ns_gige.cc revision 1036
1/*
2 * Copyright (c) 2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/* @file
30 * Device module for modelling the National Semiconductor
31 * DP83820 ethernet controller.  Does not support priority queueing
32 */
33#include <cstdio>
34#include <deque>
35#include <string>
36
37#include "base/inet.hh"
38#include "cpu/exec_context.hh"
39#include "cpu/intr_control.hh"
40#include "dev/dma.hh"
41#include "dev/etherlink.hh"
42#include "dev/ns_gige.hh"
43#include "dev/pciconfigall.hh"
44#include "dev/tsunami_cchip.hh"
45#include "mem/bus/bus.hh"
46#include "mem/bus/dma_interface.hh"
47#include "mem/bus/pio_interface.hh"
48#include "mem/bus/pio_interface_impl.hh"
49#include "mem/functional_mem/memory_control.hh"
50#include "mem/functional_mem/physical_memory.hh"
51#include "sim/builder.hh"
52#include "sim/debug.hh"
53#include "sim/host.hh"
54#include "sim/sim_stats.hh"
55#include "targetarch/vtophys.hh"
56
57const char *NsRxStateStrings[] =
58{
59    "rxIdle",
60    "rxDescRefr",
61    "rxDescRead",
62    "rxFifoBlock",
63    "rxFragWrite",
64    "rxDescWrite",
65    "rxAdvance"
66};
67
68const char *NsTxStateStrings[] =
69{
70    "txIdle",
71    "txDescRefr",
72    "txDescRead",
73    "txFifoBlock",
74    "txFragRead",
75    "txDescWrite",
76    "txAdvance"
77};
78
79const char *NsDmaState[] =
80{
81    "dmaIdle",
82    "dmaReading",
83    "dmaWriting",
84    "dmaReadWaiting",
85    "dmaWriteWaiting"
86};
87
88using namespace std;
89
90// helper function declarations
91// These functions reverse Endianness so we can evaluate network data
92// correctly
93uint16_t reverseEnd16(uint16_t);
94uint32_t reverseEnd32(uint32_t);
95
96///////////////////////////////////////////////////////////////////////
97//
98// NSGigE PCI Device
99//
100NSGigE::NSGigE(const std::string &name, IntrControl *i, Tick intr_delay,
101               PhysicalMemory *pmem, Tick tx_delay, Tick rx_delay,
102               MemoryController *mmu, HierParams *hier, Bus *header_bus,
103               Bus *payload_bus, Tick pio_latency, bool dma_desc_free,
104               bool dma_data_free, Tick dma_read_delay, Tick dma_write_delay,
105               Tick dma_read_factor, Tick dma_write_factor, PciConfigAll *cf,
106               PciConfigData *cd, Tsunami *t, uint32_t bus, uint32_t dev,
107               uint32_t func, bool rx_filter, const int eaddr[6],
108               uint32_t tx_fifo_size, uint32_t rx_fifo_size)
109    : PciDev(name, mmu, cf, cd, bus, dev, func), tsunami(t), ioEnable(false),
110      maxTxFifoSize(tx_fifo_size), maxRxFifoSize(rx_fifo_size),
111      txPacket(0), rxPacket(0), txPacketBufPtr(NULL), rxPacketBufPtr(NULL),
112      txXferLen(0), rxXferLen(0), txState(txIdle), txEnable(false),
113      CTDD(false), txFifoAvail(tx_fifo_size),
114      txFragPtr(0), txDescCnt(0), txDmaState(dmaIdle), rxState(rxIdle),
115      rxEnable(false), CRDD(false), rxPktBytes(0), rxFifoCnt(0),
116      rxFragPtr(0), rxDescCnt(0), rxDmaState(dmaIdle), extstsEnable(false),
117      rxDmaReadEvent(this), rxDmaWriteEvent(this),
118      txDmaReadEvent(this), txDmaWriteEvent(this),
119      dmaDescFree(dma_desc_free), dmaDataFree(dma_data_free),
120      txDelay(tx_delay), rxDelay(rx_delay), rxKickTick(0), txKickTick(0),
121      txEvent(this), rxFilterEnable(rx_filter), acceptBroadcast(false),
122      acceptMulticast(false), acceptUnicast(false),
123      acceptPerfect(false), acceptArp(false),
124      physmem(pmem), intctrl(i), intrTick(0), cpuPendingIntr(false),
125      intrEvent(0), interface(0)
126{
127    tsunami->ethernet = this;
128
129    if (header_bus) {
130        pioInterface = newPioInterface(name, hier, header_bus, this,
131                                       &NSGigE::cacheAccess);
132
133        pioLatency = pio_latency * header_bus->clockRatio;
134
135        if (payload_bus)
136            dmaInterface = new DMAInterface<Bus>(name + ".dma",
137                                                 header_bus, payload_bus, 1);
138        else
139            dmaInterface = new DMAInterface<Bus>(name + ".dma",
140                                                 header_bus, header_bus, 1);
141    } else if (payload_bus) {
142        pioInterface = newPioInterface(name, hier, payload_bus, this,
143                                       &NSGigE::cacheAccess);
144
145        pioLatency = pio_latency * payload_bus->clockRatio;
146
147        dmaInterface = new DMAInterface<Bus>(name + ".dma", payload_bus,
148                                         payload_bus, 1);
149    }
150
151
152    intrDelay = US2Ticks(intr_delay);
153    dmaReadDelay = dma_read_delay;
154    dmaWriteDelay = dma_write_delay;
155    dmaReadFactor = dma_read_factor;
156    dmaWriteFactor = dma_write_factor;
157
158    regsReset();
159    rom.perfectMatch[0] = eaddr[0];
160    rom.perfectMatch[1] = eaddr[1];
161    rom.perfectMatch[2] = eaddr[2];
162    rom.perfectMatch[3] = eaddr[3];
163    rom.perfectMatch[4] = eaddr[4];
164    rom.perfectMatch[5] = eaddr[5];
165}
166
167NSGigE::~NSGigE()
168{}
169
170void
171NSGigE::regStats()
172{
173    txBytes
174        .name(name() + ".txBytes")
175        .desc("Bytes Transmitted")
176        .prereq(txBytes)
177        ;
178
179    rxBytes
180        .name(name() + ".rxBytes")
181        .desc("Bytes Received")
182        .prereq(rxBytes)
183        ;
184
185    txPackets
186        .name(name() + ".txPackets")
187        .desc("Number of Packets Transmitted")
188        .prereq(txBytes)
189        ;
190
191    rxPackets
192        .name(name() + ".rxPackets")
193        .desc("Number of Packets Received")
194        .prereq(rxBytes)
195        ;
196
197    txIPChecksums
198        .name(name() + ".txIPChecksums")
199        .desc("Number of tx IP Checksums done by device")
200        .precision(0)
201        .prereq(txBytes)
202        ;
203
204    rxIPChecksums
205        .name(name() + ".rxIPChecksums")
206        .desc("Number of rx IP Checksums done by device")
207        .precision(0)
208        .prereq(rxBytes)
209        ;
210
211    txTCPChecksums
212        .name(name() + ".txTCPChecksums")
213        .desc("Number of tx TCP Checksums done by device")
214        .precision(0)
215        .prereq(txBytes)
216        ;
217
218    rxTCPChecksums
219        .name(name() + ".rxTCPChecksums")
220        .desc("Number of rx TCP Checksums done by device")
221        .precision(0)
222        .prereq(rxBytes)
223        ;
224
225    descDmaReads
226        .name(name() + ".descDMAReads")
227        .desc("Number of descriptors the device read w/ DMA")
228        .precision(0)
229        ;
230
231    descDmaWrites
232        .name(name() + ".descDMAWrites")
233        .desc("Number of descriptors the device wrote w/ DMA")
234        .precision(0)
235        ;
236
237    descDmaRdBytes
238        .name(name() + ".descDmaReadBytes")
239        .desc("number of descriptor bytes read w/ DMA")
240        .precision(0)
241        ;
242
243   descDmaWrBytes
244        .name(name() + ".descDmaWriteBytes")
245        .desc("number of descriptor bytes write w/ DMA")
246        .precision(0)
247        ;
248
249
250    txBandwidth
251        .name(name() + ".txBandwidth")
252        .desc("Transmit Bandwidth (bits/s)")
253        .precision(0)
254        .prereq(txBytes)
255        ;
256
257    rxBandwidth
258        .name(name() + ".rxBandwidth")
259        .desc("Receive Bandwidth (bits/s)")
260        .precision(0)
261        .prereq(rxBytes)
262        ;
263
264    txPacketRate
265        .name(name() + ".txPPS")
266        .desc("Packet Tranmission Rate (packets/s)")
267        .precision(0)
268        .prereq(txBytes)
269        ;
270
271    rxPacketRate
272        .name(name() + ".rxPPS")
273        .desc("Packet Reception Rate (packets/s)")
274        .precision(0)
275        .prereq(rxBytes)
276        ;
277
278    txBandwidth = txBytes * Stats::constant(8) / simSeconds;
279    rxBandwidth = rxBytes * Stats::constant(8) / simSeconds;
280    txPacketRate = txPackets / simSeconds;
281    rxPacketRate = rxPackets / simSeconds;
282}
283
284/**
285 * This is to read the PCI general configuration registers
286 */
287void
288NSGigE::ReadConfig(int offset, int size, uint8_t *data)
289{
290    if (offset < PCI_DEVICE_SPECIFIC)
291        PciDev::ReadConfig(offset, size, data);
292    else
293        panic("Device specific PCI config space not implemented!\n");
294}
295
296/**
297 * This is to write to the PCI general configuration registers
298 */
299void
300NSGigE::WriteConfig(int offset, int size, uint32_t data)
301{
302    if (offset < PCI_DEVICE_SPECIFIC)
303        PciDev::WriteConfig(offset, size, data);
304    else
305        panic("Device specific PCI config space not implemented!\n");
306
307    // Need to catch writes to BARs to update the PIO interface
308    switch (offset) {
309        // seems to work fine without all these PCI settings, but i
310        // put in the IO to double check, an assertion will fail if we
311        // need to properly implement it
312      case PCI_COMMAND:
313        if (config.data[offset] & PCI_CMD_IOSE)
314            ioEnable = true;
315        else
316            ioEnable = false;
317
318#if 0
319        if (config.data[offset] & PCI_CMD_BME) {
320            bmEnabled = true;
321        }
322        else {
323            bmEnabled = false;
324        }
325
326        if (config.data[offset] & PCI_CMD_MSE) {
327            memEnable = true;
328        }
329        else {
330            memEnable = false;
331        }
332#endif
333        break;
334
335      case PCI0_BASE_ADDR0:
336        if (BARAddrs[0] != 0) {
337            if (pioInterface)
338                pioInterface->addAddrRange(BARAddrs[0],
339                                           BARAddrs[0] + BARSize[0] - 1);
340
341            BARAddrs[0] &= PA_UNCACHED_MASK;
342        }
343        break;
344      case PCI0_BASE_ADDR1:
345        if (BARAddrs[1] != 0) {
346            if (pioInterface)
347                pioInterface->addAddrRange(BARAddrs[1],
348                                           BARAddrs[1] + BARSize[1] - 1);
349
350            BARAddrs[1] &= PA_UNCACHED_MASK;
351        }
352        break;
353    }
354}
355
356/**
357 * This reads the device registers, which are detailed in the NS83820
358 * spec sheet
359 */
360Fault
361NSGigE::read(MemReqPtr &req, uint8_t *data)
362{
363    assert(ioEnable);
364
365    //The mask is to give you only the offset into the device register file
366    Addr daddr = req->paddr & 0xfff;
367    DPRINTF(EthernetPIO, "read  da=%#x pa=%#x va=%#x size=%d\n",
368            daddr, req->paddr, req->vaddr, req->size);
369
370
371    // there are some reserved registers, you can see ns_gige_reg.h and
372    // the spec sheet for details
373    if (daddr > LAST && daddr <=  RESERVED) {
374        panic("Accessing reserved register");
375    } else if (daddr > RESERVED && daddr <= 0x3FC) {
376        ReadConfig(daddr & 0xff, req->size, data);
377        return No_Fault;
378    } else if (daddr >= MIB_START && daddr <= MIB_END) {
379        // don't implement all the MIB's.  hopefully the kernel
380        // doesn't actually DEPEND upon their values
381        // MIB are just hardware stats keepers
382        uint32_t &reg = *(uint32_t *) data;
383        reg = 0;
384        return No_Fault;
385    } else if (daddr > 0x3FC)
386        panic("Something is messed up!\n");
387
388    switch (req->size) {
389      case sizeof(uint32_t):
390        {
391            uint32_t &reg = *(uint32_t *)data;
392
393            switch (daddr) {
394              case CR:
395                reg = regs.command;
396                //these are supposed to be cleared on a read
397                reg &= ~(CR_RXD | CR_TXD | CR_TXR | CR_RXR);
398                break;
399
400              case CFG:
401                reg = regs.config;
402                break;
403
404              case MEAR:
405                reg = regs.mear;
406                break;
407
408              case PTSCR:
409                reg = regs.ptscr;
410                break;
411
412              case ISR:
413                reg = regs.isr;
414                devIntrClear(ISR_ALL);
415                break;
416
417              case IMR:
418                reg = regs.imr;
419                break;
420
421              case IER:
422                reg = regs.ier;
423                break;
424
425              case IHR:
426                reg = regs.ihr;
427                break;
428
429              case TXDP:
430                reg = regs.txdp;
431                break;
432
433              case TXDP_HI:
434                reg = regs.txdp_hi;
435                break;
436
437              case TXCFG:
438                reg = regs.txcfg;
439                break;
440
441              case GPIOR:
442                reg = regs.gpior;
443                break;
444
445              case RXDP:
446                reg = regs.rxdp;
447                break;
448
449              case RXDP_HI:
450                reg = regs.rxdp_hi;
451                break;
452
453              case RXCFG:
454                reg = regs.rxcfg;
455                break;
456
457              case PQCR:
458                reg = regs.pqcr;
459                break;
460
461              case WCSR:
462                reg = regs.wcsr;
463                break;
464
465              case PCR:
466                reg = regs.pcr;
467                break;
468
469                // see the spec sheet for how RFCR and RFDR work
470                // basically, you write to RFCR to tell the machine
471                // what you want to do next, then you act upon RFDR,
472                // and the device will be prepared b/c of what you
473                // wrote to RFCR
474              case RFCR:
475                reg = regs.rfcr;
476                break;
477
478              case RFDR:
479                switch (regs.rfcr & RFCR_RFADDR) {
480                  case 0x000:
481                    reg = rom.perfectMatch[1];
482                    reg = reg << 8;
483                    reg += rom.perfectMatch[0];
484                    break;
485                  case 0x002:
486                    reg = rom.perfectMatch[3] << 8;
487                    reg += rom.perfectMatch[2];
488                    break;
489                  case 0x004:
490                    reg = rom.perfectMatch[5] << 8;
491                    reg += rom.perfectMatch[4];
492                    break;
493                  default:
494                    panic("reading RFDR for something other than PMATCH!\n");
495                    // didn't implement other RFDR functionality b/c
496                    // driver didn't use it
497                }
498                break;
499
500              case SRR:
501                reg = regs.srr;
502                break;
503
504              case MIBC:
505                reg = regs.mibc;
506                reg &= ~(MIBC_MIBS | MIBC_ACLR);
507                break;
508
509              case VRCR:
510                reg = regs.vrcr;
511                break;
512
513              case VTCR:
514                reg = regs.vtcr;
515                break;
516
517              case VDR:
518                reg = regs.vdr;
519                break;
520
521              case CCSR:
522                reg = regs.ccsr;
523                break;
524
525              case TBICR:
526                reg = regs.tbicr;
527                break;
528
529              case TBISR:
530                reg = regs.tbisr;
531                break;
532
533              case TANAR:
534                reg = regs.tanar;
535                break;
536
537              case TANLPAR:
538                reg = regs.tanlpar;
539                break;
540
541              case TANER:
542                reg = regs.taner;
543                break;
544
545              case TESR:
546                reg = regs.tesr;
547                break;
548
549              default:
550                panic("reading unimplemented register: addr=%#x", daddr);
551            }
552
553            DPRINTF(EthernetPIO, "read from %#x: data=%d data=%#x\n",
554                    daddr, reg, reg);
555        }
556        break;
557
558      default:
559        panic("accessing register with invalid size: addr=%#x, size=%d",
560              daddr, req->size);
561    }
562
563    return No_Fault;
564}
565
566Fault
567NSGigE::write(MemReqPtr &req, const uint8_t *data)
568{
569    assert(ioEnable);
570
571    Addr daddr = req->paddr & 0xfff;
572    DPRINTF(EthernetPIO, "write da=%#x pa=%#x va=%#x size=%d\n",
573            daddr, req->paddr, req->vaddr, req->size);
574
575    if (daddr > LAST && daddr <=  RESERVED) {
576        panic("Accessing reserved register");
577    } else if (daddr > RESERVED && daddr <= 0x3FC) {
578        WriteConfig(daddr & 0xff, req->size, *(uint32_t *)data);
579        return No_Fault;
580    } else if (daddr > 0x3FC)
581        panic("Something is messed up!\n");
582
583    if (req->size == sizeof(uint32_t)) {
584        uint32_t reg = *(uint32_t *)data;
585        DPRINTF(EthernetPIO, "write data=%d data=%#x\n", reg, reg);
586
587        switch (daddr) {
588          case CR:
589            regs.command = reg;
590            if (reg & CR_TXD) {
591                txEnable = false;
592            } else if (reg & CR_TXE) {
593                txEnable = true;
594
595                // the kernel is enabling the transmit machine
596                if (txState == txIdle)
597                    txKick();
598            }
599
600            if (reg & CR_RXD) {
601                rxEnable = false;
602            } else if (reg & CR_RXE) {
603                rxEnable = true;
604
605                if (rxState == rxIdle)
606                    rxKick();
607            }
608
609            if (reg & CR_TXR)
610                txReset();
611
612            if (reg & CR_RXR)
613                rxReset();
614
615            if (reg & CR_SWI)
616                devIntrPost(ISR_SWI);
617
618            if (reg & CR_RST) {
619                txReset();
620                rxReset();
621
622                regsReset();
623            }
624            break;
625
626          case CFG:
627            if (reg & CFG_LNKSTS ||
628                reg & CFG_SPDSTS ||
629                reg & CFG_DUPSTS ||
630                reg & CFG_RESERVED ||
631                reg & CFG_T64ADDR ||
632                reg & CFG_PCI64_DET)
633                panic("writing to read-only or reserved CFG bits!\n");
634
635            regs.config |= reg & ~(CFG_LNKSTS | CFG_SPDSTS | CFG_DUPSTS |
636                                   CFG_RESERVED | CFG_T64ADDR | CFG_PCI64_DET);
637
638// all these #if 0's are because i don't THINK the kernel needs to
639// have these implemented. if there is a problem relating to one of
640// these, you may need to add functionality in.
641#if 0
642            if (reg & CFG_TBI_EN) ;
643            if (reg & CFG_MODE_1000) ;
644#endif
645
646            if (reg & CFG_AUTO_1000)
647                panic("CFG_AUTO_1000 not implemented!\n");
648
649#if 0
650            if (reg & CFG_PINT_DUPSTS ||
651                reg & CFG_PINT_LNKSTS ||
652                reg & CFG_PINT_SPDSTS)
653                ;
654
655            if (reg & CFG_TMRTEST) ;
656            if (reg & CFG_MRM_DIS) ;
657            if (reg & CFG_MWI_DIS) ;
658
659            if (reg & CFG_T64ADDR)
660                panic("CFG_T64ADDR is read only register!\n");
661
662            if (reg & CFG_PCI64_DET)
663                panic("CFG_PCI64_DET is read only register!\n");
664
665            if (reg & CFG_DATA64_EN) ;
666            if (reg & CFG_M64ADDR) ;
667            if (reg & CFG_PHY_RST) ;
668            if (reg & CFG_PHY_DIS) ;
669#endif
670
671            if (reg & CFG_EXTSTS_EN)
672                extstsEnable = true;
673            else
674                extstsEnable = false;
675
676#if 0
677              if (reg & CFG_REQALG) ;
678              if (reg & CFG_SB) ;
679              if (reg & CFG_POW) ;
680              if (reg & CFG_EXD) ;
681              if (reg & CFG_PESEL) ;
682              if (reg & CFG_BROM_DIS) ;
683              if (reg & CFG_EXT_125) ;
684              if (reg & CFG_BEM) ;
685#endif
686            break;
687
688          case MEAR:
689            regs.mear = reg;
690            // since phy is completely faked, MEAR_MD* don't matter
691            // and since the driver never uses MEAR_EE*, they don't
692            // matter
693#if 0
694            if (reg & MEAR_EEDI) ;
695            if (reg & MEAR_EEDO) ; // this one is read only
696            if (reg & MEAR_EECLK) ;
697            if (reg & MEAR_EESEL) ;
698            if (reg & MEAR_MDIO) ;
699            if (reg & MEAR_MDDIR) ;
700            if (reg & MEAR_MDC) ;
701#endif
702            break;
703
704          case PTSCR:
705            regs.ptscr = reg & ~(PTSCR_RBIST_RDONLY);
706            // these control BISTs for various parts of chip - we
707            // don't care or do just fake that the BIST is done
708            if (reg & PTSCR_RBIST_EN)
709                regs.ptscr |= PTSCR_RBIST_DONE;
710            if (reg & PTSCR_EEBIST_EN)
711                regs.ptscr &= ~PTSCR_EEBIST_EN;
712            if (reg & PTSCR_EELOAD_EN)
713                regs.ptscr &= ~PTSCR_EELOAD_EN;
714            break;
715
716          case ISR: /* writing to the ISR has no effect */
717            panic("ISR is a read only register!\n");
718
719          case IMR:
720            regs.imr = reg;
721            devIntrChangeMask();
722            break;
723
724          case IER:
725            regs.ier = reg;
726            break;
727
728          case IHR:
729            regs.ihr = reg;
730            /* not going to implement real interrupt holdoff */
731            break;
732
733          case TXDP:
734            regs.txdp = (reg & 0xFFFFFFFC);
735            assert(txState == txIdle);
736            CTDD = false;
737            break;
738
739          case TXDP_HI:
740            regs.txdp_hi = reg;
741            break;
742
743          case TXCFG:
744            regs.txcfg = reg;
745#if 0
746            if (reg & TXCFG_CSI) ;
747            if (reg & TXCFG_HBI) ;
748            if (reg & TXCFG_MLB) ;
749            if (reg & TXCFG_ATP) ;
750            if (reg & TXCFG_ECRETRY) {
751                /*
752                 * this could easily be implemented, but considering
753                 * the network is just a fake pipe, wouldn't make
754                 * sense to do this
755                 */
756            }
757
758            if (reg & TXCFG_BRST_DIS) ;
759#endif
760
761#if 0
762            /* we handle our own DMA, ignore the kernel's exhortations */
763            if (reg & TXCFG_MXDMA) ;
764#endif
765
766            // also, we currently don't care about fill/drain
767            // thresholds though this may change in the future with
768            // more realistic networks or a driver which changes it
769            // according to feedback
770
771            break;
772
773          case GPIOR:
774            regs.gpior = reg;
775            /* these just control general purpose i/o pins, don't matter */
776            break;
777
778          case RXDP:
779            regs.rxdp = reg;
780            CRDD = false;
781            break;
782
783          case RXDP_HI:
784            regs.rxdp_hi = reg;
785            break;
786
787          case RXCFG:
788            regs.rxcfg = reg;
789#if 0
790            if (reg & RXCFG_AEP) ;
791            if (reg & RXCFG_ARP) ;
792            if (reg & RXCFG_STRIPCRC) ;
793            if (reg & RXCFG_RX_RD) ;
794            if (reg & RXCFG_ALP) ;
795            if (reg & RXCFG_AIRL) ;
796
797            /* we handle our own DMA, ignore what kernel says about it */
798            if (reg & RXCFG_MXDMA) ;
799
800            //also, we currently don't care about fill/drain thresholds
801            //though this may change in the future with more realistic
802            //networks or a driver which changes it according to feedback
803            if (reg & (RXCFG_DRTH | RXCFG_DRTH0)) ;
804#endif
805            break;
806
807          case PQCR:
808            /* there is no priority queueing used in the linux 2.6 driver */
809            regs.pqcr = reg;
810            break;
811
812          case WCSR:
813            /* not going to implement wake on LAN */
814            regs.wcsr = reg;
815            break;
816
817          case PCR:
818            /* not going to implement pause control */
819            regs.pcr = reg;
820            break;
821
822          case RFCR:
823            regs.rfcr = reg;
824
825            rxFilterEnable = (reg & RFCR_RFEN) ? true : false;
826            acceptBroadcast = (reg & RFCR_AAB) ? true : false;
827            acceptMulticast = (reg & RFCR_AAM) ? true : false;
828            acceptUnicast = (reg & RFCR_AAU) ? true : false;
829            acceptPerfect = (reg & RFCR_APM) ? true : false;
830            acceptArp = (reg & RFCR_AARP) ? true : false;
831
832#if 0
833            if (reg & RFCR_APAT)
834                panic("RFCR_APAT not implemented!\n");
835#endif
836
837            if (reg & RFCR_MHEN || reg & RFCR_UHEN)
838                panic("hash filtering not implemented!\n");
839
840            if (reg & RFCR_ULM)
841                panic("RFCR_ULM not implemented!\n");
842
843            break;
844
845          case RFDR:
846            panic("the driver never writes to RFDR, something is wrong!\n");
847
848          case BRAR:
849            panic("the driver never uses BRAR, something is wrong!\n");
850
851          case BRDR:
852            panic("the driver never uses BRDR, something is wrong!\n");
853
854          case SRR:
855            panic("SRR is read only register!\n");
856
857          case MIBC:
858            panic("the driver never uses MIBC, something is wrong!\n");
859
860          case VRCR:
861            regs.vrcr = reg;
862            break;
863
864          case VTCR:
865            regs.vtcr = reg;
866            break;
867
868          case VDR:
869            panic("the driver never uses VDR, something is wrong!\n");
870            break;
871
872          case CCSR:
873            /* not going to implement clockrun stuff */
874            regs.ccsr = reg;
875            break;
876
877          case TBICR:
878            regs.tbicr = reg;
879            if (reg & TBICR_MR_LOOPBACK)
880                panic("TBICR_MR_LOOPBACK never used, something wrong!\n");
881
882            if (reg & TBICR_MR_AN_ENABLE) {
883                regs.tanlpar = regs.tanar;
884                regs.tbisr |= (TBISR_MR_AN_COMPLETE | TBISR_MR_LINK_STATUS);
885            }
886
887#if 0
888            if (reg & TBICR_MR_RESTART_AN) ;
889#endif
890
891            break;
892
893          case TBISR:
894            panic("TBISR is read only register!\n");
895
896          case TANAR:
897            regs.tanar = reg;
898            if (reg & TANAR_PS2)
899                panic("this isn't used in driver, something wrong!\n");
900
901            if (reg & TANAR_PS1)
902                panic("this isn't used in driver, something wrong!\n");
903            break;
904
905          case TANLPAR:
906            panic("this should only be written to by the fake phy!\n");
907
908          case TANER:
909            panic("TANER is read only register!\n");
910
911          case TESR:
912            regs.tesr = reg;
913            break;
914
915          default:
916            panic("invalid register access daddr=%#x", daddr);
917        }
918    } else {
919        panic("Invalid Request Size");
920    }
921
922    return No_Fault;
923}
924
925void
926NSGigE::devIntrPost(uint32_t interrupts)
927{
928    bool delay = false;
929
930    if (interrupts & ISR_RESERVE)
931        panic("Cannot set a reserved interrupt");
932
933    if (interrupts & ISR_TXRCMP)
934        regs.isr |= ISR_TXRCMP;
935
936    if (interrupts & ISR_RXRCMP)
937        regs.isr |= ISR_RXRCMP;
938
939//ISR_DPERR  not implemented
940//ISR_SSERR not implemented
941//ISR_RMABT not implemented
942//ISR_RXSOVR not implemented
943//ISR_HIBINT not implemented
944//ISR_PHY not implemented
945//ISR_PME not implemented
946
947    if (interrupts & ISR_SWI)
948        regs.isr |= ISR_SWI;
949
950//ISR_MIB not implemented
951//ISR_TXURN not implemented
952
953    if (interrupts & ISR_TXIDLE)
954        regs.isr |= ISR_TXIDLE;
955
956    if (interrupts & ISR_TXERR)
957        regs.isr |= ISR_TXERR;
958
959    if (interrupts & ISR_TXDESC)
960        regs.isr |= ISR_TXDESC;
961
962    if (interrupts & ISR_TXOK) {
963        regs.isr |= ISR_TXOK;
964        delay = true;
965    }
966
967    if (interrupts & ISR_RXORN)
968        regs.isr |= ISR_RXORN;
969
970    if (interrupts & ISR_RXIDLE)
971        regs.isr |= ISR_RXIDLE;
972
973//ISR_RXEARLY not implemented
974
975    if (interrupts & ISR_RXERR)
976        regs.isr |= ISR_RXERR;
977
978    if (interrupts & ISR_RXDESC)
979        regs.isr |= ISR_RXDESC;
980
981    if (interrupts & ISR_RXOK) {
982        delay = true;
983        regs.isr |= ISR_RXOK;
984    }
985
986    if ((regs.isr & regs.imr)) {
987        Tick when = curTick;
988        if (delay)
989            when += intrDelay;
990        cpuIntrPost(when);
991    }
992
993    DPRINTF(EthernetIntr,
994            "interrupt written to ISR: intr=%#x isr=%#x imr=%#x\n",
995            interrupts, regs.isr, regs.imr);
996}
997
998void
999NSGigE::devIntrClear(uint32_t interrupts)
1000{
1001    if (interrupts & ISR_RESERVE)
1002        panic("Cannot clear a reserved interrupt");
1003
1004    if (interrupts & ISR_TXRCMP)
1005        regs.isr &= ~ISR_TXRCMP;
1006
1007    if (interrupts & ISR_RXRCMP)
1008        regs.isr &= ~ISR_RXRCMP;
1009
1010//ISR_DPERR  not implemented
1011//ISR_SSERR not implemented
1012//ISR_RMABT not implemented
1013//ISR_RXSOVR not implemented
1014//ISR_HIBINT not implemented
1015//ISR_PHY not implemented
1016//ISR_PME not implemented
1017
1018    if (interrupts & ISR_SWI)
1019        regs.isr &= ~ISR_SWI;
1020
1021//ISR_MIB not implemented
1022//ISR_TXURN not implemented
1023
1024    if (interrupts & ISR_TXIDLE)
1025        regs.isr &= ~ISR_TXIDLE;
1026
1027    if (interrupts & ISR_TXERR)
1028        regs.isr &= ~ISR_TXERR;
1029
1030    if (interrupts & ISR_TXDESC)
1031        regs.isr &= ~ISR_TXDESC;
1032
1033    if (interrupts & ISR_TXOK)
1034        regs.isr &= ~ISR_TXOK;
1035
1036    if (interrupts & ISR_RXORN)
1037        regs.isr &= ~ISR_RXORN;
1038
1039    if (interrupts & ISR_RXIDLE)
1040        regs.isr &= ~ISR_RXIDLE;
1041
1042//ISR_RXEARLY not implemented
1043
1044    if (interrupts & ISR_RXERR)
1045        regs.isr &= ~ISR_RXERR;
1046
1047    if (interrupts & ISR_RXDESC)
1048        regs.isr &= ~ISR_RXDESC;
1049
1050    if (interrupts & ISR_RXOK)
1051        regs.isr &= ~ISR_RXOK;
1052
1053    DPRINTF(EthernetIntr,
1054            "interrupt cleared from ISR: intr=%x isr=%x imr=%x\n",
1055            interrupts, regs.isr, regs.imr);
1056
1057    if (!(regs.isr & regs.imr))
1058        cpuIntrClear();
1059}
1060
1061void
1062NSGigE::devIntrChangeMask()
1063{
1064    DPRINTF(EthernetIntr, "interrupt mask changed: isr=%x imr=%x masked=%x\n",
1065            regs.isr, regs.imr, regs.isr & regs.imr);
1066
1067    if (regs.isr & regs.imr)
1068        cpuIntrPost(curTick);
1069    else
1070        cpuIntrClear();
1071}
1072
1073void
1074NSGigE::cpuIntrPost(Tick when)
1075{
1076    // If the interrupt you want to post is later than an interrupt
1077    // already scheduled, just let it post in the coming one and don't
1078    // schedule another.
1079    // HOWEVER, must be sure that the scheduled intrTick is in the
1080    // future (this was formerly the source of a bug)
1081    /**
1082     * @todo this warning should be removed and the intrTick code should
1083     * be fixed.
1084     */
1085    if (intrTick < curTick && intrTick != 0) {
1086        warn("intrTick < curTick !!!  intrTick=%d curTick=%d\n",
1087             intrTick, curTick);
1088        intrTick = 0;
1089    }
1090    assert((intrTick >= curTick) || (intrTick == 0));
1091    if (when > intrTick && intrTick != 0)
1092        return;
1093
1094    intrTick = when;
1095
1096    if (intrEvent) {
1097        intrEvent->squash();
1098        intrEvent = 0;
1099    }
1100
1101    if (when < curTick) {
1102        cpuInterrupt();
1103    } else {
1104        DPRINTF(EthernetIntr,
1105                "going to schedule an interrupt for intrTick=%d\n",
1106                intrTick);
1107        intrEvent = new IntrEvent(this, true);
1108        intrEvent->schedule(intrTick);
1109    }
1110}
1111
1112void
1113NSGigE::cpuInterrupt()
1114{
1115    // Don't send an interrupt if there's already one
1116    if (cpuPendingIntr) {
1117        DPRINTF(EthernetIntr,
1118                "would send an interrupt now, but there's already pending\n");
1119        intrTick = 0;
1120        return;
1121    }
1122    // Don't send an interrupt if it's supposed to be delayed
1123    if (intrTick > curTick) {
1124        DPRINTF(EthernetIntr,
1125                "an interrupt is scheduled for %d, wait til then\n",
1126                intrTick);
1127        return;
1128    }
1129
1130    // Whether or not there's a pending interrupt, we don't care about
1131    // it anymore
1132    intrEvent = 0;
1133    intrTick = 0;
1134
1135    // Send interrupt
1136    cpuPendingIntr = true;
1137    /** @todo rework the intctrl to be tsunami ok */
1138    //intctrl->post(TheISA::INTLEVEL_IRQ1, TheISA::INTINDEX_ETHERNET);
1139    DPRINTF(EthernetIntr, "Posting interrupts to cchip!\n");
1140    tsunami->cchip->postDRIR(configData->config.hdr.pci0.interruptLine);
1141}
1142
1143void
1144NSGigE::cpuIntrClear()
1145{
1146    if (!cpuPendingIntr)
1147        return;
1148
1149    cpuPendingIntr = false;
1150    /** @todo rework the intctrl to be tsunami ok */
1151    //intctrl->clear(TheISA::INTLEVEL_IRQ1, TheISA::INTINDEX_ETHERNET);
1152    DPRINTF(EthernetIntr, "clearing all interrupts from cchip\n");
1153    tsunami->cchip->clearDRIR(configData->config.hdr.pci0.interruptLine);
1154}
1155
1156bool
1157NSGigE::cpuIntrPending() const
1158{ return cpuPendingIntr; }
1159
1160void
1161NSGigE::txReset()
1162{
1163
1164    DPRINTF(Ethernet, "transmit reset\n");
1165
1166    CTDD = false;
1167    txFifoAvail = maxTxFifoSize;
1168    txEnable = false;;
1169    txFragPtr = 0;
1170    assert(txDescCnt == 0);
1171    txFifo.clear();
1172    txState = txIdle;
1173    assert(txDmaState == dmaIdle);
1174}
1175
1176void
1177NSGigE::rxReset()
1178{
1179    DPRINTF(Ethernet, "receive reset\n");
1180
1181    CRDD = false;
1182    assert(rxPktBytes == 0);
1183    rxFifoCnt = 0;
1184    rxEnable = false;
1185    rxFragPtr = 0;
1186    assert(rxDescCnt == 0);
1187    assert(rxDmaState == dmaIdle);
1188    rxFifo.clear();
1189    rxState = rxIdle;
1190}
1191
1192void
1193NSGigE::regsReset()
1194{
1195    memset(&regs, 0, sizeof(regs));
1196    regs.config = 0x80000000;
1197    regs.mear = 0x12;
1198    regs.isr = 0x00608000;
1199    regs.txcfg = 0x120;
1200    regs.rxcfg = 0x4;
1201    regs.srr = 0x0103;
1202    regs.mibc = 0x2;
1203    regs.vdr = 0x81;
1204    regs.tesr = 0xc000;
1205
1206    extstsEnable = false;
1207    acceptBroadcast = false;
1208    acceptMulticast = false;
1209    acceptUnicast = false;
1210    acceptPerfect = false;
1211    acceptArp = false;
1212}
1213
1214void
1215NSGigE::rxDmaReadCopy()
1216{
1217    assert(rxDmaState == dmaReading);
1218
1219    physmem->dma_read((uint8_t *)rxDmaData, rxDmaAddr, rxDmaLen);
1220    rxDmaState = dmaIdle;
1221
1222    DPRINTF(EthernetDMA, "rx dma read  paddr=%#x len=%d\n",
1223            rxDmaAddr, rxDmaLen);
1224    DDUMP(EthernetDMA, rxDmaData, rxDmaLen);
1225}
1226
1227bool
1228NSGigE::doRxDmaRead()
1229{
1230    assert(rxDmaState == dmaIdle || rxDmaState == dmaReadWaiting);
1231    rxDmaState = dmaReading;
1232
1233    if (dmaInterface && !rxDmaFree) {
1234        if (dmaInterface->busy())
1235            rxDmaState = dmaReadWaiting;
1236        else
1237            dmaInterface->doDMA(Read, rxDmaAddr, rxDmaLen, curTick,
1238                                &rxDmaReadEvent, true);
1239        return true;
1240    }
1241
1242    if (dmaReadDelay == 0 && dmaReadFactor == 0) {
1243        rxDmaReadCopy();
1244        return false;
1245    }
1246
1247    Tick factor = ((rxDmaLen + ULL(63)) >> ULL(6)) * dmaReadFactor;
1248    Tick start = curTick + dmaReadDelay + factor;
1249    rxDmaReadEvent.schedule(start);
1250    return true;
1251}
1252
1253void
1254NSGigE::rxDmaReadDone()
1255{
1256    assert(rxDmaState == dmaReading);
1257    rxDmaReadCopy();
1258
1259    // If the transmit state machine has a pending DMA, let it go first
1260    if (txDmaState == dmaReadWaiting || txDmaState == dmaWriteWaiting)
1261        txKick();
1262
1263    rxKick();
1264}
1265
1266void
1267NSGigE::rxDmaWriteCopy()
1268{
1269    assert(rxDmaState == dmaWriting);
1270
1271    physmem->dma_write(rxDmaAddr, (uint8_t *)rxDmaData, rxDmaLen);
1272    rxDmaState = dmaIdle;
1273
1274    DPRINTF(EthernetDMA, "rx dma write paddr=%#x len=%d\n",
1275            rxDmaAddr, rxDmaLen);
1276    DDUMP(EthernetDMA, rxDmaData, rxDmaLen);
1277}
1278
1279bool
1280NSGigE::doRxDmaWrite()
1281{
1282    assert(rxDmaState == dmaIdle || rxDmaState == dmaWriteWaiting);
1283    rxDmaState = dmaWriting;
1284
1285    if (dmaInterface && !rxDmaFree) {
1286        if (dmaInterface->busy())
1287            rxDmaState = dmaWriteWaiting;
1288        else
1289            dmaInterface->doDMA(WriteInvalidate, rxDmaAddr, rxDmaLen, curTick,
1290                                &rxDmaWriteEvent, true);
1291        return true;
1292    }
1293
1294    if (dmaWriteDelay == 0 && dmaWriteFactor == 0) {
1295        rxDmaWriteCopy();
1296        return false;
1297    }
1298
1299    Tick factor = ((rxDmaLen + ULL(63)) >> ULL(6)) * dmaWriteFactor;
1300    Tick start = curTick + dmaWriteDelay + factor;
1301    rxDmaWriteEvent.schedule(start);
1302    return true;
1303}
1304
1305void
1306NSGigE::rxDmaWriteDone()
1307{
1308    assert(rxDmaState == dmaWriting);
1309    rxDmaWriteCopy();
1310
1311    // If the transmit state machine has a pending DMA, let it go first
1312    if (txDmaState == dmaReadWaiting || txDmaState == dmaWriteWaiting)
1313        txKick();
1314
1315    rxKick();
1316}
1317
1318void
1319NSGigE::rxKick()
1320{
1321    DPRINTF(EthernetSM, "receive kick rxState=%s (rxBuf.size=%d)\n",
1322            NsRxStateStrings[rxState], rxFifo.size());
1323
1324    if (rxKickTick > curTick) {
1325        DPRINTF(EthernetSM, "receive kick exiting, can't run till %d\n",
1326                rxKickTick);
1327        return;
1328    }
1329
1330  next:
1331    switch(rxDmaState) {
1332      case dmaReadWaiting:
1333        if (doRxDmaRead())
1334            goto exit;
1335        break;
1336      case dmaWriteWaiting:
1337        if (doRxDmaWrite())
1338            goto exit;
1339        break;
1340      default:
1341        break;
1342    }
1343
1344    // see state machine from spec for details
1345    // the way this works is, if you finish work on one state and can
1346    // go directly to another, you do that through jumping to the
1347    // label "next".  however, if you have intermediate work, like DMA
1348    // so that you can't go to the next state yet, you go to exit and
1349    // exit the loop.  however, when the DMA is done it will trigger
1350    // an event and come back to this loop.
1351    switch (rxState) {
1352      case rxIdle:
1353        if (!rxEnable) {
1354            DPRINTF(EthernetSM, "Receive Disabled! Nothing to do.\n");
1355            goto exit;
1356        }
1357
1358        if (CRDD) {
1359            rxState = rxDescRefr;
1360
1361            rxDmaAddr = regs.rxdp & 0x3fffffff;
1362            rxDmaData = &rxDescCache + offsetof(ns_desc, link);
1363            rxDmaLen = sizeof(rxDescCache.link);
1364            rxDmaFree = dmaDescFree;
1365
1366            descDmaReads++;
1367            descDmaRdBytes += rxDmaLen;
1368
1369            if (doRxDmaRead())
1370                goto exit;
1371        } else {
1372            rxState = rxDescRead;
1373
1374            rxDmaAddr = regs.rxdp & 0x3fffffff;
1375            rxDmaData = &rxDescCache;
1376            rxDmaLen = sizeof(ns_desc);
1377            rxDmaFree = dmaDescFree;
1378
1379            descDmaReads++;
1380            descDmaRdBytes += rxDmaLen;
1381
1382            if (doRxDmaRead())
1383                goto exit;
1384        }
1385        break;
1386
1387      case rxDescRefr:
1388        if (rxDmaState != dmaIdle)
1389            goto exit;
1390
1391        rxState = rxAdvance;
1392        break;
1393
1394     case rxDescRead:
1395        if (rxDmaState != dmaIdle)
1396            goto exit;
1397
1398        DPRINTF(EthernetDesc,
1399                "rxDescCache: addr=%08x read descriptor\n",
1400                regs.rxdp & 0x3fffffff);
1401        DPRINTF(EthernetDesc,
1402                "rxDescCache: link=%08x bufptr=%08x cmdsts=%08x extsts=%08x\n",
1403                rxDescCache.link, rxDescCache.bufptr, rxDescCache.cmdsts,
1404                rxDescCache.extsts);
1405
1406        if (rxDescCache.cmdsts & CMDSTS_OWN) {
1407            devIntrPost(ISR_RXIDLE);
1408            rxState = rxIdle;
1409            goto exit;
1410        } else {
1411            rxState = rxFifoBlock;
1412            rxFragPtr = rxDescCache.bufptr;
1413            rxDescCnt = rxDescCache.cmdsts & CMDSTS_LEN_MASK;
1414        }
1415        break;
1416
1417      case rxFifoBlock:
1418        if (!rxPacket) {
1419            /**
1420             * @todo in reality, we should be able to start processing
1421             * the packet as it arrives, and not have to wait for the
1422             * full packet ot be in the receive fifo.
1423             */
1424            if (rxFifo.empty())
1425                goto exit;
1426
1427            DPRINTF(EthernetSM, "****processing receive of new packet****\n");
1428
1429            // If we don't have a packet, grab a new one from the fifo.
1430            rxPacket = rxFifo.front();
1431            rxPktBytes = rxPacket->length;
1432            rxPacketBufPtr = rxPacket->data;
1433
1434#if TRACING_ON
1435            if (DTRACE(Ethernet)) {
1436                if (rxPacket->isIpPkt()) {
1437                    ip_header *ip = rxPacket->getIpHdr();
1438                    DPRINTF(Ethernet, "ID is %d\n", reverseEnd16(ip->ID));
1439                    if (rxPacket->isTcpPkt()) {
1440                        tcp_header *tcp = rxPacket->getTcpHdr(ip);
1441                        DPRINTF(Ethernet, "Src Port=%d, Dest Port=%d\n",
1442                                reverseEnd16(tcp->src_port_num),
1443                                reverseEnd16(tcp->dest_port_num));
1444                    }
1445                }
1446            }
1447#endif
1448
1449            // sanity check - i think the driver behaves like this
1450            assert(rxDescCnt >= rxPktBytes);
1451
1452            // Must clear the value before popping to decrement the
1453            // reference count
1454            rxFifo.front() = NULL;
1455            rxFifo.pop_front();
1456            rxFifoCnt -= rxPacket->length;
1457        }
1458
1459
1460        // dont' need the && rxDescCnt > 0 if driver sanity check
1461        // above holds
1462        if (rxPktBytes > 0) {
1463            rxState = rxFragWrite;
1464            // don't need min<>(rxPktBytes,rxDescCnt) if above sanity
1465            // check holds
1466            rxXferLen = rxPktBytes;
1467
1468            rxDmaAddr = rxFragPtr & 0x3fffffff;
1469            rxDmaData = rxPacketBufPtr;
1470            rxDmaLen = rxXferLen;
1471            rxDmaFree = dmaDataFree;
1472
1473            if (doRxDmaWrite())
1474                goto exit;
1475
1476        } else {
1477            rxState = rxDescWrite;
1478
1479            //if (rxPktBytes == 0) {  /* packet is done */
1480            assert(rxPktBytes == 0);
1481            DPRINTF(EthernetSM, "done with receiving packet\n");
1482
1483            rxDescCache.cmdsts |= CMDSTS_OWN;
1484            rxDescCache.cmdsts &= ~CMDSTS_MORE;
1485            rxDescCache.cmdsts |= CMDSTS_OK;
1486            rxDescCache.cmdsts &= 0xffff0000;
1487            rxDescCache.cmdsts += rxPacket->length;   //i.e. set CMDSTS_SIZE
1488
1489#if 0
1490            /*
1491             * all the driver uses these are for its own stats keeping
1492             * which we don't care about, aren't necessary for
1493             * functionality and doing this would just slow us down.
1494             * if they end up using this in a later version for
1495             * functional purposes, just undef
1496             */
1497            if (rxFilterEnable) {
1498                rxDescCache.cmdsts &= ~CMDSTS_DEST_MASK;
1499                if (rxFifo.front()->IsUnicast())
1500                    rxDescCache.cmdsts |= CMDSTS_DEST_SELF;
1501                if (rxFifo.front()->IsMulticast())
1502                    rxDescCache.cmdsts |= CMDSTS_DEST_MULTI;
1503                if (rxFifo.front()->IsBroadcast())
1504                    rxDescCache.cmdsts |= CMDSTS_DEST_MASK;
1505            }
1506#endif
1507
1508            if (rxPacket->isIpPkt() && extstsEnable) {
1509                rxDescCache.extsts |= EXTSTS_IPPKT;
1510                rxIPChecksums++;
1511                if (!ipChecksum(rxPacket, false)) {
1512                    DPRINTF(EthernetCksum, "Rx IP Checksum Error\n");
1513                    rxDescCache.extsts |= EXTSTS_IPERR;
1514                }
1515                if (rxPacket->isTcpPkt()) {
1516                    rxDescCache.extsts |= EXTSTS_TCPPKT;
1517                    rxTCPChecksums++;
1518                    if (!tcpChecksum(rxPacket, false)) {
1519                        DPRINTF(EthernetCksum, "Rx TCP Checksum Error\n");
1520                        rxDescCache.extsts |= EXTSTS_TCPERR;
1521
1522                    }
1523                } else if (rxPacket->isUdpPkt()) {
1524                    rxDescCache.extsts |= EXTSTS_UDPPKT;
1525                    if (!udpChecksum(rxPacket, false)) {
1526                        DPRINTF(EthernetCksum, "Rx UDP Checksum Error\n");
1527                        rxDescCache.extsts |= EXTSTS_UDPERR;
1528                    }
1529                }
1530            }
1531            rxPacket = 0;
1532
1533            /*
1534             * the driver seems to always receive into desc buffers
1535             * of size 1514, so you never have a pkt that is split
1536             * into multiple descriptors on the receive side, so
1537             * i don't implement that case, hence the assert above.
1538             */
1539
1540            DPRINTF(EthernetDesc,
1541                    "rxDescCache: addr=%08x writeback cmdsts extsts\n",
1542                    regs.rxdp & 0x3fffffff);
1543            DPRINTF(EthernetDesc,
1544                    "rxDescCache: link=%08x bufptr=%08x cmdsts=%08x extsts=%08x\n",
1545                    rxDescCache.link, rxDescCache.bufptr, rxDescCache.cmdsts,
1546                    rxDescCache.extsts);
1547
1548            rxDmaAddr = (regs.rxdp + offsetof(ns_desc, cmdsts)) & 0x3fffffff;
1549            rxDmaData = &(rxDescCache.cmdsts);
1550            rxDmaLen = sizeof(rxDescCache.cmdsts) + sizeof(rxDescCache.extsts);
1551            rxDmaFree = dmaDescFree;
1552
1553            descDmaWrites++;
1554            descDmaWrBytes += rxDmaLen;
1555
1556            if (doRxDmaWrite())
1557                goto exit;
1558        }
1559        break;
1560
1561      case rxFragWrite:
1562        if (rxDmaState != dmaIdle)
1563            goto exit;
1564
1565        rxPacketBufPtr += rxXferLen;
1566        rxFragPtr += rxXferLen;
1567        rxPktBytes -= rxXferLen;
1568
1569        rxState = rxFifoBlock;
1570        break;
1571
1572      case rxDescWrite:
1573        if (rxDmaState != dmaIdle)
1574            goto exit;
1575
1576        assert(rxDescCache.cmdsts & CMDSTS_OWN);
1577
1578        assert(rxPacket == 0);
1579        devIntrPost(ISR_RXOK);
1580
1581        if (rxDescCache.cmdsts & CMDSTS_INTR)
1582            devIntrPost(ISR_RXDESC);
1583
1584        if (!rxEnable) {
1585            DPRINTF(EthernetSM, "Halting the RX state machine\n");
1586            rxState = rxIdle;
1587            goto exit;
1588        } else
1589            rxState = rxAdvance;
1590        break;
1591
1592      case rxAdvance:
1593        if (rxDescCache.link == 0) {
1594            devIntrPost(ISR_RXIDLE);
1595            rxState = rxIdle;
1596            CRDD = true;
1597            goto exit;
1598        } else {
1599            rxState = rxDescRead;
1600            regs.rxdp = rxDescCache.link;
1601            CRDD = false;
1602
1603            rxDmaAddr = regs.rxdp & 0x3fffffff;
1604            rxDmaData = &rxDescCache;
1605            rxDmaLen = sizeof(ns_desc);
1606            rxDmaFree = dmaDescFree;
1607
1608            if (doRxDmaRead())
1609                goto exit;
1610        }
1611        break;
1612
1613      default:
1614        panic("Invalid rxState!");
1615    }
1616
1617    DPRINTF(EthernetSM, "entering next rxState=%s\n",
1618            NsRxStateStrings[rxState]);
1619
1620    goto next;
1621
1622  exit:
1623    /**
1624     * @todo do we want to schedule a future kick?
1625     */
1626    DPRINTF(EthernetSM, "rx state machine exited rxState=%s\n",
1627            NsRxStateStrings[rxState]);
1628}
1629
1630void
1631NSGigE::transmit()
1632{
1633    if (txFifo.empty()) {
1634        DPRINTF(Ethernet, "nothing to transmit\n");
1635        return;
1636    }
1637
1638    DPRINTF(Ethernet, "Attempt Pkt Transmit: txFifo length=%d\n",
1639            maxTxFifoSize - txFifoAvail);
1640    if (interface->sendPacket(txFifo.front())) {
1641#if TRACING_ON
1642        if (DTRACE(Ethernet)) {
1643            if (txFifo.front()->isIpPkt()) {
1644                ip_header *ip = txFifo.front()->getIpHdr();
1645                DPRINTF(Ethernet, "ID is %d\n", reverseEnd16(ip->ID));
1646                if (txFifo.front()->isTcpPkt()) {
1647                    tcp_header *tcp = txFifo.front()->getTcpHdr(ip);
1648                    DPRINTF(Ethernet, "Src Port=%d, Dest Port=%d\n",
1649                            reverseEnd16(tcp->src_port_num),
1650                            reverseEnd16(tcp->dest_port_num));
1651                }
1652            }
1653        }
1654#endif
1655
1656        DDUMP(Ethernet, txFifo.front()->data, txFifo.front()->length);
1657        txBytes += txFifo.front()->length;
1658        txPackets++;
1659
1660        txFifoAvail += txFifo.front()->length;
1661
1662        DPRINTF(Ethernet, "Successful Xmit! now txFifoAvail is %d\n",
1663                txFifoAvail);
1664        txFifo.front() = NULL;
1665        txFifo.pop_front();
1666
1667        /*
1668         * normally do a writeback of the descriptor here, and ONLY
1669         * after that is done, send this interrupt.  but since our
1670         * stuff never actually fails, just do this interrupt here,
1671         * otherwise the code has to stray from this nice format.
1672         * besides, it's functionally the same.
1673         */
1674        devIntrPost(ISR_TXOK);
1675    } else {
1676        DPRINTF(Ethernet,
1677                "May need to rethink always sending the descriptors back?\n");
1678    }
1679
1680   if (!txFifo.empty() && !txEvent.scheduled()) {
1681       DPRINTF(Ethernet, "reschedule transmit\n");
1682       txEvent.schedule(curTick + 1000);
1683   }
1684}
1685
1686void
1687NSGigE::txDmaReadCopy()
1688{
1689    assert(txDmaState == dmaReading);
1690
1691    physmem->dma_read((uint8_t *)txDmaData, txDmaAddr, txDmaLen);
1692    txDmaState = dmaIdle;
1693
1694    DPRINTF(EthernetDMA, "tx dma read  paddr=%#x len=%d\n",
1695            txDmaAddr, txDmaLen);
1696    DDUMP(EthernetDMA, txDmaData, txDmaLen);
1697}
1698
1699bool
1700NSGigE::doTxDmaRead()
1701{
1702    assert(txDmaState == dmaIdle || txDmaState == dmaReadWaiting);
1703    txDmaState = dmaReading;
1704
1705    if (dmaInterface && !txDmaFree) {
1706        if (dmaInterface->busy())
1707            txDmaState = dmaReadWaiting;
1708        else
1709            dmaInterface->doDMA(Read, txDmaAddr, txDmaLen, curTick,
1710                                &txDmaReadEvent, true);
1711        return true;
1712    }
1713
1714    if (dmaReadDelay == 0 && dmaReadFactor == 0.0) {
1715        txDmaReadCopy();
1716        return false;
1717    }
1718
1719    Tick factor = ((txDmaLen + ULL(63)) >> ULL(6)) * dmaReadFactor;
1720    Tick start = curTick + dmaReadDelay + factor;
1721    txDmaReadEvent.schedule(start);
1722    return true;
1723}
1724
1725void
1726NSGigE::txDmaReadDone()
1727{
1728    assert(txDmaState == dmaReading);
1729    txDmaReadCopy();
1730
1731    // If the receive state machine  has a pending DMA, let it go first
1732    if (rxDmaState == dmaReadWaiting || rxDmaState == dmaWriteWaiting)
1733        rxKick();
1734
1735    txKick();
1736}
1737
1738void
1739NSGigE::txDmaWriteCopy()
1740{
1741    assert(txDmaState == dmaWriting);
1742
1743    physmem->dma_write(txDmaAddr, (uint8_t *)txDmaData, txDmaLen);
1744    txDmaState = dmaIdle;
1745
1746    DPRINTF(EthernetDMA, "tx dma write paddr=%#x len=%d\n",
1747            txDmaAddr, txDmaLen);
1748    DDUMP(EthernetDMA, txDmaData, txDmaLen);
1749}
1750
1751bool
1752NSGigE::doTxDmaWrite()
1753{
1754    assert(txDmaState == dmaIdle || txDmaState == dmaWriteWaiting);
1755    txDmaState = dmaWriting;
1756
1757    if (dmaInterface && !txDmaFree) {
1758        if (dmaInterface->busy())
1759            txDmaState = dmaWriteWaiting;
1760        else
1761            dmaInterface->doDMA(WriteInvalidate, txDmaAddr, txDmaLen, curTick,
1762                                &txDmaWriteEvent, true);
1763        return true;
1764    }
1765
1766    if (dmaWriteDelay == 0 && dmaWriteFactor == 0.0) {
1767        txDmaWriteCopy();
1768        return false;
1769    }
1770
1771    Tick factor = ((txDmaLen + ULL(63)) >> ULL(6)) * dmaWriteFactor;
1772    Tick start = curTick + dmaWriteDelay + factor;
1773    txDmaWriteEvent.schedule(start);
1774    return true;
1775}
1776
1777void
1778NSGigE::txDmaWriteDone()
1779{
1780    assert(txDmaState == dmaWriting);
1781    txDmaWriteCopy();
1782
1783    // If the receive state machine  has a pending DMA, let it go first
1784    if (rxDmaState == dmaReadWaiting || rxDmaState == dmaWriteWaiting)
1785        rxKick();
1786
1787    txKick();
1788}
1789
1790void
1791NSGigE::txKick()
1792{
1793    DPRINTF(EthernetSM, "transmit kick txState=%s\n",
1794            NsTxStateStrings[txState]);
1795
1796    if (txKickTick > curTick) {
1797        DPRINTF(EthernetSM, "transmit kick exiting, can't run till %d\n",
1798                txKickTick);
1799
1800        return;
1801    }
1802
1803  next:
1804    switch(txDmaState) {
1805      case dmaReadWaiting:
1806        if (doTxDmaRead())
1807            goto exit;
1808        break;
1809      case dmaWriteWaiting:
1810        if (doTxDmaWrite())
1811            goto exit;
1812        break;
1813      default:
1814        break;
1815    }
1816
1817    switch (txState) {
1818      case txIdle:
1819        if (!txEnable) {
1820            DPRINTF(EthernetSM, "Transmit disabled.  Nothing to do.\n");
1821            goto exit;
1822        }
1823
1824        if (CTDD) {
1825            txState = txDescRefr;
1826
1827            txDmaAddr = regs.txdp & 0x3fffffff;
1828            txDmaData = &txDescCache + offsetof(ns_desc, link);
1829            txDmaLen = sizeof(txDescCache.link);
1830            txDmaFree = dmaDescFree;
1831
1832            descDmaReads++;
1833            descDmaRdBytes += txDmaLen;
1834
1835            if (doTxDmaRead())
1836                goto exit;
1837
1838        } else {
1839            txState = txDescRead;
1840
1841            txDmaAddr = regs.txdp & 0x3fffffff;
1842            txDmaData = &txDescCache;
1843            txDmaLen = sizeof(ns_desc);
1844            txDmaFree = dmaDescFree;
1845
1846            descDmaReads++;
1847            descDmaRdBytes += txDmaLen;
1848
1849            if (doTxDmaRead())
1850                goto exit;
1851        }
1852        break;
1853
1854      case txDescRefr:
1855        if (txDmaState != dmaIdle)
1856            goto exit;
1857
1858        txState = txAdvance;
1859        break;
1860
1861      case txDescRead:
1862        if (txDmaState != dmaIdle)
1863            goto exit;
1864
1865        DPRINTF(EthernetDesc,
1866                "txDescCache: link=%08x bufptr=%08x cmdsts=%08x extsts=%08x\n",
1867                txDescCache.link, txDescCache.bufptr, txDescCache.cmdsts,
1868                txDescCache.extsts);
1869
1870        if (txDescCache.cmdsts & CMDSTS_OWN) {
1871            txState = txFifoBlock;
1872            txFragPtr = txDescCache.bufptr;
1873            txDescCnt = txDescCache.cmdsts & CMDSTS_LEN_MASK;
1874        } else {
1875            devIntrPost(ISR_TXIDLE);
1876            txState = txIdle;
1877            goto exit;
1878        }
1879        break;
1880
1881      case txFifoBlock:
1882        if (!txPacket) {
1883            DPRINTF(EthernetSM, "****starting the tx of a new packet****\n");
1884            txPacket = new EtherPacket;
1885            txPacket->data = new uint8_t[16384];
1886            txPacketBufPtr = txPacket->data;
1887        }
1888
1889        if (txDescCnt == 0) {
1890            DPRINTF(EthernetSM, "the txDescCnt == 0, done with descriptor\n");
1891            if (txDescCache.cmdsts & CMDSTS_MORE) {
1892                DPRINTF(EthernetSM, "there are more descriptors to come\n");
1893                txState = txDescWrite;
1894
1895                txDescCache.cmdsts &= ~CMDSTS_OWN;
1896
1897                txDmaAddr = regs.txdp + offsetof(ns_desc, cmdsts);
1898                txDmaAddr &= 0x3fffffff;
1899                txDmaData = &(txDescCache.cmdsts);
1900                txDmaLen = sizeof(txDescCache.cmdsts);
1901                txDmaFree = dmaDescFree;
1902
1903                if (doTxDmaWrite())
1904                    goto exit;
1905
1906            } else { /* this packet is totally done */
1907                DPRINTF(EthernetSM, "This packet is done, let's wrap it up\n");
1908                /* deal with the the packet that just finished */
1909                if ((regs.vtcr & VTCR_PPCHK) && extstsEnable) {
1910                    if (txDescCache.extsts & EXTSTS_UDPPKT) {
1911                        udpChecksum(txPacket, true);
1912                    } else if (txDescCache.extsts & EXTSTS_TCPPKT) {
1913                        tcpChecksum(txPacket, true);
1914                        txTCPChecksums++;
1915                    }
1916                    if (txDescCache.extsts & EXTSTS_IPPKT) {
1917                        ipChecksum(txPacket, true);
1918                        txIPChecksums++;
1919                    }
1920                }
1921
1922                txPacket->length = txPacketBufPtr - txPacket->data;
1923                // this is just because the receive can't handle a
1924                // packet bigger want to make sure
1925                assert(txPacket->length <= 1514);
1926                txFifo.push_back(txPacket);
1927
1928                /*
1929                 * this following section is not tqo spec, but
1930                 * functionally shouldn't be any different.  normally,
1931                 * the chip will wait til the transmit has occurred
1932                 * before writing back the descriptor because it has
1933                 * to wait to see that it was successfully transmitted
1934                 * to decide whether to set CMDSTS_OK or not.
1935                 * however, in the simulator since it is always
1936                 * successfully transmitted, and writing it exactly to
1937                 * spec would complicate the code, we just do it here
1938                 */
1939
1940                txDescCache.cmdsts &= ~CMDSTS_OWN;
1941                txDescCache.cmdsts |= CMDSTS_OK;
1942
1943                DPRINTF(EthernetDesc,
1944                        "txDesc writeback: cmdsts=%08x extsts=%08x\n",
1945                        txDescCache.cmdsts, txDescCache.extsts);
1946
1947                txDmaAddr = regs.txdp + offsetof(ns_desc, cmdsts);
1948                txDmaAddr &= 0x3fffffff;
1949                txDmaData = &(txDescCache.cmdsts);
1950                txDmaLen = sizeof(txDescCache.cmdsts) +
1951                    sizeof(txDescCache.extsts);
1952                txDmaFree = dmaDescFree;
1953
1954                descDmaWrites++;
1955                descDmaWrBytes += txDmaLen;
1956
1957                transmit();
1958                txPacket = 0;
1959
1960                if (!txEnable) {
1961                    DPRINTF(EthernetSM, "halting TX state machine\n");
1962                    txState = txIdle;
1963                    goto exit;
1964                } else
1965                    txState = txAdvance;
1966
1967                if (doTxDmaWrite())
1968                    goto exit;
1969            }
1970        } else {
1971            DPRINTF(EthernetSM, "this descriptor isn't done yet\n");
1972            if (txFifoAvail) {
1973                txState = txFragRead;
1974
1975                /*
1976                 * The number of bytes transferred is either whatever
1977                 * is left in the descriptor (txDescCnt), or if there
1978                 * is not enough room in the fifo, just whatever room
1979                 * is left in the fifo
1980                 */
1981                txXferLen = min<uint32_t>(txDescCnt, txFifoAvail);
1982
1983                txDmaAddr = txFragPtr & 0x3fffffff;
1984                txDmaData = txPacketBufPtr;
1985                txDmaLen = txXferLen;
1986                txDmaFree = dmaDataFree;
1987
1988                if (doTxDmaRead())
1989                    goto exit;
1990            } else {
1991                txState = txFifoBlock;
1992                transmit();
1993
1994                goto exit;
1995            }
1996
1997        }
1998        break;
1999
2000      case txFragRead:
2001        if (txDmaState != dmaIdle)
2002            goto exit;
2003
2004        txPacketBufPtr += txXferLen;
2005        txFragPtr += txXferLen;
2006        txDescCnt -= txXferLen;
2007        txFifoAvail -= txXferLen;
2008
2009        txState = txFifoBlock;
2010        break;
2011
2012      case txDescWrite:
2013        if (txDmaState != dmaIdle)
2014            goto exit;
2015
2016        if (txDescCache.cmdsts & CMDSTS_INTR)
2017            devIntrPost(ISR_TXDESC);
2018
2019        txState = txAdvance;
2020        break;
2021
2022      case txAdvance:
2023        if (txDescCache.link == 0) {
2024            devIntrPost(ISR_TXIDLE);
2025            txState = txIdle;
2026            goto exit;
2027        } else {
2028            txState = txDescRead;
2029            regs.txdp = txDescCache.link;
2030            CTDD = false;
2031
2032            txDmaAddr = txDescCache.link & 0x3fffffff;
2033            txDmaData = &txDescCache;
2034            txDmaLen = sizeof(ns_desc);
2035            txDmaFree = dmaDescFree;
2036
2037            if (doTxDmaRead())
2038                goto exit;
2039        }
2040        break;
2041
2042      default:
2043        panic("invalid state");
2044    }
2045
2046    DPRINTF(EthernetSM, "entering next txState=%s\n",
2047            NsTxStateStrings[txState]);
2048
2049    goto next;
2050
2051  exit:
2052    /**
2053     * @todo do we want to schedule a future kick?
2054     */
2055    DPRINTF(EthernetSM, "tx state machine exited txState=%s\n",
2056            NsTxStateStrings[txState]);
2057}
2058
2059void
2060NSGigE::transferDone()
2061{
2062    if (txFifo.empty()) {
2063        DPRINTF(Ethernet, "transfer complete: txFifo empty...nothing to do\n");
2064        return;
2065    }
2066
2067    DPRINTF(Ethernet, "transfer complete: data in txFifo...schedule xmit\n");
2068
2069    if (txEvent.scheduled())
2070        txEvent.reschedule(curTick + 1);
2071    else
2072        txEvent.schedule(curTick + 1);
2073}
2074
2075bool
2076NSGigE::rxFilter(PacketPtr packet)
2077{
2078    bool drop = true;
2079    string type;
2080
2081    if (packet->IsUnicast()) {
2082        type = "unicast";
2083
2084        // If we're accepting all unicast addresses
2085        if (acceptUnicast)
2086            drop = false;
2087
2088        // If we make a perfect match
2089        if (acceptPerfect &&
2090            memcmp(rom.perfectMatch, packet->data, EADDR_LEN) == 0)
2091            drop = false;
2092
2093        eth_header *eth = (eth_header *) packet->data;
2094        if ((acceptArp) && (eth->type == 0x608))
2095            drop = false;
2096
2097    } else if (packet->IsBroadcast()) {
2098        type = "broadcast";
2099
2100        // if we're accepting broadcasts
2101        if (acceptBroadcast)
2102            drop = false;
2103
2104    } else if (packet->IsMulticast()) {
2105        type = "multicast";
2106
2107        // if we're accepting all multicasts
2108        if (acceptMulticast)
2109            drop = false;
2110
2111    } else {
2112        type = "unknown";
2113
2114        // oh well, punt on this one
2115    }
2116
2117    if (drop) {
2118        DPRINTF(Ethernet, "rxFilter drop\n");
2119        DDUMP(EthernetData, packet->data, packet->length);
2120    }
2121
2122    return drop;
2123}
2124
2125bool
2126NSGigE::recvPacket(PacketPtr packet)
2127{
2128    rxBytes += packet->length;
2129    rxPackets++;
2130
2131    DPRINTF(Ethernet, "Receiving packet from wire, rxFifoAvail=%d\n",
2132            maxRxFifoSize - rxFifoCnt);
2133
2134    if (!rxEnable) {
2135        DPRINTF(Ethernet, "receive disabled...packet dropped\n");
2136        debug_break();
2137        interface->recvDone();
2138        return true;
2139    }
2140
2141    if (rxFilterEnable && rxFilter(packet)) {
2142        DPRINTF(Ethernet, "packet filtered...dropped\n");
2143        interface->recvDone();
2144        return true;
2145    }
2146
2147    if ((rxFifoCnt + packet->length) >= maxRxFifoSize) {
2148        DPRINTF(Ethernet,
2149                "packet will not fit in receive buffer...packet dropped\n");
2150        devIntrPost(ISR_RXORN);
2151        return false;
2152    }
2153
2154    rxFifo.push_back(packet);
2155    rxFifoCnt += packet->length;
2156    interface->recvDone();
2157
2158    rxKick();
2159    return true;
2160}
2161
2162/**
2163 * does a udp checksum.  if gen is true, then it generates it and puts
2164 * it in the right place else, it just checks what it calculates
2165 * against the value in the header in packet
2166 */
2167bool
2168NSGigE::udpChecksum(PacketPtr packet, bool gen)
2169{
2170    ip_header *ip = packet->getIpHdr();
2171    udp_header *hdr = packet->getUdpHdr(ip);
2172
2173    pseudo_header *pseudo = new pseudo_header;
2174
2175    pseudo->src_ip_addr = ip->src_ip_addr;
2176    pseudo->dest_ip_addr = ip->dest_ip_addr;
2177    pseudo->protocol = ip->protocol;
2178    pseudo->len = hdr->len;
2179
2180    uint16_t cksum = checksumCalc((uint16_t *) pseudo, (uint16_t *) hdr,
2181                                  (uint32_t) hdr->len);
2182
2183    delete pseudo;
2184    if (gen)
2185        hdr->chksum = cksum;
2186    else
2187        if (cksum != 0)
2188            return false;
2189
2190    return true;
2191}
2192
2193bool
2194NSGigE::tcpChecksum(PacketPtr packet, bool gen)
2195{
2196    ip_header *ip = packet->getIpHdr();
2197    tcp_header *hdr = packet->getTcpHdr(ip);
2198
2199    uint16_t cksum;
2200    pseudo_header *pseudo = new pseudo_header;
2201    if (!gen) {
2202        pseudo->src_ip_addr = ip->src_ip_addr;
2203        pseudo->dest_ip_addr = ip->dest_ip_addr;
2204        pseudo->protocol = reverseEnd16(ip->protocol);
2205        pseudo->len = reverseEnd16(reverseEnd16(ip->dgram_len) -
2206                                   (ip->vers_len & 0xf)*4);
2207
2208        cksum = checksumCalc((uint16_t *) pseudo, (uint16_t *) hdr,
2209                             (uint32_t) reverseEnd16(pseudo->len));
2210    } else {
2211        pseudo->src_ip_addr = 0;
2212        pseudo->dest_ip_addr = 0;
2213        pseudo->protocol = hdr->chksum;
2214        pseudo->len = 0;
2215        hdr->chksum = 0;
2216        cksum = checksumCalc((uint16_t *) pseudo, (uint16_t *) hdr,
2217                             (uint32_t) (reverseEnd16(ip->dgram_len) -
2218                                         (ip->vers_len & 0xf)*4));
2219    }
2220
2221    delete pseudo;
2222    if (gen)
2223        hdr->chksum = cksum;
2224    else
2225        if (cksum != 0)
2226            return false;
2227
2228    return true;
2229}
2230
2231bool
2232NSGigE::ipChecksum(PacketPtr packet, bool gen)
2233{
2234    ip_header *hdr = packet->getIpHdr();
2235
2236    uint16_t cksum = checksumCalc(NULL, (uint16_t *) hdr,
2237                                  (hdr->vers_len & 0xf)*4);
2238
2239    if (gen) {
2240        DPRINTF(EthernetCksum, "generated checksum: %#x\n", cksum);
2241        hdr->hdr_chksum = cksum;
2242    }
2243    else
2244        if (cksum != 0)
2245            return false;
2246
2247    return true;
2248}
2249
2250uint16_t
2251NSGigE::checksumCalc(uint16_t *pseudo, uint16_t *buf, uint32_t len)
2252{
2253    uint32_t sum = 0;
2254
2255    uint16_t last_pad = 0;
2256    if (len & 1) {
2257        last_pad = buf[len/2] & 0xff;
2258        len--;
2259        sum += last_pad;
2260    }
2261
2262    if (pseudo) {
2263        sum = pseudo[0] + pseudo[1] + pseudo[2] +
2264            pseudo[3] + pseudo[4] + pseudo[5];
2265    }
2266
2267    for (int i=0; i < (len/2); ++i) {
2268        sum += buf[i];
2269    }
2270
2271    while (sum >> 16)
2272        sum = (sum >> 16) + (sum & 0xffff);
2273
2274    return ~sum;
2275}
2276
2277//=====================================================================
2278//
2279//
2280void
2281NSGigE::serialize(ostream &os)
2282{
2283    // Serialize the PciDev base class
2284    PciDev::serialize(os);
2285
2286    /*
2287     * Finalize any DMA events now.
2288     */
2289    if (rxDmaReadEvent.scheduled())
2290        rxDmaReadCopy();
2291    if (rxDmaWriteEvent.scheduled())
2292        rxDmaWriteCopy();
2293    if (txDmaReadEvent.scheduled())
2294        txDmaReadCopy();
2295    if (txDmaWriteEvent.scheduled())
2296        txDmaWriteCopy();
2297
2298    /*
2299     * Serialize the device registers
2300     */
2301    SERIALIZE_SCALAR(regs.command);
2302    SERIALIZE_SCALAR(regs.config);
2303    SERIALIZE_SCALAR(regs.mear);
2304    SERIALIZE_SCALAR(regs.ptscr);
2305    SERIALIZE_SCALAR(regs.isr);
2306    SERIALIZE_SCALAR(regs.imr);
2307    SERIALIZE_SCALAR(regs.ier);
2308    SERIALIZE_SCALAR(regs.ihr);
2309    SERIALIZE_SCALAR(regs.txdp);
2310    SERIALIZE_SCALAR(regs.txdp_hi);
2311    SERIALIZE_SCALAR(regs.txcfg);
2312    SERIALIZE_SCALAR(regs.gpior);
2313    SERIALIZE_SCALAR(regs.rxdp);
2314    SERIALIZE_SCALAR(regs.rxdp_hi);
2315    SERIALIZE_SCALAR(regs.rxcfg);
2316    SERIALIZE_SCALAR(regs.pqcr);
2317    SERIALIZE_SCALAR(regs.wcsr);
2318    SERIALIZE_SCALAR(regs.pcr);
2319    SERIALIZE_SCALAR(regs.rfcr);
2320    SERIALIZE_SCALAR(regs.rfdr);
2321    SERIALIZE_SCALAR(regs.srr);
2322    SERIALIZE_SCALAR(regs.mibc);
2323    SERIALIZE_SCALAR(regs.vrcr);
2324    SERIALIZE_SCALAR(regs.vtcr);
2325    SERIALIZE_SCALAR(regs.vdr);
2326    SERIALIZE_SCALAR(regs.ccsr);
2327    SERIALIZE_SCALAR(regs.tbicr);
2328    SERIALIZE_SCALAR(regs.tbisr);
2329    SERIALIZE_SCALAR(regs.tanar);
2330    SERIALIZE_SCALAR(regs.tanlpar);
2331    SERIALIZE_SCALAR(regs.taner);
2332    SERIALIZE_SCALAR(regs.tesr);
2333
2334    SERIALIZE_ARRAY(rom.perfectMatch, EADDR_LEN);
2335
2336    SERIALIZE_SCALAR(ioEnable);
2337
2338    /*
2339     * Serialize the data Fifos
2340     */
2341    int txNumPkts = txFifo.size();
2342    SERIALIZE_SCALAR(txNumPkts);
2343    int i = 0;
2344    pktiter_t end = txFifo.end();
2345    for (pktiter_t p = txFifo.begin(); p != end; ++p) {
2346        nameOut(os, csprintf("%s.txFifo%d", name(), i++));
2347        (*p)->serialize(os);
2348    }
2349
2350    int rxNumPkts = rxFifo.size();
2351    SERIALIZE_SCALAR(rxNumPkts);
2352    i = 0;
2353    end = rxFifo.end();
2354    for (pktiter_t p = rxFifo.begin(); p != end; ++p) {
2355        nameOut(os, csprintf("%s.rxFifo%d", name(), i++));
2356        (*p)->serialize(os);
2357    }
2358
2359    /*
2360     * Serialize the various helper variables
2361     */
2362    bool txPacketExists = txPacket;
2363    SERIALIZE_SCALAR(txPacketExists);
2364    if (txPacketExists) {
2365        nameOut(os, csprintf("%s.txPacket", name()));
2366        txPacket->serialize(os);
2367        uint32_t txPktBufPtr = (uint32_t) (txPacketBufPtr - txPacket->data);
2368        SERIALIZE_SCALAR(txPktBufPtr);
2369    }
2370
2371    bool rxPacketExists = rxPacket;
2372    SERIALIZE_SCALAR(rxPacketExists);
2373    if (rxPacketExists) {
2374        nameOut(os, csprintf("%s.rxPacket", name()));
2375        rxPacket->serialize(os);
2376        uint32_t rxPktBufPtr = (uint32_t) (rxPacketBufPtr - rxPacket->data);
2377        SERIALIZE_SCALAR(rxPktBufPtr);
2378    }
2379
2380    SERIALIZE_SCALAR(txXferLen);
2381    SERIALIZE_SCALAR(rxXferLen);
2382
2383    /*
2384     * Serialize DescCaches
2385     */
2386    SERIALIZE_SCALAR(txDescCache.link);
2387    SERIALIZE_SCALAR(txDescCache.bufptr);
2388    SERIALIZE_SCALAR(txDescCache.cmdsts);
2389    SERIALIZE_SCALAR(txDescCache.extsts);
2390    SERIALIZE_SCALAR(rxDescCache.link);
2391    SERIALIZE_SCALAR(rxDescCache.bufptr);
2392    SERIALIZE_SCALAR(rxDescCache.cmdsts);
2393    SERIALIZE_SCALAR(rxDescCache.extsts);
2394
2395    /*
2396     * Serialize tx state machine
2397     */
2398    int txState = this->txState;
2399    SERIALIZE_SCALAR(txState);
2400    SERIALIZE_SCALAR(txEnable);
2401    SERIALIZE_SCALAR(CTDD);
2402    SERIALIZE_SCALAR(txFifoAvail);
2403    SERIALIZE_SCALAR(txFragPtr);
2404    SERIALIZE_SCALAR(txDescCnt);
2405    int txDmaState = this->txDmaState;
2406    SERIALIZE_SCALAR(txDmaState);
2407
2408    /*
2409     * Serialize rx state machine
2410     */
2411    int rxState = this->rxState;
2412    SERIALIZE_SCALAR(rxState);
2413    SERIALIZE_SCALAR(rxEnable);
2414    SERIALIZE_SCALAR(CRDD);
2415    SERIALIZE_SCALAR(rxPktBytes);
2416    SERIALIZE_SCALAR(rxFifoCnt);
2417    SERIALIZE_SCALAR(rxDescCnt);
2418    int rxDmaState = this->rxDmaState;
2419    SERIALIZE_SCALAR(rxDmaState);
2420
2421    SERIALIZE_SCALAR(extstsEnable);
2422
2423    /*
2424     * If there's a pending transmit, store the time so we can
2425     * reschedule it later
2426     */
2427    Tick transmitTick = txEvent.scheduled() ? txEvent.when() - curTick : 0;
2428    SERIALIZE_SCALAR(transmitTick);
2429
2430    /*
2431     * receive address filter settings
2432     */
2433    SERIALIZE_SCALAR(rxFilterEnable);
2434    SERIALIZE_SCALAR(acceptBroadcast);
2435    SERIALIZE_SCALAR(acceptMulticast);
2436    SERIALIZE_SCALAR(acceptUnicast);
2437    SERIALIZE_SCALAR(acceptPerfect);
2438    SERIALIZE_SCALAR(acceptArp);
2439
2440    /*
2441     * Keep track of pending interrupt status.
2442     */
2443    SERIALIZE_SCALAR(intrTick);
2444    SERIALIZE_SCALAR(cpuPendingIntr);
2445    Tick intrEventTick = 0;
2446    if (intrEvent)
2447        intrEventTick = intrEvent->when();
2448    SERIALIZE_SCALAR(intrEventTick);
2449
2450}
2451
2452void
2453NSGigE::unserialize(Checkpoint *cp, const std::string &section)
2454{
2455    // Unserialize the PciDev base class
2456    PciDev::unserialize(cp, section);
2457
2458    UNSERIALIZE_SCALAR(regs.command);
2459    UNSERIALIZE_SCALAR(regs.config);
2460    UNSERIALIZE_SCALAR(regs.mear);
2461    UNSERIALIZE_SCALAR(regs.ptscr);
2462    UNSERIALIZE_SCALAR(regs.isr);
2463    UNSERIALIZE_SCALAR(regs.imr);
2464    UNSERIALIZE_SCALAR(regs.ier);
2465    UNSERIALIZE_SCALAR(regs.ihr);
2466    UNSERIALIZE_SCALAR(regs.txdp);
2467    UNSERIALIZE_SCALAR(regs.txdp_hi);
2468    UNSERIALIZE_SCALAR(regs.txcfg);
2469    UNSERIALIZE_SCALAR(regs.gpior);
2470    UNSERIALIZE_SCALAR(regs.rxdp);
2471    UNSERIALIZE_SCALAR(regs.rxdp_hi);
2472    UNSERIALIZE_SCALAR(regs.rxcfg);
2473    UNSERIALIZE_SCALAR(regs.pqcr);
2474    UNSERIALIZE_SCALAR(regs.wcsr);
2475    UNSERIALIZE_SCALAR(regs.pcr);
2476    UNSERIALIZE_SCALAR(regs.rfcr);
2477    UNSERIALIZE_SCALAR(regs.rfdr);
2478    UNSERIALIZE_SCALAR(regs.srr);
2479    UNSERIALIZE_SCALAR(regs.mibc);
2480    UNSERIALIZE_SCALAR(regs.vrcr);
2481    UNSERIALIZE_SCALAR(regs.vtcr);
2482    UNSERIALIZE_SCALAR(regs.vdr);
2483    UNSERIALIZE_SCALAR(regs.ccsr);
2484    UNSERIALIZE_SCALAR(regs.tbicr);
2485    UNSERIALIZE_SCALAR(regs.tbisr);
2486    UNSERIALIZE_SCALAR(regs.tanar);
2487    UNSERIALIZE_SCALAR(regs.tanlpar);
2488    UNSERIALIZE_SCALAR(regs.taner);
2489    UNSERIALIZE_SCALAR(regs.tesr);
2490
2491    UNSERIALIZE_ARRAY(rom.perfectMatch, EADDR_LEN);
2492
2493    UNSERIALIZE_SCALAR(ioEnable);
2494
2495    /*
2496     * unserialize the data fifos
2497     */
2498    int txNumPkts;
2499    UNSERIALIZE_SCALAR(txNumPkts);
2500    int i;
2501    for (i = 0; i < txNumPkts; ++i) {
2502        PacketPtr p = new EtherPacket;
2503        p->unserialize(cp, csprintf("%s.rxFifo%d", section, i));
2504        txFifo.push_back(p);
2505    }
2506
2507    int rxNumPkts;
2508    UNSERIALIZE_SCALAR(rxNumPkts);
2509    for (i = 0; i < rxNumPkts; ++i) {
2510        PacketPtr p = new EtherPacket;
2511        p->unserialize(cp, csprintf("%s.rxFifo%d", section, i));
2512        rxFifo.push_back(p);
2513    }
2514
2515    /*
2516     * unserialize the various helper variables
2517     */
2518    bool txPacketExists;
2519    UNSERIALIZE_SCALAR(txPacketExists);
2520    if (txPacketExists) {
2521        txPacket = new EtherPacket;
2522        txPacket->unserialize(cp, csprintf("%s.txPacket", section));
2523        uint32_t txPktBufPtr;
2524        UNSERIALIZE_SCALAR(txPktBufPtr);
2525        txPacketBufPtr = (uint8_t *) txPacket->data + txPktBufPtr;
2526    } else
2527        txPacket = 0;
2528
2529    bool rxPacketExists;
2530    UNSERIALIZE_SCALAR(rxPacketExists);
2531    rxPacket = 0;
2532    if (rxPacketExists) {
2533        rxPacket = new EtherPacket;
2534        rxPacket->unserialize(cp, csprintf("%s.rxPacket", section));
2535        uint32_t rxPktBufPtr;
2536        UNSERIALIZE_SCALAR(rxPktBufPtr);
2537        rxPacketBufPtr = (uint8_t *) rxPacket->data + rxPktBufPtr;
2538    } else
2539        rxPacket = 0;
2540
2541    UNSERIALIZE_SCALAR(txXferLen);
2542    UNSERIALIZE_SCALAR(rxXferLen);
2543
2544    /*
2545     * Unserialize DescCaches
2546     */
2547    UNSERIALIZE_SCALAR(txDescCache.link);
2548    UNSERIALIZE_SCALAR(txDescCache.bufptr);
2549    UNSERIALIZE_SCALAR(txDescCache.cmdsts);
2550    UNSERIALIZE_SCALAR(txDescCache.extsts);
2551    UNSERIALIZE_SCALAR(rxDescCache.link);
2552    UNSERIALIZE_SCALAR(rxDescCache.bufptr);
2553    UNSERIALIZE_SCALAR(rxDescCache.cmdsts);
2554    UNSERIALIZE_SCALAR(rxDescCache.extsts);
2555
2556    /*
2557     * unserialize tx state machine
2558     */
2559    int txState;
2560    UNSERIALIZE_SCALAR(txState);
2561    this->txState = (TxState) txState;
2562    UNSERIALIZE_SCALAR(txEnable);
2563    UNSERIALIZE_SCALAR(CTDD);
2564    UNSERIALIZE_SCALAR(txFifoAvail);
2565    UNSERIALIZE_SCALAR(txFragPtr);
2566    UNSERIALIZE_SCALAR(txDescCnt);
2567    int txDmaState;
2568    UNSERIALIZE_SCALAR(txDmaState);
2569    this->txDmaState = (DmaState) txDmaState;
2570
2571    /*
2572     * unserialize rx state machine
2573     */
2574    int rxState;
2575    UNSERIALIZE_SCALAR(rxState);
2576    this->rxState = (RxState) rxState;
2577    UNSERIALIZE_SCALAR(rxEnable);
2578    UNSERIALIZE_SCALAR(CRDD);
2579    UNSERIALIZE_SCALAR(rxPktBytes);
2580    UNSERIALIZE_SCALAR(rxFifoCnt);
2581    UNSERIALIZE_SCALAR(rxDescCnt);
2582    int rxDmaState;
2583    UNSERIALIZE_SCALAR(rxDmaState);
2584    this->rxDmaState = (DmaState) rxDmaState;
2585
2586    UNSERIALIZE_SCALAR(extstsEnable);
2587
2588     /*
2589     * If there's a pending transmit, reschedule it now
2590     */
2591    Tick transmitTick;
2592    UNSERIALIZE_SCALAR(transmitTick);
2593    if (transmitTick)
2594        txEvent.schedule(curTick + transmitTick);
2595
2596    /*
2597     * unserialize receive address filter settings
2598     */
2599    UNSERIALIZE_SCALAR(rxFilterEnable);
2600    UNSERIALIZE_SCALAR(acceptBroadcast);
2601    UNSERIALIZE_SCALAR(acceptMulticast);
2602    UNSERIALIZE_SCALAR(acceptUnicast);
2603    UNSERIALIZE_SCALAR(acceptPerfect);
2604    UNSERIALIZE_SCALAR(acceptArp);
2605
2606    /*
2607     * Keep track of pending interrupt status.
2608     */
2609    UNSERIALIZE_SCALAR(intrTick);
2610    UNSERIALIZE_SCALAR(cpuPendingIntr);
2611    Tick intrEventTick;
2612    UNSERIALIZE_SCALAR(intrEventTick);
2613    if (intrEventTick) {
2614        intrEvent = new IntrEvent(this, true);
2615        intrEvent->schedule(intrEventTick);
2616    }
2617
2618    /*
2619     * re-add addrRanges to bus bridges
2620     */
2621    if (pioInterface) {
2622        pioInterface->addAddrRange(BARAddrs[0], BARAddrs[0] + BARSize[0] - 1);
2623        pioInterface->addAddrRange(BARAddrs[1], BARAddrs[1] + BARSize[1] - 1);
2624    }
2625}
2626
2627Tick
2628NSGigE::cacheAccess(MemReqPtr &req)
2629{
2630    DPRINTF(EthernetPIO, "timing access to paddr=%#x (daddr=%#x)\n",
2631            req->paddr, req->paddr - addr);
2632    return curTick + pioLatency;
2633}
2634//=====================================================================
2635
2636
2637//********** helper functions******************************************
2638
2639uint16_t reverseEnd16(uint16_t num)
2640{
2641    uint16_t reverse = (num & 0xff)<<8;
2642    reverse += ((num & 0xff00) >> 8);
2643    return reverse;
2644}
2645
2646uint32_t reverseEnd32(uint32_t num)
2647{
2648    uint32_t reverse = (reverseEnd16(num & 0xffff)) << 16;
2649    reverse += reverseEnd16((uint16_t) ((num & 0xffff0000) >> 8));
2650    return reverse;
2651}
2652
2653
2654
2655//=====================================================================
2656
2657BEGIN_DECLARE_SIM_OBJECT_PARAMS(NSGigEInt)
2658
2659    SimObjectParam<EtherInt *> peer;
2660    SimObjectParam<NSGigE *> device;
2661
2662END_DECLARE_SIM_OBJECT_PARAMS(NSGigEInt)
2663
2664BEGIN_INIT_SIM_OBJECT_PARAMS(NSGigEInt)
2665
2666    INIT_PARAM_DFLT(peer, "peer interface", NULL),
2667    INIT_PARAM(device, "Ethernet device of this interface")
2668
2669END_INIT_SIM_OBJECT_PARAMS(NSGigEInt)
2670
2671CREATE_SIM_OBJECT(NSGigEInt)
2672{
2673    NSGigEInt *dev_int = new NSGigEInt(getInstanceName(), device);
2674
2675    EtherInt *p = (EtherInt *)peer;
2676    if (p) {
2677        dev_int->setPeer(p);
2678        p->setPeer(dev_int);
2679    }
2680
2681    return dev_int;
2682}
2683
2684REGISTER_SIM_OBJECT("NSGigEInt", NSGigEInt)
2685
2686
2687BEGIN_DECLARE_SIM_OBJECT_PARAMS(NSGigE)
2688
2689    Param<Tick> tx_delay;
2690    Param<Tick> rx_delay;
2691    SimObjectParam<IntrControl *> intr_ctrl;
2692    Param<Tick> intr_delay;
2693    SimObjectParam<MemoryController *> mmu;
2694    SimObjectParam<PhysicalMemory *> physmem;
2695    Param<bool> rx_filter;
2696    Param<string> hardware_address;
2697    SimObjectParam<Bus*> header_bus;
2698    SimObjectParam<Bus*> payload_bus;
2699    SimObjectParam<HierParams *> hier;
2700    Param<Tick> pio_latency;
2701    Param<bool> dma_desc_free;
2702    Param<bool> dma_data_free;
2703    Param<Tick> dma_read_delay;
2704    Param<Tick> dma_write_delay;
2705    Param<Tick> dma_read_factor;
2706    Param<Tick> dma_write_factor;
2707    SimObjectParam<PciConfigAll *> configspace;
2708    SimObjectParam<PciConfigData *> configdata;
2709    SimObjectParam<Tsunami *> tsunami;
2710    Param<uint32_t> pci_bus;
2711    Param<uint32_t> pci_dev;
2712    Param<uint32_t> pci_func;
2713    Param<uint32_t> tx_fifo_size;
2714    Param<uint32_t> rx_fifo_size;
2715
2716END_DECLARE_SIM_OBJECT_PARAMS(NSGigE)
2717
2718BEGIN_INIT_SIM_OBJECT_PARAMS(NSGigE)
2719
2720    INIT_PARAM_DFLT(tx_delay, "Transmit Delay", 1000),
2721    INIT_PARAM_DFLT(rx_delay, "Receive Delay", 1000),
2722    INIT_PARAM(intr_ctrl, "Interrupt Controller"),
2723    INIT_PARAM_DFLT(intr_delay, "Interrupt Delay in microseconds", 0),
2724    INIT_PARAM(mmu, "Memory Controller"),
2725    INIT_PARAM(physmem, "Physical Memory"),
2726    INIT_PARAM_DFLT(rx_filter, "Enable Receive Filter", true),
2727    INIT_PARAM_DFLT(hardware_address, "Ethernet Hardware Address",
2728                    "00:99:00:00:00:01"),
2729    INIT_PARAM_DFLT(header_bus, "The IO Bus to attach to for headers", NULL),
2730    INIT_PARAM_DFLT(payload_bus, "The IO Bus to attach to for payload", NULL),
2731    INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
2732    INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
2733    INIT_PARAM_DFLT(dma_desc_free, "DMA of Descriptors is free", false),
2734    INIT_PARAM_DFLT(dma_data_free, "DMA of Data is free", false),
2735    INIT_PARAM_DFLT(dma_read_delay, "fixed delay for dma reads", 0),
2736    INIT_PARAM_DFLT(dma_write_delay, "fixed delay for dma writes", 0),
2737    INIT_PARAM_DFLT(dma_read_factor, "multiplier for dma reads", 0),
2738    INIT_PARAM_DFLT(dma_write_factor, "multiplier for dma writes", 0),
2739    INIT_PARAM(configspace, "PCI Configspace"),
2740    INIT_PARAM(configdata, "PCI Config data"),
2741    INIT_PARAM(tsunami, "Tsunami"),
2742    INIT_PARAM(pci_bus, "PCI bus"),
2743    INIT_PARAM(pci_dev, "PCI device number"),
2744    INIT_PARAM(pci_func, "PCI function code"),
2745    INIT_PARAM_DFLT(tx_fifo_size, "max size in bytes of txFifo", 131072),
2746    INIT_PARAM_DFLT(rx_fifo_size, "max size in bytes of rxFifo", 131072)
2747
2748END_INIT_SIM_OBJECT_PARAMS(NSGigE)
2749
2750
2751CREATE_SIM_OBJECT(NSGigE)
2752{
2753    int eaddr[6];
2754    sscanf(((string)hardware_address).c_str(), "%x:%x:%x:%x:%x:%x",
2755           &eaddr[0], &eaddr[1], &eaddr[2], &eaddr[3], &eaddr[4], &eaddr[5]);
2756
2757    return new NSGigE(getInstanceName(), intr_ctrl, intr_delay,
2758                      physmem, tx_delay, rx_delay, mmu, hier, header_bus,
2759                      payload_bus, pio_latency, dma_desc_free, dma_data_free,
2760                      dma_read_delay, dma_write_delay, dma_read_factor,
2761                      dma_write_factor, configspace, configdata,
2762                      tsunami, pci_bus, pci_dev, pci_func, rx_filter, eaddr,
2763                      tx_fifo_size, rx_fifo_size);
2764}
2765
2766REGISTER_SIM_OBJECT("NSGigE", NSGigE)
2767