i8254xGBe.cc revision 5783
1/*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ali Saidi
29 */
30
31/* @file
32 * Device model for Intel's 8254x line of gigabit ethernet controllers.
33 * In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
34 * fewest workarounds in the driver. It will probably work with most of the
35 * other MACs with slight modifications.
36 */
37
38
39/*
40 * @todo really there are multiple dma engines.. we should implement them.
41 */
42
43#include <algorithm>
44
45#include "base/inet.hh"
46#include "base/trace.hh"
47#include "dev/i8254xGBe.hh"
48#include "mem/packet.hh"
49#include "mem/packet_access.hh"
50#include "params/IGbE.hh"
51#include "sim/stats.hh"
52#include "sim/system.hh"
53
54using namespace iGbReg;
55using namespace Net;
56
57IGbE::IGbE(const Params *p)
58    : EtherDevice(p), etherInt(NULL),  drainEvent(NULL), useFlowControl(p->use_flow_control),
59      rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
60      txTick(false), txFifoTick(false), rxDmaPacket(false), pktOffset(0),
61      fetchDelay(p->fetch_delay), wbDelay(p->wb_delay),
62      fetchCompDelay(p->fetch_comp_delay), wbCompDelay(p->wb_comp_delay),
63      rxWriteDelay(p->rx_write_delay), txReadDelay(p->tx_read_delay),
64      rdtrEvent(this), radvEvent(this),
65      tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
66      rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
67      txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size),
68      clock(p->clock), lastInterrupt(0)
69{
70    etherInt = new IGbEInt(name() + ".int", this);
71
72    // Initialized internal registers per Intel documentation
73    // All registers intialized to 0 by per register constructor
74    regs.ctrl.fd(1);
75    regs.ctrl.lrst(1);
76    regs.ctrl.speed(2);
77    regs.ctrl.frcspd(1);
78    regs.sts.speed(3); // Say we're 1000Mbps
79    regs.sts.fd(1); // full duplex
80    regs.sts.lu(1); // link up
81    regs.eecd.fwe(1);
82    regs.eecd.ee_type(1);
83    regs.imr = 0;
84    regs.iam = 0;
85    regs.rxdctl.gran(1);
86    regs.rxdctl.wthresh(1);
87    regs.fcrth(1);
88    regs.tdwba = 0;
89    regs.rlpml = 0;
90    regs.sw_fw_sync = 0;
91
92    regs.pba.rxa(0x30);
93    regs.pba.txa(0x10);
94
95    eeOpBits            = 0;
96    eeAddrBits          = 0;
97    eeDataBits          = 0;
98    eeOpcode            = 0;
99
100    // clear all 64 16 bit words of the eeprom
101    memset(&flash, 0, EEPROM_SIZE*2);
102
103    // Set the MAC address
104    memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
105    for (int x = 0; x < ETH_ADDR_LEN/2; x++)
106        flash[x] = htobe(flash[x]);
107
108    uint16_t csum = 0;
109    for (int x = 0; x < EEPROM_SIZE; x++)
110        csum += htobe(flash[x]);
111
112
113    // Magic happy checksum value
114    flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
115
116    rxFifo.clear();
117    txFifo.clear();
118}
119
120EtherInt*
121IGbE::getEthPort(const std::string &if_name, int idx)
122{
123
124    if (if_name == "interface") {
125        if (etherInt->getPeer())
126            panic("Port already connected to\n");
127        return etherInt;
128    }
129    return NULL;
130}
131
132Tick
133IGbE::writeConfig(PacketPtr pkt)
134{
135    int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
136    if (offset < PCI_DEVICE_SPECIFIC)
137        PciDev::writeConfig(pkt);
138    else
139        panic("Device specific PCI config space not implemented.\n");
140
141    ///
142    /// Some work may need to be done here based for the pci COMMAND bits.
143    ///
144
145    return pioDelay;
146}
147
148Tick
149IGbE::read(PacketPtr pkt)
150{
151    int bar;
152    Addr daddr;
153
154    if (!getBAR(pkt->getAddr(), bar, daddr))
155        panic("Invalid PCI memory access to unmapped memory.\n");
156
157    // Only Memory register BAR is allowed
158    assert(bar == 0);
159
160    // Only 32bit accesses allowed
161    assert(pkt->getSize() == 4);
162
163    DPRINTF(Ethernet, "Read device register %#X\n", daddr);
164
165    pkt->allocate();
166
167    ///
168    /// Handle read of register here
169    ///
170
171
172    switch (daddr) {
173      case REG_CTRL:
174        pkt->set<uint32_t>(regs.ctrl());
175        break;
176      case REG_STATUS:
177        pkt->set<uint32_t>(regs.sts());
178        break;
179      case REG_EECD:
180        pkt->set<uint32_t>(regs.eecd());
181        break;
182      case REG_EERD:
183        pkt->set<uint32_t>(regs.eerd());
184        break;
185      case REG_CTRL_EXT:
186        pkt->set<uint32_t>(regs.ctrl_ext());
187        break;
188      case REG_MDIC:
189        pkt->set<uint32_t>(regs.mdic());
190        break;
191      case REG_ICR:
192        DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
193                regs.imr, regs.iam, regs.ctrl_ext.iame());
194        pkt->set<uint32_t>(regs.icr());
195        if (regs.icr.int_assert() || regs.imr == 0) {
196            regs.icr = regs.icr() & ~mask(30);
197            DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
198        }
199        if (regs.ctrl_ext.iame() && regs.icr.int_assert())
200            regs.imr &= ~regs.iam;
201        chkInterrupt();
202        break;
203      case REG_EICR:
204        // This is only useful for MSI, but the driver reads it every time
205        // Just don't do anything
206        pkt->set<uint32_t>(0);
207        break;
208      case REG_ITR:
209        pkt->set<uint32_t>(regs.itr());
210        break;
211      case REG_RCTL:
212        pkt->set<uint32_t>(regs.rctl());
213        break;
214      case REG_FCTTV:
215        pkt->set<uint32_t>(regs.fcttv());
216        break;
217      case REG_TCTL:
218        pkt->set<uint32_t>(regs.tctl());
219        break;
220      case REG_PBA:
221        pkt->set<uint32_t>(regs.pba());
222        break;
223      case REG_WUC:
224      case REG_LEDCTL:
225        pkt->set<uint32_t>(0); // We don't care, so just return 0
226        break;
227      case REG_FCRTL:
228        pkt->set<uint32_t>(regs.fcrtl());
229        break;
230      case REG_FCRTH:
231        pkt->set<uint32_t>(regs.fcrth());
232        break;
233      case REG_RDBAL:
234        pkt->set<uint32_t>(regs.rdba.rdbal());
235        break;
236      case REG_RDBAH:
237        pkt->set<uint32_t>(regs.rdba.rdbah());
238        break;
239      case REG_RDLEN:
240        pkt->set<uint32_t>(regs.rdlen());
241        break;
242      case REG_SRRCTL:
243        pkt->set<uint32_t>(regs.srrctl());
244        break;
245      case REG_RDH:
246        pkt->set<uint32_t>(regs.rdh());
247        break;
248      case REG_RDT:
249        pkt->set<uint32_t>(regs.rdt());
250        break;
251      case REG_RDTR:
252        pkt->set<uint32_t>(regs.rdtr());
253        if (regs.rdtr.fpd()) {
254            rxDescCache.writeback(0);
255            DPRINTF(EthernetIntr, "Posting interrupt because of RDTR.FPD write\n");
256            postInterrupt(IT_RXT);
257            regs.rdtr.fpd(0);
258        }
259        break;
260      case REG_RXDCTL:
261        pkt->set<uint32_t>(regs.rxdctl());
262        break;
263      case REG_RADV:
264        pkt->set<uint32_t>(regs.radv());
265        break;
266      case REG_TDBAL:
267        pkt->set<uint32_t>(regs.tdba.tdbal());
268        break;
269      case REG_TDBAH:
270        pkt->set<uint32_t>(regs.tdba.tdbah());
271        break;
272      case REG_TDLEN:
273        pkt->set<uint32_t>(regs.tdlen());
274        break;
275      case REG_TDH:
276        pkt->set<uint32_t>(regs.tdh());
277        break;
278      case REG_TXDCA_CTL:
279        pkt->set<uint32_t>(regs.txdca_ctl());
280        break;
281      case REG_TDT:
282        pkt->set<uint32_t>(regs.tdt());
283        break;
284      case REG_TIDV:
285        pkt->set<uint32_t>(regs.tidv());
286        break;
287      case REG_TXDCTL:
288        pkt->set<uint32_t>(regs.txdctl());
289        break;
290      case REG_TADV:
291        pkt->set<uint32_t>(regs.tadv());
292        break;
293      case REG_TDWBAL:
294        pkt->set<uint32_t>(regs.tdwba & mask(32));
295        break;
296      case REG_TDWBAH:
297        pkt->set<uint32_t>(regs.tdwba >> 32);
298        break;
299      case REG_RXCSUM:
300        pkt->set<uint32_t>(regs.rxcsum());
301        break;
302      case REG_RLPML:
303        pkt->set<uint32_t>(regs.rlpml);
304        break;
305      case REG_RFCTL:
306        pkt->set<uint32_t>(regs.rfctl());
307        break;
308      case REG_MANC:
309        pkt->set<uint32_t>(regs.manc());
310        break;
311      case REG_SWSM:
312        pkt->set<uint32_t>(regs.swsm());
313        regs.swsm.smbi(1);
314        break;
315      case REG_FWSM:
316        pkt->set<uint32_t>(regs.fwsm());
317        break;
318      case REG_SWFWSYNC:
319        pkt->set<uint32_t>(regs.sw_fw_sync);
320        break;
321      default:
322        if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
323            !(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
324            !(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)) &&
325            !(daddr >= REG_CRCERRS && daddr < (REG_CRCERRS + STATS_REGS_SIZE)))
326            panic("Read request to unknown register number: %#x\n", daddr);
327        else
328            pkt->set<uint32_t>(0);
329    };
330
331    pkt->makeAtomicResponse();
332    return pioDelay;
333}
334
335Tick
336IGbE::write(PacketPtr pkt)
337{
338    int bar;
339    Addr daddr;
340
341
342    if (!getBAR(pkt->getAddr(), bar, daddr))
343        panic("Invalid PCI memory access to unmapped memory.\n");
344
345    // Only Memory register BAR is allowed
346    assert(bar == 0);
347
348    // Only 32bit accesses allowed
349    assert(pkt->getSize() == sizeof(uint32_t));
350
351    DPRINTF(Ethernet, "Wrote device register %#X value %#X\n", daddr, pkt->get<uint32_t>());
352
353    ///
354    /// Handle write of register here
355    ///
356    uint32_t val = pkt->get<uint32_t>();
357
358    Regs::RCTL oldrctl;
359    Regs::TCTL oldtctl;
360
361    switch (daddr) {
362      case REG_CTRL:
363        regs.ctrl = val;
364        if (regs.ctrl.tfce())
365            warn("TX Flow control enabled, should implement\n");
366        if (regs.ctrl.rfce())
367            warn("RX Flow control enabled, should implement\n");
368        break;
369      case REG_CTRL_EXT:
370        regs.ctrl_ext = val;
371        break;
372      case REG_STATUS:
373        regs.sts = val;
374        break;
375      case REG_EECD:
376        int oldClk;
377        oldClk = regs.eecd.sk();
378        regs.eecd = val;
379        // See if this is a eeprom access and emulate accordingly
380        if (!oldClk && regs.eecd.sk()) {
381            if (eeOpBits < 8) {
382                eeOpcode = eeOpcode << 1 | regs.eecd.din();
383                eeOpBits++;
384            } else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
385                eeAddr = eeAddr << 1 | regs.eecd.din();
386                eeAddrBits++;
387            } else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
388                assert(eeAddr>>1 < EEPROM_SIZE);
389                DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
390                        flash[eeAddr>>1] >> eeDataBits & 0x1, flash[eeAddr>>1]);
391                regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
392                eeDataBits++;
393            } else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
394                regs.eecd.dout(0);
395                eeDataBits++;
396            } else
397                panic("What's going on with eeprom interface? opcode:"
398                       " %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
399                       (uint32_t)eeOpBits, (uint32_t)eeAddr,
400                       (uint32_t)eeAddrBits, (uint32_t)eeDataBits);
401
402            // Reset everything for the next command
403            if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
404               (eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
405                eeOpBits = 0;
406                eeAddrBits = 0;
407                eeDataBits = 0;
408               eeOpcode = 0;
409                eeAddr = 0;
410            }
411
412           DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
413                    (uint32_t)eeOpcode, (uint32_t) eeOpBits,
414                    (uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
415           if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
416                                   eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
417                panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
418                        (uint32_t)eeOpBits);
419
420
421        }
422        // If driver requests eeprom access, immediately give it to it
423        regs.eecd.ee_gnt(regs.eecd.ee_req());
424        break;
425      case REG_EERD:
426        regs.eerd = val;
427        if (regs.eerd.start()) {
428            regs.eerd.done(1);
429            assert(regs.eerd.addr() < EEPROM_SIZE);
430            regs.eerd.data(flash[regs.eerd.addr()]);
431            regs.eerd.start(0);
432            DPRINTF(EthernetEEPROM, "EEPROM: read addr: %#X data %#x\n",
433                    regs.eerd.addr(), regs.eerd.data());
434        }
435        break;
436      case REG_MDIC:
437        regs.mdic = val;
438        if (regs.mdic.i())
439            panic("No support for interrupt on mdic complete\n");
440        if (regs.mdic.phyadd() != 1)
441            panic("No support for reading anything but phy\n");
442        DPRINTF(Ethernet, "%s phy address %x\n", regs.mdic.op() == 1 ? "Writing"
443                : "Reading", regs.mdic.regadd());
444        switch (regs.mdic.regadd()) {
445            case PHY_PSTATUS:
446                regs.mdic.data(0x796D); // link up
447                break;
448            case PHY_PID:
449                regs.mdic.data(params()->phy_pid);
450                break;
451            case PHY_EPID:
452                regs.mdic.data(params()->phy_epid);
453                break;
454            case PHY_GSTATUS:
455                regs.mdic.data(0x7C00);
456                break;
457            case PHY_EPSTATUS:
458                regs.mdic.data(0x3000);
459                break;
460            case PHY_AGC:
461                regs.mdic.data(0x180); // some random length
462                break;
463            default:
464                regs.mdic.data(0);
465        }
466        regs.mdic.r(1);
467        break;
468      case REG_ICR:
469        DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
470                regs.imr, regs.iam, regs.ctrl_ext.iame());
471        if (regs.ctrl_ext.iame())
472            regs.imr &= ~regs.iam;
473        regs.icr = ~bits(val,30,0) & regs.icr();
474        chkInterrupt();
475        break;
476      case REG_ITR:
477        regs.itr = val;
478        break;
479      case REG_ICS:
480        DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
481        postInterrupt((IntTypes)val);
482        break;
483       case REG_IMS:
484        regs.imr |= val;
485        chkInterrupt();
486        break;
487      case REG_IMC:
488        regs.imr &= ~val;
489        chkInterrupt();
490        break;
491      case REG_IAM:
492        regs.iam = val;
493        break;
494      case REG_RCTL:
495        oldrctl = regs.rctl;
496        regs.rctl = val;
497        if (regs.rctl.rst()) {
498            rxDescCache.reset();
499            DPRINTF(EthernetSM, "RXS: Got RESET!\n");
500            rxFifo.clear();
501            regs.rctl.rst(0);
502        }
503        if (regs.rctl.en())
504            rxTick = true;
505        restartClock();
506        break;
507      case REG_FCTTV:
508        regs.fcttv = val;
509        break;
510      case REG_TCTL:
511        regs.tctl = val;
512        oldtctl = regs.tctl;
513        regs.tctl = val;
514        if (regs.tctl.en())
515           txTick = true;
516        restartClock();
517        if (regs.tctl.en() && !oldtctl.en()) {
518            txDescCache.reset();
519        }
520         break;
521      case REG_PBA:
522        regs.pba.rxa(val);
523        regs.pba.txa(64 - regs.pba.rxa());
524        break;
525      case REG_WUC:
526      case REG_LEDCTL:
527      case REG_FCAL:
528      case REG_FCAH:
529      case REG_FCT:
530      case REG_VET:
531      case REG_AIFS:
532      case REG_TIPG:
533        ; // We don't care, so don't store anything
534        break;
535      case REG_IVAR0:
536        warn("Writing to IVAR0, ignoring...\n");
537        break;
538      case REG_FCRTL:
539        regs.fcrtl = val;
540        break;
541      case REG_FCRTH:
542        regs.fcrth = val;
543        break;
544      case REG_RDBAL:
545        regs.rdba.rdbal( val & ~mask(4));
546        rxDescCache.areaChanged();
547        break;
548      case REG_RDBAH:
549        regs.rdba.rdbah(val);
550        rxDescCache.areaChanged();
551        break;
552      case REG_RDLEN:
553        regs.rdlen = val & ~mask(7);
554        rxDescCache.areaChanged();
555        break;
556      case REG_SRRCTL:
557        regs.srrctl = val;
558        break;
559      case REG_RDH:
560        regs.rdh = val;
561        rxDescCache.areaChanged();
562        break;
563      case REG_RDT:
564        regs.rdt = val;
565        DPRINTF(EthernetSM, "RXS: RDT Updated.\n");
566        if (getState() == SimObject::Running) {
567            DPRINTF(EthernetSM, "RXS: RDT Fetching Descriptors!\n");
568            rxDescCache.fetchDescriptors();
569        } else {
570            DPRINTF(EthernetSM, "RXS: RDT NOT Fetching Desc b/c draining!\n");
571        }
572        break;
573      case REG_RDTR:
574        regs.rdtr = val;
575        break;
576      case REG_RADV:
577        regs.radv = val;
578        break;
579      case REG_RXDCTL:
580        regs.rxdctl = val;
581        break;
582      case REG_TDBAL:
583        regs.tdba.tdbal( val & ~mask(4));
584        txDescCache.areaChanged();
585        break;
586      case REG_TDBAH:
587        regs.tdba.tdbah(val);
588        txDescCache.areaChanged();
589        break;
590      case REG_TDLEN:
591        regs.tdlen = val & ~mask(7);
592        txDescCache.areaChanged();
593        break;
594      case REG_TDH:
595        regs.tdh = val;
596        txDescCache.areaChanged();
597        break;
598      case REG_TXDCA_CTL:
599        regs.txdca_ctl = val;
600        if (regs.txdca_ctl.enabled())
601            panic("No support for DCA\n");
602        break;
603      case REG_TDT:
604        regs.tdt = val;
605        DPRINTF(EthernetSM, "TXS: TX Tail pointer updated\n");
606        if (getState() == SimObject::Running) {
607            DPRINTF(EthernetSM, "TXS: TDT Fetching Descriptors!\n");
608            txDescCache.fetchDescriptors();
609        } else {
610            DPRINTF(EthernetSM, "TXS: TDT NOT Fetching Desc b/c draining!\n");
611        }
612        break;
613      case REG_TIDV:
614        regs.tidv = val;
615        break;
616      case REG_TXDCTL:
617        regs.txdctl = val;
618        break;
619      case REG_TADV:
620        regs.tadv = val;
621        break;
622      case REG_TDWBAL:
623        regs.tdwba &= ~mask(32);
624        regs.tdwba |= val;
625        txDescCache.completionWriteback(regs.tdwba & ~mask(1), regs.tdwba & mask(1));
626        break;
627      case REG_TDWBAH:
628        regs.tdwba &= mask(32);
629        regs.tdwba |= (uint64_t)val << 32;
630        txDescCache.completionWriteback(regs.tdwba & ~mask(1), regs.tdwba & mask(1));
631        break;
632      case REG_RXCSUM:
633        regs.rxcsum = val;
634        break;
635      case REG_RLPML:
636        regs.rlpml = val;
637        break;
638      case REG_RFCTL:
639        regs.rfctl = val;
640        if (regs.rfctl.exsten())
641            panic("Extended RX descriptors not implemented\n");
642        break;
643      case REG_MANC:
644        regs.manc = val;
645        break;
646      case REG_SWSM:
647        regs.swsm = val;
648        if (regs.fwsm.eep_fw_semaphore())
649            regs.swsm.swesmbi(0);
650        break;
651      case REG_SWFWSYNC:
652        regs.sw_fw_sync = val;
653        break;
654      default:
655       if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
656           !(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
657           !(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)))
658           panic("Write request to unknown register number: %#x\n", daddr);
659    };
660
661    pkt->makeAtomicResponse();
662    return pioDelay;
663}
664
665void
666IGbE::postInterrupt(IntTypes t, bool now)
667{
668    assert(t);
669
670    // Interrupt is already pending
671    if (t & regs.icr() && !now)
672        return;
673
674    regs.icr = regs.icr() | t;
675
676    Tick itr_interval = Clock::Int::ns * 256 * regs.itr.interval();
677    DPRINTF(EthernetIntr, "EINT: postInterrupt() curTick: %d itr: %d interval: %d\n",
678            curTick, regs.itr.interval(), itr_interval);
679
680    if (regs.itr.interval() == 0 || now || lastInterrupt + itr_interval <= curTick) {
681        if (interEvent.scheduled()) {
682            deschedule(interEvent);
683        }
684        cpuPostInt();
685    } else {
686       Tick int_time = lastInterrupt + itr_interval;
687       assert(int_time > 0);
688       DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for tick %d\n",
689                int_time);
690       if (!interEvent.scheduled()) {
691           schedule(interEvent, int_time);
692       }
693    }
694}
695
696void
697IGbE::delayIntEvent()
698{
699    cpuPostInt();
700}
701
702
703void
704IGbE::cpuPostInt()
705{
706
707    postedInterrupts++;
708
709    if (!(regs.icr() & regs.imr)) {
710        DPRINTF(Ethernet, "Interrupt Masked. Not Posting\n");
711        return;
712    }
713
714    DPRINTF(Ethernet, "Posting Interrupt\n");
715
716
717    if (interEvent.scheduled()) {
718        deschedule(interEvent);
719    }
720
721    if (rdtrEvent.scheduled()) {
722        regs.icr.rxt0(1);
723        deschedule(rdtrEvent);
724    }
725    if (radvEvent.scheduled()) {
726        regs.icr.rxt0(1);
727        deschedule(radvEvent);
728    }
729    if (tadvEvent.scheduled()) {
730        regs.icr.txdw(1);
731        deschedule(tadvEvent);
732    }
733    if (tidvEvent.scheduled()) {
734        regs.icr.txdw(1);
735        deschedule(tidvEvent);
736    }
737
738    regs.icr.int_assert(1);
739    DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
740            regs.icr());
741
742    intrPost();
743
744    lastInterrupt = curTick;
745}
746
747void
748IGbE::cpuClearInt()
749{
750    if (regs.icr.int_assert()) {
751        regs.icr.int_assert(0);
752        DPRINTF(EthernetIntr, "EINT: Clearing interrupt to CPU now. Vector %#x\n",
753                regs.icr());
754        intrClear();
755    }
756}
757
758void
759IGbE::chkInterrupt()
760{
761    DPRINTF(Ethernet, "Checking interrupts icr: %#x imr: %#x\n", regs.icr(),
762            regs.imr);
763    // Check if we need to clear the cpu interrupt
764    if (!(regs.icr() & regs.imr)) {
765        DPRINTF(Ethernet, "Mask cleaned all interrupts\n");
766        if (interEvent.scheduled())
767           deschedule(interEvent);
768        if (regs.icr.int_assert())
769            cpuClearInt();
770    }
771    DPRINTF(Ethernet, "ITR = %#X itr.interval = %#X\n", regs.itr(), regs.itr.interval());
772
773    if (regs.icr() & regs.imr) {
774        if (regs.itr.interval() == 0)  {
775            cpuPostInt();
776        } else {
777            DPRINTF(Ethernet, "Possibly scheduling interrupt because of imr write\n");
778            if (!interEvent.scheduled()) {
779               DPRINTF(Ethernet, "Scheduling for %d\n", curTick + Clock::Int::ns
780                       * 256 * regs.itr.interval());
781               schedule(interEvent,
782                   curTick + Clock::Int::ns * 256 * regs.itr.interval());
783            }
784        }
785    }
786
787
788}
789
790
791IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
792    : DescCache<RxDesc>(i, n, s), pktDone(false), splitCount(0),
793      pktEvent(this), pktHdrEvent(this), pktDataEvent(this)
794
795{
796}
797
798void
799IGbE::RxDescCache::pktSplitDone()
800{
801    splitCount++;
802    DPRINTF(EthernetDesc, "Part of split packet done: splitcount now %d\n", splitCount);
803    assert(splitCount <= 2);
804    if (splitCount != 2)
805        return;
806    splitCount = 0;
807    DPRINTF(EthernetDesc, "Part of split packet done: calling pktComplete()\n");
808    pktComplete();
809}
810
811int
812IGbE::RxDescCache::writePacket(EthPacketPtr packet, int pkt_offset)
813{
814        assert(unusedCache.size());
815    //if (!unusedCache.size())
816    //    return false;
817
818    pktPtr = packet;
819    pktDone = false;
820    int buf_len, hdr_len;
821
822    RxDesc *desc = unusedCache.front();
823    switch (igbe->regs.srrctl.desctype()) {
824      case RXDT_LEGACY:
825        assert(pkt_offset == 0);
826        bytesCopied = packet->length;
827        DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
828            packet->length, igbe->regs.rctl.descSize());
829        assert(packet->length < igbe->regs.rctl.descSize());
830        igbe->dmaWrite(igbe->platform->pciToDma(desc->legacy.buf), packet->length, &pktEvent,
831                packet->data, igbe->rxWriteDelay);
832        break;
833      case RXDT_ADV_ONEBUF:
834        assert(pkt_offset == 0);
835        bytesCopied = packet->length;
836        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
837                                              igbe->regs.rctl.descSize();
838        DPRINTF(EthernetDesc, "Packet Length: %d srrctl: %#x Desc Size: %d\n",
839            packet->length, igbe->regs.srrctl(), buf_len);
840        assert(packet->length < buf_len);
841        igbe->dmaWrite(igbe->platform->pciToDma(desc->adv_read.pkt), packet->length, &pktEvent,
842                packet->data, igbe->rxWriteDelay);
843        desc->adv_wb.header_len = htole(0);
844        desc->adv_wb.sph = htole(0);
845        desc->adv_wb.pkt_len = htole((uint16_t)(pktPtr->length));
846        break;
847      case RXDT_ADV_SPLIT_A:
848        int split_point;
849
850        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
851                                              igbe->regs.rctl.descSize();
852        hdr_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.hdrLen() : 0;
853        DPRINTF(EthernetDesc, "lpe: %d Packet Length: %d offset: %d srrctl: %#x hdr addr: %#x Hdr Size: %d desc addr: %#x Desc Size: %d\n",
854            igbe->regs.rctl.lpe(), packet->length, pkt_offset, igbe->regs.srrctl(), desc->adv_read.hdr, hdr_len, desc->adv_read.pkt, buf_len);
855
856        split_point = hsplit(pktPtr);
857
858        if (packet->length <= hdr_len) {
859            bytesCopied = packet->length;
860            assert(pkt_offset == 0);
861            DPRINTF(EthernetDesc, "Header Splitting: Entire packet being placed in header\n");
862            igbe->dmaWrite(igbe->platform->pciToDma(desc->adv_read.hdr), packet->length, &pktEvent,
863                    packet->data, igbe->rxWriteDelay);
864            desc->adv_wb.header_len = htole((uint16_t)packet->length);
865            desc->adv_wb.sph = htole(0);
866            desc->adv_wb.pkt_len = htole(0);
867        } else if (split_point) {
868            if (pkt_offset) {
869                // we are only copying some data, header/data has already been
870                // copied
871                int max_to_copy = std::min(packet->length - pkt_offset, buf_len);
872                bytesCopied += max_to_copy;
873                DPRINTF(EthernetDesc, "Header Splitting: Continuing data buffer copy\n");
874                igbe->dmaWrite(igbe->platform->pciToDma(desc->adv_read.pkt),max_to_copy, &pktEvent,
875                        packet->data + pkt_offset, igbe->rxWriteDelay);
876                desc->adv_wb.header_len = htole(0);
877                desc->adv_wb.pkt_len = htole((uint16_t)max_to_copy);
878                desc->adv_wb.sph = htole(0);
879            } else {
880                int max_to_copy = std::min(packet->length - split_point, buf_len);
881                bytesCopied += max_to_copy + split_point;
882
883                DPRINTF(EthernetDesc, "Header Splitting: splitting at %d\n",
884                        split_point);
885                igbe->dmaWrite(igbe->platform->pciToDma(desc->adv_read.hdr), split_point, &pktHdrEvent,
886                        packet->data, igbe->rxWriteDelay);
887                igbe->dmaWrite(igbe->platform->pciToDma(desc->adv_read.pkt),
888                        max_to_copy, &pktDataEvent, packet->data + split_point, igbe->rxWriteDelay);
889                desc->adv_wb.header_len = htole(split_point);
890                desc->adv_wb.sph = 1;
891                desc->adv_wb.pkt_len = htole((uint16_t)(max_to_copy));
892            }
893        } else {
894            panic("Header split not fitting within header buffer or undecodable"
895                  " packet not fitting in header unsupported\n");
896        }
897        break;
898      default:
899        panic("Unimplemnted RX receive buffer type: %d\n",
900                igbe->regs.srrctl.desctype());
901    }
902    return bytesCopied;
903
904}
905
906void
907IGbE::RxDescCache::pktComplete()
908{
909    assert(unusedCache.size());
910    RxDesc *desc;
911    desc = unusedCache.front();
912
913    uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
914    DPRINTF(EthernetDesc, "pktPtr->length: %d bytesCopied: %d stripcrc offset: %d value written: %d %d\n",
915            pktPtr->length, bytesCopied, crcfixup,
916            htole((uint16_t)(pktPtr->length + crcfixup)),
917            (uint16_t)(pktPtr->length + crcfixup));
918
919    // no support for anything but starting at 0
920    assert(igbe->regs.rxcsum.pcss() == 0);
921
922    DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
923
924    uint16_t status = RXDS_DD;
925    uint8_t err = 0;
926    uint16_t ext_err = 0;
927    uint16_t csum = 0;
928    uint16_t ptype = 0;
929    uint16_t ip_id = 0;
930
931    assert(bytesCopied <= pktPtr->length);
932    if (bytesCopied == pktPtr->length)
933        status |= RXDS_EOP;
934
935    IpPtr ip(pktPtr);
936
937    if (ip) {
938        DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
939        ptype |= RXDP_IPV4;
940        ip_id = ip->id();
941
942        if (igbe->regs.rxcsum.ipofld()) {
943            DPRINTF(EthernetDesc, "Checking IP checksum\n");
944            status |= RXDS_IPCS;
945            csum = htole(cksum(ip));
946            igbe->rxIpChecksums++;
947            if (cksum(ip) != 0) {
948                err |= RXDE_IPE;
949                ext_err |= RXDEE_IPE;
950                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
951            }
952        }
953        TcpPtr tcp(ip);
954        if (tcp && igbe->regs.rxcsum.tuofld()) {
955            DPRINTF(EthernetDesc, "Checking TCP checksum\n");
956            status |= RXDS_TCPCS;
957            ptype |= RXDP_TCP;
958            csum = htole(cksum(tcp));
959            igbe->rxTcpChecksums++;
960            if (cksum(tcp) != 0) {
961                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
962                err |= RXDE_TCPE;
963                ext_err |= RXDEE_TCPE;
964            }
965        }
966
967        UdpPtr udp(ip);
968        if (udp && igbe->regs.rxcsum.tuofld()) {
969            DPRINTF(EthernetDesc, "Checking UDP checksum\n");
970            status |= RXDS_UDPCS;
971            ptype |= RXDP_UDP;
972            csum = htole(cksum(udp));
973            igbe->rxUdpChecksums++;
974            if (cksum(udp) != 0) {
975                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
976                ext_err |= RXDEE_TCPE;
977                err |= RXDE_TCPE;
978            }
979        }
980    } else { // if ip
981        DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
982    }
983
984    switch (igbe->regs.srrctl.desctype()) {
985      case RXDT_LEGACY:
986        desc->legacy.len = htole((uint16_t)(pktPtr->length + crcfixup));
987        desc->legacy.status = htole(status);
988        desc->legacy.errors = htole(err);
989        // No vlan support at this point... just set it to 0
990        desc->legacy.vlan = 0;
991        break;
992      case RXDT_ADV_SPLIT_A:
993      case RXDT_ADV_ONEBUF:
994        desc->adv_wb.rss_type = htole(0);
995        desc->adv_wb.pkt_type = htole(ptype);
996        if (igbe->regs.rxcsum.pcsd()) {
997            // no rss support right now
998            desc->adv_wb.rss_hash = htole(0);
999        } else {
1000            desc->adv_wb.id = htole(ip_id);
1001            desc->adv_wb.csum = htole(csum);
1002        }
1003        desc->adv_wb.status = htole(status);
1004        desc->adv_wb.errors = htole(ext_err);
1005        // no vlan support
1006        desc->adv_wb.vlan_tag = htole(0);
1007        break;
1008      default:
1009        panic("Unimplemnted RX receive buffer type %d\n",
1010                igbe->regs.srrctl.desctype());
1011    }
1012
1013    DPRINTF(EthernetDesc, "Descriptor complete w0: %#x w1: %#x\n",
1014            desc->adv_read.pkt, desc->adv_read.hdr);
1015
1016    if (bytesCopied == pktPtr->length) {
1017        DPRINTF(EthernetDesc, "Packet completely written to descriptor buffers\n");
1018        // Deal with the rx timer interrupts
1019        if (igbe->regs.rdtr.delay()) {
1020            DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n",
1021                    igbe->regs.rdtr.delay() * igbe->intClock());
1022            igbe->reschedule(igbe->rdtrEvent,
1023                curTick + igbe->regs.rdtr.delay() * igbe->intClock(), true);
1024        }
1025
1026        if (igbe->regs.radv.idv()) {
1027            DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n",
1028                    igbe->regs.radv.idv() * igbe->intClock());
1029            if (!igbe->radvEvent.scheduled()) {
1030                igbe->schedule(igbe->radvEvent,
1031                    curTick + igbe->regs.radv.idv() * igbe->intClock());
1032            }
1033        }
1034
1035        // if neither radv or rdtr, maybe itr is set...
1036        if (!igbe->regs.rdtr.delay() && !igbe->regs.radv.idv()) {
1037            DPRINTF(EthernetSM, "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
1038            igbe->postInterrupt(IT_RXT);
1039        }
1040
1041        // If the packet is small enough, interrupt appropriately
1042        // I wonder if this is delayed or not?!
1043        if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
1044            DPRINTF(EthernetSM, "RXS: Posting IT_SRPD beacuse small packet received\n");
1045            igbe->postInterrupt(IT_SRPD);
1046        }
1047        bytesCopied = 0;
1048    }
1049
1050    pktPtr = NULL;
1051    igbe->checkDrain();
1052    enableSm();
1053    pktDone = true;
1054
1055    DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
1056    unusedCache.pop_front();
1057    usedCache.push_back(desc);
1058}
1059
1060void
1061IGbE::RxDescCache::enableSm()
1062{
1063    if (!igbe->drainEvent) {
1064        igbe->rxTick = true;
1065        igbe->restartClock();
1066    }
1067}
1068
1069bool
1070IGbE::RxDescCache::packetDone()
1071{
1072    if (pktDone) {
1073        pktDone = false;
1074        return true;
1075    }
1076    return false;
1077}
1078
1079bool
1080IGbE::RxDescCache::hasOutstandingEvents()
1081{
1082    return pktEvent.scheduled() || wbEvent.scheduled() ||
1083        fetchEvent.scheduled() || pktHdrEvent.scheduled() ||
1084        pktDataEvent.scheduled();
1085
1086}
1087
1088void
1089IGbE::RxDescCache::serialize(std::ostream &os)
1090{
1091    DescCache<RxDesc>::serialize(os);
1092    SERIALIZE_SCALAR(pktDone);
1093    SERIALIZE_SCALAR(splitCount);
1094    SERIALIZE_SCALAR(bytesCopied);
1095}
1096
1097void
1098IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1099{
1100    DescCache<RxDesc>::unserialize(cp, section);
1101    UNSERIALIZE_SCALAR(pktDone);
1102    UNSERIALIZE_SCALAR(splitCount);
1103    UNSERIALIZE_SCALAR(bytesCopied);
1104}
1105
1106
1107///////////////////////////////////// IGbE::TxDesc /////////////////////////////////
1108
1109IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
1110    : DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false), pktWaiting(false),
1111       useTso(false), pktEvent(this), headerEvent(this), nullEvent(this)
1112
1113{
1114}
1115
1116void
1117IGbE::TxDescCache::processContextDesc()
1118{
1119    assert(unusedCache.size());
1120    TxDesc *desc;
1121
1122    DPRINTF(EthernetDesc, "Checking and  processing context descriptors\n");
1123
1124    while (!useTso && unusedCache.size() && TxdOp::isContext(unusedCache.front())) {
1125        DPRINTF(EthernetDesc, "Got context descriptor type...\n");
1126
1127        desc = unusedCache.front();
1128        DPRINTF(EthernetDesc, "Descriptor upper: %#x lower: %#X\n",
1129                    desc->d1, desc->d2);
1130
1131
1132        // is this going to be a tcp or udp packet?
1133        isTcp = TxdOp::tcp(desc) ? true : false;
1134
1135        // setup all the TSO variables, they'll be ignored if we don't use
1136        // tso for this connection
1137        tsoHeaderLen = TxdOp::hdrlen(desc);
1138        tsoMss  = TxdOp::mss(desc);
1139
1140        if (TxdOp::isType(desc, TxdOp::TXD_CNXT) && TxdOp::tse(desc)) {
1141            DPRINTF(EthernetDesc, "TCP offload enabled for packet hdrlen: %d mss: %d paylen %d\n",
1142                    TxdOp::hdrlen(desc), TxdOp::mss(desc), TxdOp::getLen(desc));
1143            useTso = true;
1144            tsoTotalLen = TxdOp::getLen(desc);
1145            tsoLoadedHeader = false;
1146            tsoDescBytesUsed = 0;
1147            tsoUsedLen = 0;
1148            tsoPrevSeq = 0;
1149            tsoPktHasHeader = false;
1150            tsoPkts = 0;
1151
1152        }
1153
1154        TxdOp::setDd(desc);
1155        unusedCache.pop_front();
1156        usedCache.push_back(desc);
1157    }
1158
1159    if (!unusedCache.size())
1160        return;
1161
1162    desc = unusedCache.front();
1163    if (!useTso && TxdOp::isType(desc, TxdOp::TXD_ADVDATA) && TxdOp::tse(desc)) {
1164        DPRINTF(EthernetDesc, "TCP offload(adv) enabled for packet hdrlen: %d mss: %d paylen %d\n",
1165                tsoHeaderLen, tsoMss, TxdOp::getTsoLen(desc));
1166        useTso = true;
1167        tsoTotalLen = TxdOp::getTsoLen(desc);
1168        tsoLoadedHeader = false;
1169        tsoDescBytesUsed = 0;
1170        tsoUsedLen = 0;
1171        tsoPrevSeq = 0;
1172        tsoPktHasHeader = false;
1173        tsoPkts = 0;
1174    }
1175
1176    if (useTso && !tsoLoadedHeader) {
1177        // we need to fetch a header
1178        DPRINTF(EthernetDesc, "Starting DMA of TSO header\n");
1179        assert(TxdOp::isData(desc) && TxdOp::getLen(desc) >= tsoHeaderLen);
1180        pktWaiting = true;
1181        assert(tsoHeaderLen <= 256);
1182        igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)),
1183                tsoHeaderLen, &headerEvent, tsoHeader, 0);
1184    }
1185}
1186
1187void
1188IGbE::TxDescCache::headerComplete()
1189{
1190    DPRINTF(EthernetDesc, "TSO: Fetching TSO header complete\n");
1191    pktWaiting = false;
1192
1193    assert(unusedCache.size());
1194    TxDesc *desc = unusedCache.front();
1195    DPRINTF(EthernetDesc, "TSO: len: %d tsoHeaderLen: %d\n",
1196            TxdOp::getLen(desc), tsoHeaderLen);
1197
1198    if (TxdOp::getLen(desc) == tsoHeaderLen) {
1199        tsoDescBytesUsed = 0;
1200        tsoLoadedHeader = true;
1201        unusedCache.pop_front();
1202        usedCache.push_back(desc);
1203    } else {
1204        // I don't think this case happens, I think the headrer is always
1205        // it's own packet, if it wasn't it might be as simple as just
1206        // incrementing descBytesUsed by the header length, but I'm not
1207        // completely sure
1208        panic("TSO header part of bigger packet, not implemented\n");
1209    }
1210    enableSm();
1211    igbe->checkDrain();
1212}
1213
1214int
1215IGbE::TxDescCache::getPacketSize(EthPacketPtr p)
1216{
1217    TxDesc *desc;
1218
1219
1220    if (!unusedCache.size())
1221        return -1;
1222
1223    DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
1224
1225    assert(!useTso || tsoLoadedHeader);
1226    desc = unusedCache.front();
1227
1228
1229    if (useTso) {
1230        DPRINTF(EthernetDesc, "getPacket(): TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1231        DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d used: %d loaded hdr: %d\n",
1232                useTso, tsoHeaderLen, tsoMss, tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1233        DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d this descLen: %d\n",
1234                tsoDescBytesUsed, tsoCopyBytes, TxdOp::getLen(desc));
1235        DPRINTF(EthernetDesc, "TSO: pktHasHeader: %d\n", tsoPktHasHeader);
1236
1237        if (tsoPktHasHeader)
1238            tsoCopyBytes =  std::min((tsoMss + tsoHeaderLen) - p->length, TxdOp::getLen(desc) - tsoDescBytesUsed);
1239        else
1240            tsoCopyBytes =  std::min(tsoMss, TxdOp::getLen(desc) - tsoDescBytesUsed);
1241        Addr pkt_size = tsoCopyBytes + (tsoPktHasHeader ? 0 : tsoHeaderLen);
1242        DPRINTF(EthernetDesc, "TSO: Next packet is %d bytes\n", pkt_size);
1243        return pkt_size;
1244    }
1245
1246    DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
1247                TxdOp::getLen(unusedCache.front()));
1248    return TxdOp::getLen(desc);
1249}
1250
1251void
1252IGbE::TxDescCache::getPacketData(EthPacketPtr p)
1253{
1254    assert(unusedCache.size());
1255
1256    TxDesc *desc;
1257    desc = unusedCache.front();
1258
1259    DPRINTF(EthernetDesc, "getPacketData(): TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1260    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));
1261
1262    pktPtr = p;
1263
1264    pktWaiting = true;
1265
1266    DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d\n", p->length);
1267
1268    if (useTso) {
1269        assert(tsoLoadedHeader);
1270        if (!tsoPktHasHeader) {
1271            DPRINTF(EthernetDesc, "Loading TSO header (%d bytes) into start of packet\n",
1272                   tsoHeaderLen);
1273            memcpy(p->data, &tsoHeader,tsoHeaderLen);
1274            p->length +=tsoHeaderLen;
1275            tsoPktHasHeader = true;
1276        }
1277    }
1278
1279    if (useTso) {
1280        tsoDescBytesUsed += tsoCopyBytes;
1281        assert(tsoDescBytesUsed <= TxdOp::getLen(desc));
1282        DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d length: %d\n",
1283                p->length, tsoCopyBytes);
1284        igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)) + tsoDescBytesUsed,
1285            tsoCopyBytes, &pktEvent, p->data + p->length, igbe->txReadDelay);
1286    } else {
1287        igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)),
1288            TxdOp::getLen(desc), &pktEvent, p->data + p->length, igbe->txReadDelay);
1289    }
1290}
1291
1292void
1293IGbE::TxDescCache::pktComplete()
1294{
1295
1296    TxDesc *desc;
1297    assert(unusedCache.size());
1298    assert(pktPtr);
1299
1300    DPRINTF(EthernetDesc, "DMA of packet complete\n");
1301
1302
1303    desc = unusedCache.front();
1304    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));
1305
1306    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1307    DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d used: %d loaded hdr: %d\n",
1308            useTso, tsoHeaderLen, tsoMss, tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1309
1310    // Set the length of the data in the EtherPacket
1311    if (useTso) {
1312        pktPtr->length += tsoCopyBytes;
1313        tsoUsedLen += tsoCopyBytes;
1314    } else
1315        pktPtr->length += TxdOp::getLen(desc);
1316
1317    DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d\n",
1318            tsoDescBytesUsed, tsoCopyBytes);
1319
1320
1321    if ((!TxdOp::eop(desc) && !useTso) ||
1322            (pktPtr->length < ( tsoMss + tsoHeaderLen) && tsoTotalLen != tsoUsedLen)) {
1323        assert(!useTso || (tsoDescBytesUsed == TxdOp::getLen(desc)));
1324        unusedCache.pop_front();
1325        usedCache.push_back(desc);
1326
1327        tsoDescBytesUsed = 0;
1328        pktDone = true;
1329        pktWaiting = false;
1330        pktMultiDesc = true;
1331
1332        DPRINTF(EthernetDesc, "Partial Packet Descriptor of %d bytes Done\n",
1333                pktPtr->length);
1334        pktPtr = NULL;
1335
1336        enableSm();
1337        igbe->checkDrain();
1338        return;
1339    }
1340
1341
1342    pktMultiDesc = false;
1343    // no support for vlans
1344    assert(!TxdOp::vle(desc));
1345
1346    // we only support single packet descriptors at this point
1347    if (!useTso)
1348        assert(TxdOp::eop(desc));
1349
1350    // set that this packet is done
1351    if (TxdOp::rs(desc))
1352        TxdOp::setDd(desc);
1353
1354    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1355
1356    if (useTso) {
1357        IpPtr ip(pktPtr);
1358        if (ip) {
1359            DPRINTF(EthernetDesc, "TSO: Modifying IP header. Id + %d\n",
1360                    tsoPkts);
1361            ip->id(ip->id() + tsoPkts++);
1362            ip->len(pktPtr->length - EthPtr(pktPtr)->size());
1363
1364            TcpPtr tcp(ip);
1365            if (tcp) {
1366                DPRINTF(EthernetDesc, "TSO: Modifying TCP header. old seq %d + %d\n",
1367                    tcp->seq(), tsoPrevSeq);
1368                tcp->seq(tcp->seq() + tsoPrevSeq);
1369                if (tsoUsedLen != tsoTotalLen)
1370                    tcp->flags(tcp->flags() & ~9); // clear fin & psh
1371            }
1372            UdpPtr udp(ip);
1373            if (udp) {
1374                DPRINTF(EthernetDesc, "TSO: Modifying UDP header.\n");
1375                udp->len(pktPtr->length - EthPtr(pktPtr)->size());
1376            }
1377        }
1378        tsoPrevSeq = tsoUsedLen;
1379    }
1380
1381    if (DTRACE(EthernetDesc)) {
1382        IpPtr ip(pktPtr);
1383        if (ip)
1384            DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
1385                    ip->id());
1386        else
1387            DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1388    }
1389
1390    // Checksums are only ofloaded for new descriptor types
1391    if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
1392        DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
1393        IpPtr ip(pktPtr);
1394        assert(ip);
1395        if (TxdOp::ixsm(desc)) {
1396            ip->sum(0);
1397            ip->sum(cksum(ip));
1398            igbe->txIpChecksums++;
1399            DPRINTF(EthernetDesc, "Calculated IP checksum\n");
1400        }
1401        if (TxdOp::txsm(desc)) {
1402            TcpPtr tcp(ip);
1403            UdpPtr udp(ip);
1404            if (tcp) {
1405                 tcp->sum(0);
1406                 tcp->sum(cksum(tcp));
1407                 igbe->txTcpChecksums++;
1408                 DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
1409            } else if (udp) {
1410                 assert(udp);
1411                 udp->sum(0);
1412                 udp->sum(cksum(udp));
1413                 igbe->txUdpChecksums++;
1414                 DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
1415            } else {
1416                panic("Told to checksum, but don't know how\n");
1417            }
1418        }
1419    }
1420
1421    if (TxdOp::ide(desc)) {
1422        // Deal with the rx timer interrupts
1423        DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
1424        if (igbe->regs.tidv.idv()) {
1425            DPRINTF(EthernetDesc, "setting tidv\n");
1426            igbe->reschedule(igbe->tidvEvent,
1427                curTick + igbe->regs.tidv.idv() * igbe->intClock(), true);
1428        }
1429
1430        if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
1431            DPRINTF(EthernetDesc, "setting tadv\n");
1432            if (!igbe->tadvEvent.scheduled()) {
1433                igbe->schedule(igbe->tadvEvent,
1434                    curTick + igbe->regs.tadv.idv() * igbe->intClock());
1435            }
1436        }
1437    }
1438
1439
1440    if (!useTso ||  TxdOp::getLen(desc) == tsoDescBytesUsed) {
1441        DPRINTF(EthernetDesc, "Descriptor Done\n");
1442        unusedCache.pop_front();
1443        usedCache.push_back(desc);
1444        tsoDescBytesUsed = 0;
1445    }
1446
1447    if (useTso && tsoUsedLen == tsoTotalLen)
1448        useTso = false;
1449
1450
1451    DPRINTF(EthernetDesc, "------Packet of %d bytes ready for transmission-------\n",
1452            pktPtr->length);
1453    pktDone = true;
1454    pktWaiting = false;
1455    pktPtr = NULL;
1456    tsoPktHasHeader = false;
1457
1458    if (igbe->regs.txdctl.wthresh() == 0) {
1459        DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
1460        writeback(0);
1461    } else if (igbe->regs.txdctl.gran() && igbe->regs.txdctl.wthresh() >=
1462            descInBlock(usedCache.size())) {
1463        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1464        writeback((igbe->cacheBlockSize()-1)>>4);
1465    } else if (igbe->regs.txdctl.wthresh() >= usedCache.size()) {
1466        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1467        writeback((igbe->cacheBlockSize()-1)>>4);
1468    }
1469
1470    enableSm();
1471    igbe->checkDrain();
1472}
1473
1474void
1475IGbE::TxDescCache::actionAfterWb()
1476{
1477    DPRINTF(EthernetDesc, "actionAfterWb() completionEnabled: %d\n",
1478            completionEnabled);
1479    igbe->postInterrupt(iGbReg::IT_TXDW);
1480    if (completionEnabled) {
1481        descEnd = igbe->regs.tdh();
1482        DPRINTF(EthernetDesc, "Completion writing back value: %d to addr: %#x\n", descEnd,
1483                completionAddress);
1484        igbe->dmaWrite(igbe->platform->pciToDma(mbits(completionAddress, 63, 2)),
1485                    sizeof(descEnd), &nullEvent, (uint8_t*)&descEnd, 0);
1486    }
1487}
1488
1489void
1490IGbE::TxDescCache::serialize(std::ostream &os)
1491{
1492    DescCache<TxDesc>::serialize(os);
1493    SERIALIZE_SCALAR(pktDone);
1494    SERIALIZE_SCALAR(isTcp);
1495    SERIALIZE_SCALAR(pktWaiting);
1496    SERIALIZE_SCALAR(pktMultiDesc);
1497
1498    SERIALIZE_SCALAR(useTso);
1499    SERIALIZE_SCALAR(tsoHeaderLen);
1500    SERIALIZE_SCALAR(tsoMss);
1501    SERIALIZE_SCALAR(tsoTotalLen);
1502    SERIALIZE_SCALAR(tsoUsedLen);
1503    SERIALIZE_SCALAR(tsoPrevSeq);;
1504    SERIALIZE_SCALAR(tsoPktPayloadBytes);
1505    SERIALIZE_SCALAR(tsoLoadedHeader);
1506    SERIALIZE_SCALAR(tsoPktHasHeader);
1507    SERIALIZE_ARRAY(tsoHeader, 256);
1508    SERIALIZE_SCALAR(tsoDescBytesUsed);
1509    SERIALIZE_SCALAR(tsoCopyBytes);
1510    SERIALIZE_SCALAR(tsoPkts);
1511
1512    SERIALIZE_SCALAR(completionAddress);
1513    SERIALIZE_SCALAR(completionEnabled);
1514    SERIALIZE_SCALAR(descEnd);
1515}
1516
1517void
1518IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1519{
1520    DescCache<TxDesc>::unserialize(cp, section);
1521    UNSERIALIZE_SCALAR(pktDone);
1522    UNSERIALIZE_SCALAR(isTcp);
1523    UNSERIALIZE_SCALAR(pktWaiting);
1524    UNSERIALIZE_SCALAR(pktMultiDesc);
1525
1526    UNSERIALIZE_SCALAR(useTso);
1527    UNSERIALIZE_SCALAR(tsoHeaderLen);
1528    UNSERIALIZE_SCALAR(tsoMss);
1529    UNSERIALIZE_SCALAR(tsoTotalLen);
1530    UNSERIALIZE_SCALAR(tsoUsedLen);
1531    UNSERIALIZE_SCALAR(tsoPrevSeq);;
1532    UNSERIALIZE_SCALAR(tsoPktPayloadBytes);
1533    UNSERIALIZE_SCALAR(tsoLoadedHeader);
1534    UNSERIALIZE_SCALAR(tsoPktHasHeader);
1535    UNSERIALIZE_ARRAY(tsoHeader, 256);
1536    UNSERIALIZE_SCALAR(tsoDescBytesUsed);
1537    UNSERIALIZE_SCALAR(tsoCopyBytes);
1538    UNSERIALIZE_SCALAR(tsoPkts);
1539
1540    UNSERIALIZE_SCALAR(completionAddress);
1541    UNSERIALIZE_SCALAR(completionEnabled);
1542    UNSERIALIZE_SCALAR(descEnd);
1543}
1544
1545bool
1546IGbE::TxDescCache::packetAvailable()
1547{
1548    if (pktDone) {
1549        pktDone = false;
1550        return true;
1551    }
1552    return false;
1553}
1554
1555void
1556IGbE::TxDescCache::enableSm()
1557{
1558    if (!igbe->drainEvent) {
1559        igbe->txTick = true;
1560        igbe->restartClock();
1561    }
1562}
1563
1564bool
1565IGbE::TxDescCache::hasOutstandingEvents()
1566{
1567    return pktEvent.scheduled() || wbEvent.scheduled() ||
1568        fetchEvent.scheduled();
1569}
1570
1571
1572///////////////////////////////////// IGbE /////////////////////////////////
1573
1574void
1575IGbE::restartClock()
1576{
1577    if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) &&
1578        getState() == SimObject::Running)
1579        schedule(tickEvent, (curTick / ticks(1)) * ticks(1) + ticks(1));
1580}
1581
1582unsigned int
1583IGbE::drain(Event *de)
1584{
1585    unsigned int count;
1586    count = pioPort->drain(de) + dmaPort->drain(de);
1587    if (rxDescCache.hasOutstandingEvents() ||
1588            txDescCache.hasOutstandingEvents()) {
1589        count++;
1590        drainEvent = de;
1591    }
1592
1593    txFifoTick = false;
1594    txTick = false;
1595    rxTick = false;
1596
1597    if (tickEvent.scheduled())
1598        deschedule(tickEvent);
1599
1600    if (count)
1601        changeState(Draining);
1602    else
1603        changeState(Drained);
1604
1605    return count;
1606}
1607
1608void
1609IGbE::resume()
1610{
1611    SimObject::resume();
1612
1613    txFifoTick = true;
1614    txTick = true;
1615    rxTick = true;
1616
1617    restartClock();
1618}
1619
1620void
1621IGbE::checkDrain()
1622{
1623    if (!drainEvent)
1624        return;
1625
1626    txFifoTick = false;
1627    txTick = false;
1628    rxTick = false;
1629    if (!rxDescCache.hasOutstandingEvents() &&
1630            !txDescCache.hasOutstandingEvents()) {
1631        drainEvent->process();
1632        drainEvent = NULL;
1633    }
1634}
1635
1636void
1637IGbE::txStateMachine()
1638{
1639    if (!regs.tctl.en()) {
1640        txTick = false;
1641        DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
1642        return;
1643    }
1644
1645    // If we have a packet available and it's length is not 0 (meaning it's not
1646    // a multidescriptor packet) put it in the fifo, otherwise an the next
1647    // iteration we'll get the rest of the data
1648    if (txPacket && txDescCache.packetAvailable()
1649                 && !txDescCache.packetMultiDesc() && txPacket->length) {
1650        bool success;
1651
1652        DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
1653        success = txFifo.push(txPacket);
1654        txFifoTick = true && !drainEvent;
1655        assert(success);
1656        txPacket = NULL;
1657        txDescCache.writeback((cacheBlockSize()-1)>>4);
1658        return;
1659    }
1660
1661    // Only support descriptor granularity
1662    if (regs.txdctl.lwthresh() && txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
1663        DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
1664        postInterrupt(IT_TXDLOW);
1665    }
1666
1667    if (!txPacket) {
1668        txPacket = new EthPacketData(16384);
1669    }
1670
1671    if (!txDescCache.packetWaiting()) {
1672        if (txDescCache.descLeft() == 0) {
1673            postInterrupt(IT_TXQE);
1674            txDescCache.writeback(0);
1675            txDescCache.fetchDescriptors();
1676            DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
1677                    "writeback stopping ticking and posting TXQE\n");
1678            txTick = false;
1679            return;
1680        }
1681
1682
1683        if (!(txDescCache.descUnused())) {
1684            txDescCache.fetchDescriptors();
1685            DPRINTF(EthernetSM, "TXS: No descriptors available in cache, fetching and stopping ticking\n");
1686            txTick = false;
1687            return;
1688        }
1689
1690
1691        txDescCache.processContextDesc();
1692        if (txDescCache.packetWaiting()) {
1693            DPRINTF(EthernetSM, "TXS: Fetching TSO header, stopping ticking\n");
1694            txTick = false;
1695            return;
1696        }
1697
1698        int size;
1699        size = txDescCache.getPacketSize(txPacket);
1700        if (size > 0 && txFifo.avail() > size) {
1701            DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and begining "
1702                    "DMA of next packet\n", size);
1703            txFifo.reserve(size);
1704            txDescCache.getPacketData(txPacket);
1705        } else if (size <= 0) {
1706            DPRINTF(EthernetSM, "TXS: getPacketSize returned: %d\n", size);
1707            DPRINTF(EthernetSM, "TXS: No packets to get, writing back used descriptors\n");
1708            txDescCache.writeback(0);
1709        } else {
1710            DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
1711                    "available in FIFO\n");
1712            txTick = false;
1713        }
1714
1715
1716        return;
1717    }
1718    DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
1719    txTick = false;
1720}
1721
1722bool
1723IGbE::ethRxPkt(EthPacketPtr pkt)
1724{
1725    rxBytes += pkt->length;
1726    rxPackets++;
1727
1728    DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
1729
1730    if (!regs.rctl.en()) {
1731        DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
1732        return true;
1733    }
1734
1735    // restart the state machines if they are stopped
1736    rxTick = true && !drainEvent;
1737    if ((rxTick || txTick) && !tickEvent.scheduled()) {
1738        DPRINTF(EthernetSM, "RXS: received packet into fifo, starting ticking\n");
1739        restartClock();
1740    }
1741
1742    if (!rxFifo.push(pkt)) {
1743        DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
1744        postInterrupt(IT_RXO, true);
1745        return false;
1746    }
1747
1748    return true;
1749}
1750
1751
1752void
1753IGbE::rxStateMachine()
1754{
1755    if (!regs.rctl.en()) {
1756        rxTick = false;
1757        DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
1758        return;
1759    }
1760
1761    // If the packet is done check for interrupts/descriptors/etc
1762    if (rxDescCache.packetDone()) {
1763        rxDmaPacket = false;
1764        DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
1765        int descLeft = rxDescCache.descLeft();
1766        DPRINTF(EthernetSM, "RXS: descLeft: %d rdmts: %d rdlen: %d\n",
1767                descLeft, regs.rctl.rdmts(), regs.rdlen());
1768        switch (regs.rctl.rdmts()) {
1769            case 2: if (descLeft > .125 * regs.rdlen()) break;
1770            case 1: if (descLeft > .250 * regs.rdlen()) break;
1771            case 0: if (descLeft > .500 * regs.rdlen())  break;
1772                DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) because of descriptors left\n");
1773                postInterrupt(IT_RXDMT);
1774                break;
1775        }
1776
1777        if (rxFifo.empty())
1778            rxDescCache.writeback(0);
1779
1780        if (descLeft == 0) {
1781            rxDescCache.writeback(0);
1782            DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
1783                    " writeback and stopping ticking\n");
1784            rxTick = false;
1785        }
1786
1787        // only support descriptor granulaties
1788        assert(regs.rxdctl.gran());
1789
1790        if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
1791            DPRINTF(EthernetSM, "RXS: Writing back because WTHRESH >= descUsed\n");
1792            if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
1793                rxDescCache.writeback(regs.rxdctl.wthresh()-1);
1794            else
1795                rxDescCache.writeback((cacheBlockSize()-1)>>4);
1796        }
1797
1798        if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
1799             ((rxDescCache.descLeft() - rxDescCache.descUnused()) > regs.rxdctl.hthresh())) {
1800            DPRINTF(EthernetSM, "RXS: Fetching descriptors because descUnused < PTHRESH\n");
1801            rxDescCache.fetchDescriptors();
1802        }
1803
1804        if (rxDescCache.descUnused() == 0) {
1805            rxDescCache.fetchDescriptors();
1806            DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
1807                    "fetching descriptors and stopping ticking\n");
1808            rxTick = false;
1809        }
1810        return;
1811    }
1812
1813    if (rxDmaPacket) {
1814        DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
1815        rxTick = false;
1816        return;
1817    }
1818
1819    if (!rxDescCache.descUnused()) {
1820        rxDescCache.fetchDescriptors();
1821        DPRINTF(EthernetSM, "RXS: No descriptors available in cache, stopping ticking\n");
1822        rxTick = false;
1823        DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
1824        return;
1825    }
1826
1827    if (rxFifo.empty()) {
1828        DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
1829        rxTick = false;
1830        return;
1831    }
1832
1833    EthPacketPtr pkt;
1834    pkt = rxFifo.front();
1835
1836
1837    pktOffset = rxDescCache.writePacket(pkt, pktOffset);
1838    DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
1839    if (pktOffset == pkt->length) {
1840        DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
1841        pktOffset = 0;
1842        rxFifo.pop();
1843    }
1844
1845    DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
1846    rxTick = false;
1847    rxDmaPacket = true;
1848}
1849
1850void
1851IGbE::txWire()
1852{
1853    if (txFifo.empty()) {
1854        txFifoTick = false;
1855        return;
1856    }
1857
1858
1859    if (etherInt->sendPacket(txFifo.front())) {
1860        if (DTRACE(EthernetSM)) {
1861            IpPtr ip(txFifo.front());
1862            if (ip)
1863                DPRINTF(EthernetSM, "Transmitting Ip packet with Id=%d\n",
1864                        ip->id());
1865            else
1866                DPRINTF(EthernetSM, "Transmitting Non-Ip packet\n");
1867        }
1868        DPRINTF(EthernetSM, "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
1869                txFifo.avail());
1870
1871        txBytes += txFifo.front()->length;
1872        txPackets++;
1873        txFifoTick = false;
1874
1875        txFifo.pop();
1876    } else {
1877        // We'll get woken up when the packet ethTxDone() gets called
1878        txFifoTick = false;
1879    }
1880}
1881
1882void
1883IGbE::tick()
1884{
1885    DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
1886
1887    if (rxTick)
1888        rxStateMachine();
1889
1890    if (txTick)
1891        txStateMachine();
1892
1893    if (txFifoTick)
1894        txWire();
1895
1896
1897    if (rxTick || txTick || txFifoTick)
1898        schedule(tickEvent, curTick + ticks(1));
1899}
1900
1901void
1902IGbE::ethTxDone()
1903{
1904    // restart the tx state machines if they are stopped
1905    // fifo to send another packet
1906    // tx sm to put more data into the fifo
1907    txFifoTick = true && !drainEvent;
1908    if (txDescCache.descLeft() != 0 && !drainEvent)
1909        txTick = true;
1910
1911    restartClock();
1912    txWire();
1913    DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
1914}
1915
1916void
1917IGbE::serialize(std::ostream &os)
1918{
1919    PciDev::serialize(os);
1920
1921    regs.serialize(os);
1922    SERIALIZE_SCALAR(eeOpBits);
1923    SERIALIZE_SCALAR(eeAddrBits);
1924    SERIALIZE_SCALAR(eeDataBits);
1925    SERIALIZE_SCALAR(eeOpcode);
1926    SERIALIZE_SCALAR(eeAddr);
1927    SERIALIZE_SCALAR(lastInterrupt);
1928    SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
1929
1930    rxFifo.serialize("rxfifo", os);
1931    txFifo.serialize("txfifo", os);
1932
1933    bool txPktExists = txPacket;
1934    SERIALIZE_SCALAR(txPktExists);
1935    if (txPktExists)
1936        txPacket->serialize("txpacket", os);
1937
1938    Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
1939         inter_time = 0;
1940
1941    if (rdtrEvent.scheduled())
1942       rdtr_time = rdtrEvent.when();
1943    SERIALIZE_SCALAR(rdtr_time);
1944
1945    if (radvEvent.scheduled())
1946       radv_time = radvEvent.when();
1947    SERIALIZE_SCALAR(radv_time);
1948
1949    if (tidvEvent.scheduled())
1950       tidv_time = tidvEvent.when();
1951    SERIALIZE_SCALAR(tidv_time);
1952
1953    if (tadvEvent.scheduled())
1954       tadv_time = tadvEvent.when();
1955    SERIALIZE_SCALAR(tadv_time);
1956
1957    if (interEvent.scheduled())
1958       inter_time = interEvent.when();
1959    SERIALIZE_SCALAR(inter_time);
1960
1961    SERIALIZE_SCALAR(pktOffset);
1962
1963    nameOut(os, csprintf("%s.TxDescCache", name()));
1964    txDescCache.serialize(os);
1965
1966    nameOut(os, csprintf("%s.RxDescCache", name()));
1967    rxDescCache.serialize(os);
1968}
1969
1970void
1971IGbE::unserialize(Checkpoint *cp, const std::string &section)
1972{
1973    PciDev::unserialize(cp, section);
1974
1975    regs.unserialize(cp, section);
1976    UNSERIALIZE_SCALAR(eeOpBits);
1977    UNSERIALIZE_SCALAR(eeAddrBits);
1978    UNSERIALIZE_SCALAR(eeDataBits);
1979    UNSERIALIZE_SCALAR(eeOpcode);
1980    UNSERIALIZE_SCALAR(eeAddr);
1981    UNSERIALIZE_SCALAR(lastInterrupt);
1982    UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
1983
1984    rxFifo.unserialize("rxfifo", cp, section);
1985    txFifo.unserialize("txfifo", cp, section);
1986
1987    bool txPktExists;
1988    UNSERIALIZE_SCALAR(txPktExists);
1989    if (txPktExists) {
1990        txPacket = new EthPacketData(16384);
1991        txPacket->unserialize("txpacket", cp, section);
1992    }
1993
1994    rxTick = true;
1995    txTick = true;
1996    txFifoTick = true;
1997
1998    Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
1999    UNSERIALIZE_SCALAR(rdtr_time);
2000    UNSERIALIZE_SCALAR(radv_time);
2001    UNSERIALIZE_SCALAR(tidv_time);
2002    UNSERIALIZE_SCALAR(tadv_time);
2003    UNSERIALIZE_SCALAR(inter_time);
2004
2005    if (rdtr_time)
2006        schedule(rdtrEvent, rdtr_time);
2007
2008    if (radv_time)
2009        schedule(radvEvent, radv_time);
2010
2011    if (tidv_time)
2012        schedule(tidvEvent, tidv_time);
2013
2014    if (tadv_time)
2015        schedule(tadvEvent, tadv_time);
2016
2017    if (inter_time)
2018        schedule(interEvent, inter_time);
2019
2020    UNSERIALIZE_SCALAR(pktOffset);
2021
2022    txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));
2023
2024    rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
2025}
2026
2027IGbE *
2028IGbEParams::create()
2029{
2030    return new IGbE(this);
2031}
2032