFifo%d", name(), i++));
2338        (*p)->serialize(os);
2339    }
2340
2341    int rxNumPkts = rxFifo.size();
2342    SERIALIZE_SCALAR(rxNumPkts);
2343    i = 0;
2344    end = rxFifo.end();
2345    for (pktiter_t p = rxFifo.begin(); p != end; ++p) {
2346        nameOut(os, csprintf("%s.rxFifo%d", name(), i++));
2347        (*p)->serialize(os);
2348    }
2349
2350    /*
2351     * Serialize the various helper variables
2352     */
2353    bool txPacketExists = txPacket;
2354    SERIALIZE_SCALAR(txPacketExists);
2355    if (txPacketExists) {
2356        nameOut(os, csprintf("%s.txPacket", name()));
2357        txPacket->serialize(os);
2358        uint32_t txPktBufPtr = (uint32_t) (txPacketBufPtr - txPacket->data);
2359        SERIALIZE_SCALAR(txPktBufPtr);
2360    }
2361
2362    bool rxPacketExists = rxPacket;
2363    SERIALIZE_SCALAR(rxPacketExists);
2364    if (rxPacketExists) {
2365        nameOut(os, csprintf("%s.rxPacket", name()));
2366        rxPacket->serialize(os);
2367        uint32_t rxPktBufPtr = (uint32_t) (rxPacketBufPtr - rxPacket->data);
2368        SERIALIZE_SCALAR(rxPktBufPtr);
2369    }
2370
2371    SERIALIZE_SCALAR(txXferLen);
2372    SERIALIZE_SCALAR(rxXferLen);
2373
2374    /*
2375     * Serialize DescCaches
2376     */
2377    SERIALIZE_SCALAR(txDescCache.link);
2378    SERIALIZE_SCALAR(txDescCache.bufptr);
2379    SERIALIZE_SCALAR(txDescCache.cmdsts);
2380    SERIALIZE_SCALAR(txDescCache.extsts);
2381    SERIALIZE_SCALAR(rxDescCache.link);
2382    SERIALIZE_SCALAR(rxDescCache.bufptr);
2383    SERIALIZE_SCALAR(rxDescCache.cmdsts);
2384    SERIALIZE_SCALAR(rxDescCache.extsts);
2385
2386    /*
2387     * Serialize tx state machine
2388     */
2389    int txState = this->txState;
2390    SERIALIZE_SCALAR(txState);
2391    SERIALIZE_SCALAR(CTDD);
2392    SERIALIZE_SCALAR(txFifoAvail);
2393    SERIALIZE_SCALAR(txHalt);
2394    SERIALIZE_SCALAR(txFragPtr);
2395    SERIALIZE_SCALAR(txDescCnt);
2396    int txDmaState = this->txDmaState;
2397    SERIALIZE_SCALAR(txDmaState);
2398
2399    /*
2400     * Serialize rx state machine
2401     */
2402    int rxState = this->rxState;
2403    SERIALIZE_SCALAR(rxState);
2404    SERIALIZE_SCALAR(CRDD);
2405    SERIALIZE_SCALAR(rxPktBytes);
2406    SERIALIZE_SCALAR(rxFifoCnt);
2407    SERIALIZE_SCALAR(rxHalt);
2408    SERIALIZE_SCALAR(rxDescCnt);
2409    int rxDmaState = this->rxDmaState;
2410    SERIALIZE_SCALAR(rxDmaState);
2411
2412    SERIALIZE_SCALAR(extstsEnable);
2413
2414    /*
2415     * If there's a pending transmit, store the time so we can
2416     * reschedule it later
2417     */
2418    Tick transmitTick = txEvent.scheduled() ? txEvent.when() - curTick : 0;
2419    SERIALIZE_SCALAR(transmitTick);
2420
2421    /*
2422     * receive address filter settings
2423     */
2424    SERIALIZE_SCALAR(rxFilterEnable);
2425    SERIALIZE_SCALAR(acceptBroadcast);
2426    SERIALIZE_SCALAR(acceptMulticast);
2427    SERIALIZE_SCALAR(acceptUnicast);
2428    SERIALIZE_SCALAR(acceptPerfect);
2429    SERIALIZE_SCALAR(acceptArp);
2430
2431    /*
2432     * Keep track of pending interrupt status.
2433     */
2434    SERIALIZE_SCALAR(intrTick);
2435    SERIALIZE_SCALAR(cpuPendingIntr);
2436    Tick intrEventTick = 0;
2437    if (intrEvent)
2438        intrEventTick = intrEvent->when();
2439    SERIALIZE_SCALAR(intrEventTick);
2440
2441}
2442
2443void
2444NSGigE::unserialize(Checkpoint *cp, const std::string &section)
2445{
2446    // Unserialize the PciDev base class
2447    PciDev::unserialize(cp, section);
2448
2449    UNSERIALIZE_SCALAR(regs.command);
2450    UNSERIALIZE_SCALAR(regs.config);
2451    UNSERIALIZE_SCALAR(regs.mear);
2452    UNSERIALIZE_SCALAR(regs.ptscr);
2453    UNSERIALIZE_SCALAR(regs.isr);
2454    UNSERIALIZE_SCALAR(regs.imr);
2455    UNSERIALIZE_SCALAR(regs.ier);
2456    UNSERIALIZE_SCALAR(regs.ihr);
2457    UNSERIALIZE_SCALAR(regs.txdp);
2458    UNSERIALIZE_SCALAR(regs.txdp_hi);
2459    UNSERIALIZE_SCALAR(regs.txcfg);
2460    UNSERIALIZE_SCALAR(regs.gpior);
2461    UNSERIALIZE_SCALAR(regs.rxdp);
2462    UNSERIALIZE_SCALAR(regs.rxdp_hi);
2463    UNSERIALIZE_SCALAR(regs.rxcfg);
2464    UNSERIALIZE_SCALAR(regs.pqcr);
2465    UNSERIALIZE_SCALAR(regs.wcsr);
2466    UNSERIALIZE_SCALAR(regs.pcr);
2467    UNSERIALIZE_SCALAR(regs.rfcr);
2468    UNSERIALIZE_SCALAR(regs.rfdr);
2469    UNSERIALIZE_SCALAR(regs.srr);
2470    UNSERIALIZE_SCALAR(regs.mibc);
2471    UNSERIALIZE_SCALAR(regs.vrcr);
2472    UNSERIALIZE_SCALAR(regs.vtcr);
2473    UNSERIALIZE_SCALAR(regs.vdr);
2474    UNSERIALIZE_SCALAR(regs.ccsr);
2475    UNSERIALIZE_SCALAR(regs.tbicr);
2476    UNSERIALIZE_SCALAR(regs.tbisr);
2477    UNSERIALIZE_SCALAR(regs.tanar);
2478    UNSERIALIZE_SCALAR(regs.tanlpar);
2479    UNSERIALIZE_SCALAR(regs.taner);
2480    UNSERIALIZE_SCALAR(regs.tesr);
2481
2482    UNSERIALIZE_ARRAY(rom.perfectMatch, EADDR_LEN);
2483
2484    UNSERIALIZE_SCALAR(ioEnable);
2485
2486    /*
2487     * unserialize the data fifos
2488     */
2489    int txNumPkts;
2490    UNSERIALIZE_SCALAR(txNumPkts);
2491    int i;
2492    for (i = 0; i < txNumPkts; ++i) {
2493        PacketPtr p = new EtherPacket;
2494        p->unserialize(cp, csprintf("%s.rxFifo%d", section, i));
2495        txFifo.push_back(p);
2496    }
2497
2498    int rxNumPkts;
2499    UNSERIALIZE_SCALAR(rxNumPkts);
2500    for (i = 0; i < rxNumPkts; ++i) {
2501        PacketPtr p = new EtherPacket;
2502        p->unserialize(cp, csprintf("%s.rxFifo%d", section, i));
2503        rxFifo.push_back(p);
2504    }
2505
2506    /*
2507     * unserialize the various helper variables
2508     */
2509    bool txPacketExists;
2510    UNSERIALIZE_SCALAR(txPacketExists);
2511    if (txPacketExists) {
2512        txPacket = new EtherPacket;
2513        txPacket->unserialize(cp, csprintf("%s.txPacket", section));
2514        uint32_t txPktBufPtr;
2515        UNSERIALIZE_SCALAR(txPktBufPtr);
2516        txPacketBufPtr = (uint8_t *) txPacket->data + txPktBufPtr;
2517    } else
2518        txPacket = 0;
2519
2520    bool rxPacketExists;
2521    UNSERIALIZE_SCALAR(rxPacketExists);
2522    rxPacket = 0;
2523    if (rxPacketExists) {
2524        rxPacket = new EtherPacket;
2525        rxPacket->unserialize(cp, csprintf("%s.rxPacket", section));
2526        uint32_t rxPktBufPtr;
2527        UNSERIALIZE_SCALAR(rxPktBufPtr);
2528        rxPacketBufPtr = (uint8_t *) rxPacket->data + rxPktBufPtr;
2529    } else
2530        rxPacket = 0;
2531
2532    UNSERIALIZE_SCALAR(txXferLen);
2533    UNSERIALIZE_SCALAR(rxXferLen);
2534
2535    /*
2536     * Unserialize DescCaches
2537     */
2538    UNSERIALIZE_SCALAR(txDescCache.link);
2539    UNSERIALIZE_SCALAR(txDescCache.bufptr);
2540    UNSERIALIZE_SCALAR(txDescCache.cmdsts);
2541    UNSERIALIZE_SCALAR(txDescCache.extsts);
2542    UNSERIALIZE_SCALAR(rxDescCache.link);
2543    UNSERIALIZE_SCALAR(rxDescCache.bufptr);
2544    UNSERIALIZE_SCALAR(rxDescCache.cmdsts);
2545    UNSERIALIZE_SCALAR(rxDescCache.extsts);
2546
2547    /*
2548     * unserialize tx state machine
2549     */
2550    int txState;
2551    UNSERIALIZE_SCALAR(txState);
2552    this->txState = (TxState) txState;
2553    UNSERIALIZE_SCALAR(CTDD);
2554    UNSERIALIZE_SCALAR(txFifoAvail);
2555    UNSERIALIZE_SCALAR(txHalt);
2556    UNSERIALIZE_SCALAR(txFragPtr);
2557    UNSERIALIZE_SCALAR(txDescCnt);
2558    int txDmaState;
2559    UNSERIALIZE_SCALAR(txDmaState);
2560    this->txDmaState = (DmaState) txDmaState;
2561
2562    /*
2563     * unserialize rx state machine
2564     */
2565    int rxState;
2566    UNSERIALIZE_SCALAR(rxState);
2567    this->rxState = (RxState) rxState;
2568    UNSERIALIZE_SCALAR(CRDD);
2569    UNSERIALIZE_SCALAR(rxPktBytes);
2570    UNSERIALIZE_SCALAR(rxFifoCnt);
2571    UNSERIALIZE_SCALAR(rxHalt);
2572    UNSERIALIZE_SCALAR(rxDescCnt);
2573    int rxDmaState;
2574    UNSERIALIZE_SCALAR(rxDmaState);
2575    this->rxDmaState = (DmaState) rxDmaState;
2576
2577    UNSERIALIZE_SCALAR(extstsEnable);
2578
2579     /*
2580     * If there's a pending transmit, reschedule it now
2581     */
2582    Tick transmitTick;
2583    UNSERIALIZE_SCALAR(transmitTick);
2584    if (transmitTick)
2585        txEvent.schedule(curTick + transmitTick);
2586
2587    /*
2588     * unserialize receive address filter settings
2589     */
2590    UNSERIALIZE_SCALAR(rxFilterEnable);
2591    UNSERIALIZE_SCALAR(acceptBroadcast);
2592    UNSERIALIZE_SCALAR(acceptMulticast);
2593    UNSERIALIZE_SCALAR(acceptUnicast);
2594    UNSERIALIZE_SCALAR(acceptPerfect);
2595    UNSERIALIZE_SCALAR(acceptArp);
2596
2597    /*
2598     * Keep track of pending interrupt status.
2599     */
2600    UNSERIALIZE_SCALAR(intrTick);
2601    UNSERIALIZE_SCALAR(cpuPendingIntr);
2602    Tick intrEventTick;
2603    UNSERIALIZE_SCALAR(intrEventTick);
2604    if (intrEventTick) {
2605        intrEvent = new IntrEvent(this, true);
2606        intrEvent->schedule(intrEventTick);
2607    }
2608
2609    /*
2610     * re-add addrRanges to bus bridges
2611     */
2612    if (pioInterface) {
2613        pioInterface->addAddrRange(BARAddrs[0], BARAddrs[0] + BARSize[0] - 1);
2614        pioInterface->addAddrRange(BARAddrs[1], BARAddrs[1] + BARSize[1] - 1);
2615    }
2616}
2617
2618Tick
2619NSGigE::cacheAccess(MemReqPtr &req)
2620{
2621    DPRINTF(EthernetPIO, "timing access to paddr=%#x (daddr=%#x)\n",
2622            req->paddr, req->paddr - addr);
2623    return curTick + pioLatency;
2624}
2625//=====================================================================
2626
2627
2628//********** helper functions******************************************
2629
2630uint16_t reverseEnd16(uint16_t num)
2631{
2632    uint16_t reverse = (num & 0xff)<<8;
2633    reverse += ((num & 0xff00) >> 8);
2634    return reverse;
2635}
2636
2637uint32_t reverseEnd32(uint32_t num)
2638{
2639    uint32_t reverse = (reverseEnd16(num & 0xffff)) << 16;
2640    reverse += reverseEnd16((uint16_t) ((num & 0xffff0000) >> 8));
2641    return reverse;
2642}
2643
2644
2645
2646//=====================================================================
2647
2648BEGIN_DECLARE_SIM_OBJECT_PARAMS(NSGigEInt)
2649
2650    SimObjectParam<EtherInt *> peer;
2651    SimObjectParam<NSGigE *> device;
2652
2653END_DECLARE_SIM_OBJECT_PARAMS(NSGigEInt)
2654
2655BEGIN_INIT_SIM_OBJECT_PARAMS(NSGigEInt)
2656
2657    INIT_PARAM_DFLT(peer, "peer interface", NULL),
2658    INIT_PARAM(device, "Ethernet device of this interface")
2659
2660END_INIT_SIM_OBJECT_PARAMS(NSGigEInt)
2661
2662CREATE_SIM_OBJECT(NSGigEInt)
2663{
2664    NSGigEInt *dev_int = new NSGigEInt(getInstanceName(), device);
2665
2666    EtherInt *p = (EtherInt *)peer;
2667    if (p) {
2668        dev_int->setPeer(p);
2669        p->setPeer(dev_int);
2670    }
2671
2672    return dev_int;
2673}
2674
2675REGISTER_SIM_OBJECT("NSGigEInt", NSGigEInt)
2676
2677
2678BEGIN_DECLARE_SIM_OBJECT_PARAMS(NSGigE)
2679
2680    Param<Tick> tx_delay;
2681    Param<Tick> rx_delay;
2682    SimObjectParam<IntrControl *> intr_ctrl;
2683    Param<Tick> intr_delay;
2684    SimObjectParam<MemoryController *> mmu;
2685    SimObjectParam<PhysicalMemory *> physmem;
2686    Param<bool> rx_filter;
2687    Param<string> hardware_address;
2688    SimObjectParam<Bus*> header_bus;
2689    SimObjectParam<Bus*> payload_bus;
2690    SimObjectParam<HierParams *> hier;
2691    Param<Tick> pio_latency;
2692    Param<bool> dma_desc_free;
2693    Param<bool> dma_data_free;
2694    Param<Tick> dma_read_delay;
2695    Param<Tick> dma_write_delay;
2696    Param<Tick> dma_read_factor;
2697    Param<Tick> dma_write_factor;
2698    SimObjectParam<PciConfigAll *> configspace;
2699    SimObjectParam<PciConfigData *> configdata;
2700    SimObjectParam<Tsunami *> tsunami;
2701    Param<uint32_t> pci_bus;
2702    Param<uint32_t> pci_dev;
2703    Param<uint32_t> pci_func;
2704    Param<uint32_t> tx_fifo_size;
2705    Param<uint32_t> rx_fifo_size;
2706
2707END_DECLARE_SIM_OBJECT_PARAMS(NSGigE)
2708
2709BEGIN_INIT_SIM_OBJECT_PARAMS(NSGigE)
2710
2711    INIT_PARAM_DFLT(tx_delay, "Transmit Delay", 1000),
2712    INIT_PARAM_DFLT(rx_delay, "Receive Delay", 1000),
2713    INIT_PARAM(intr_ctrl, "Interrupt Controller"),
2714    INIT_PARAM_DFLT(intr_delay, "Interrupt Delay in microseconds", 0),
2715    INIT_PARAM(mmu, "Memory Controller"),
2716    INIT_PARAM(physmem, "Physical Memory"),
2717    INIT_PARAM_DFLT(rx_filter, "Enable Receive Filter", true),
2718    INIT_PARAM_DFLT(hardware_address, "Ethernet Hardware Address",
2719                    "00:99:00:00:00:01"),
2720    INIT_PARAM_DFLT(header_bus, "The IO Bus to attach to for headers", NULL),
2721    INIT_PARAM_DFLT(payload_bus, "The IO Bus to attach to for payload", NULL),
2722    INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
2723    INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
2724    INIT_PARAM_DFLT(dma_desc_free, "DMA of Descriptors is free", false),
2725    INIT_PARAM_DFLT(dma_data_free, "DMA of Data is free", false),
2726    INIT_PARAM_DFLT(dma_read_delay, "fixed delay for dma reads", 0),
2727    INIT_PARAM_DFLT(dma_write_delay, "fixed delay for dma writes", 0),
2728    INIT_PARAM_DFLT(dma_read_factor, "multiplier for dma reads", 0),
2729    INIT_PARAM_DFLT(dma_write_factor, "multiplier for dma writes", 0),
2730    INIT_PARAM(configspace, "PCI Configspace"),
2731    INIT_PARAM(configdata, "PCI Config data"),
2732    INIT_PARAM(tsunami, "Tsunami"),
2733    INIT_PARAM(pci_bus, "PCI bus"),
2734    INIT_PARAM(pci_dev, "PCI device number"),
2735    INIT_PARAM(pci_func, "PCI function code"),
2736    INIT_PARAM_DFLT(tx_fifo_size, "max size in bytes of txFifo", 131072),
2737    INIT_PARAM_DFLT(rx_fifo_size, "max size in bytes of rxFifo", 131072)
2738
2739END_INIT_SIM_OBJECT_PARAMS(NSGigE)
2740
2741
2742CREATE_SIM_OBJECT(NSGigE)
2743{
2744    int eaddr[6];
2745    sscanf(((string)hardware_address).c_str(), "%x:%x:%x:%x:%x:%x",
2746           &eaddr[0], &eaddr[1], &eaddr[2], &eaddr[3], &eaddr[4], &eaddr[5]);
2747
2748    return new NSGigE(getInstanceName(), intr_ctrl, intr_delay,
2749                      physmem, tx_delay, rx_delay, mmu, hier, header_bus,
2750                      payload_bus, pio_latency, dma_desc_free, dma_data_free,
2751                      dma_read_delay, dma_write_delay, dma_read_factor,
2752                      dma_write_factor, configspace, configdata,
2753                      tsunami, pci_bus, pci_dev, pci_func, rx_filter, eaddr,
2754                      tx_fifo_size, rx_fifo_size);
2755}
2756
2757REGISTER_SIM_OBJECT("NSGigE", NSGigE)
2758