i8254xGBe.cc revision 5763
12650SN/A/*
210650Sandreas.hansson@arm.com * Copyright (c) 2006 The Regents of The University of Michigan
36965SN/A * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ali Saidi
29 */
30
31/* @file
32 * Device model for Intel's 8254x line of gigabit ethernet controllers.
33 * In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
34 * fewest workarounds in the driver. It will probably work with most of the
35 * other MACs with slight modifications.
36 */
37
38
39/*
40 * @todo really there are multiple dma engines.. we should implement them.
41 */
42
43#include <algorithm>
44
45#include "base/inet.hh"
46#include "base/trace.hh"
47#include "dev/i8254xGBe.hh"
48#include "mem/packet.hh"
49#include "mem/packet_access.hh"
50#include "params/IGbE.hh"
51#include "sim/stats.hh"
52#include "sim/system.hh"
53
54using namespace iGbReg;
55using namespace Net;
56
57IGbE::IGbE(const Params *p)
58    : EtherDevice(p), etherInt(NULL),  drainEvent(NULL), useFlowControl(p->use_flow_control),
59      rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
60      txTick(false), txFifoTick(false), rxDmaPacket(false),
61      fetchDelay(p->fetch_delay), wbDelay(p->wb_delay),
62      fetchCompDelay(p->fetch_comp_delay), wbCompDelay(p->wb_comp_delay),
63      rxWriteDelay(p->rx_write_delay), txReadDelay(p->tx_read_delay),
64      rdtrEvent(this), radvEvent(this),
65      tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
66      rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
67      txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size),
68      clock(p->clock), lastInterrupt(0)
69{
70    etherInt = new IGbEInt(name() + ".int", this);
71
72    // Initialized internal registers per Intel documentation
73    // All registers intialized to 0 by per register constructor
74    regs.ctrl.fd(1);
75    regs.ctrl.lrst(1);
76    regs.ctrl.speed(2);
77    regs.ctrl.frcspd(1);
78    regs.sts.speed(3); // Say we're 1000Mbps
79    regs.sts.fd(1); // full duplex
80    regs.sts.lu(1); // link up
81    regs.eecd.fwe(1);
82    regs.eecd.ee_type(1);
83    regs.imr = 0;
84    regs.iam = 0;
85    regs.rxdctl.gran(1);
86    regs.rxdctl.wthresh(1);
87    regs.fcrth(1);
88    regs.tdwba = 0;
89    regs.rlpml = 0;
90    regs.sw_fw_sync = 0;
91
92    regs.pba.rxa(0x30);
93    regs.pba.txa(0x10);
94
95    eeOpBits            = 0;
96    eeAddrBits          = 0;
97    eeDataBits          = 0;
98    eeOpcode            = 0;
99
100    // clear all 64 16 bit words of the eeprom
101    memset(&flash, 0, EEPROM_SIZE*2);
102
103    // Set the MAC address
104    memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
105    for (int x = 0; x < ETH_ADDR_LEN/2; x++)
106        flash[x] = htobe(flash[x]);
107
108    uint16_t csum = 0;
109    for (int x = 0; x < EEPROM_SIZE; x++)
110        csum += htobe(flash[x]);
111
112
113    // Magic happy checksum value
114    flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
115
116    rxFifo.clear();
117    txFifo.clear();
118}
119
120EtherInt*
121IGbE::getEthPort(const std::string &if_name, int idx)
122{
123
124    if (if_name == "interface") {
125        if (etherInt->getPeer())
126            panic("Port already connected to\n");
127        return etherInt;
128    }
129    return NULL;
130}
131
132Tick
133IGbE::writeConfig(PacketPtr pkt)
134{
135    int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
136    if (offset < PCI_DEVICE_SPECIFIC)
137        PciDev::writeConfig(pkt);
138    else
139        panic("Device specific PCI config space not implemented.\n");
140
141    ///
142    /// Some work may need to be done here based for the pci COMMAND bits.
143    ///
144
145    return pioDelay;
146}
147
148Tick
149IGbE::read(PacketPtr pkt)
150{
151    int bar;
152    Addr daddr;
153
154    if (!getBAR(pkt->getAddr(), bar, daddr))
155        panic("Invalid PCI memory access to unmapped memory.\n");
156
157    // Only Memory register BAR is allowed
158    assert(bar == 0);
159
160    // Only 32bit accesses allowed
161    assert(pkt->getSize() == 4);
162
163    DPRINTF(Ethernet, "Read device register %#X\n", daddr);
164
165    pkt->allocate();
166
167    ///
168    /// Handle read of register here
169    ///
170
171
172    switch (daddr) {
173      case REG_CTRL:
174        pkt->set<uint32_t>(regs.ctrl());
175        break;
176      case REG_STATUS:
177        pkt->set<uint32_t>(regs.sts());
178        break;
179      case REG_EECD:
180        pkt->set<uint32_t>(regs.eecd());
181        break;
182      case REG_EERD:
183        pkt->set<uint32_t>(regs.eerd());
184        break;
185      case REG_CTRL_EXT:
186        pkt->set<uint32_t>(regs.ctrl_ext());
187        break;
188      case REG_MDIC:
189        pkt->set<uint32_t>(regs.mdic());
190        break;
191      case REG_ICR:
192        DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
193                regs.imr, regs.iam, regs.ctrl_ext.iame());
194        pkt->set<uint32_t>(regs.icr());
195        if (regs.icr.int_assert() || regs.imr == 0) {
196            regs.icr = regs.icr() & ~mask(30);
197            DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
198        }
199        if (regs.ctrl_ext.iame() && regs.icr.int_assert())
200            regs.imr &= ~regs.iam;
201        chkInterrupt();
202        break;
203      case REG_EICR:
204        // This is only useful for MSI, but the driver reads it every time
205        // Just don't do anything
206        pkt->set<uint32_t>(0);
207        break;
208      case REG_ITR:
209        pkt->set<uint32_t>(regs.itr());
210        break;
211      case REG_RCTL:
212        pkt->set<uint32_t>(regs.rctl());
213        break;
214      case REG_FCTTV:
215        pkt->set<uint32_t>(regs.fcttv());
216        break;
217      case REG_TCTL:
218        pkt->set<uint32_t>(regs.tctl());
219        break;
220      case REG_PBA:
221        pkt->set<uint32_t>(regs.pba());
222        break;
223      case REG_WUC:
224      case REG_LEDCTL:
225        pkt->set<uint32_t>(0); // We don't care, so just return 0
226        break;
227      case REG_FCRTL:
228        pkt->set<uint32_t>(regs.fcrtl());
229        break;
230      case REG_FCRTH:
231        pkt->set<uint32_t>(regs.fcrth());
232        break;
233      case REG_RDBAL:
234        pkt->set<uint32_t>(regs.rdba.rdbal());
235        break;
236      case REG_RDBAH:
237        pkt->set<uint32_t>(regs.rdba.rdbah());
238        break;
239      case REG_RDLEN:
240        pkt->set<uint32_t>(regs.rdlen());
241        break;
242      case REG_SRRCTL:
243        pkt->set<uint32_t>(regs.srrctl());
244        break;
245      case REG_RDH:
246        pkt->set<uint32_t>(regs.rdh());
247        break;
248      case REG_RDT:
249        pkt->set<uint32_t>(regs.rdt());
250        break;
251      case REG_RDTR:
252        pkt->set<uint32_t>(regs.rdtr());
253        if (regs.rdtr.fpd()) {
254            rxDescCache.writeback(0);
255            DPRINTF(EthernetIntr, "Posting interrupt because of RDTR.FPD write\n");
256            postInterrupt(IT_RXT);
257            regs.rdtr.fpd(0);
258        }
259        break;
260      case REG_RXDCTL:
261        pkt->set<uint32_t>(regs.rxdctl());
262        break;
263      case REG_RADV:
264        pkt->set<uint32_t>(regs.radv());
265        break;
266      case REG_TDBAL:
267        pkt->set<uint32_t>(regs.tdba.tdbal());
268        break;
269      case REG_TDBAH:
270        pkt->set<uint32_t>(regs.tdba.tdbah());
271        break;
272      case REG_TDLEN:
273        pkt->set<uint32_t>(regs.tdlen());
274        break;
275      case REG_TDH:
276        pkt->set<uint32_t>(regs.tdh());
277        break;
278      case REG_TXDCA_CTL:
279        pkt->set<uint32_t>(regs.txdca_ctl());
280        break;
281      case REG_TDT:
282        pkt->set<uint32_t>(regs.tdt());
283        break;
284      case REG_TIDV:
285        pkt->set<uint32_t>(regs.tidv());
286        break;
287      case REG_TXDCTL:
288        pkt->set<uint32_t>(regs.txdctl());
289        break;
290      case REG_TADV:
291        pkt->set<uint32_t>(regs.tadv());
292        break;
293      case REG_TDWBAL:
294        pkt->set<uint32_t>(regs.tdwba & mask(32));
295        break;
296      case REG_TDWBAH:
297        pkt->set<uint32_t>(regs.tdwba >> 32);
298        break;
299      case REG_RXCSUM:
300        pkt->set<uint32_t>(regs.rxcsum());
301        break;
302      case REG_RLPML:
303        pkt->set<uint32_t>(regs.rlpml);
304        break;
305      case REG_RFCTL:
306        pkt->set<uint32_t>(regs.rfctl());
307        break;
308      case REG_MANC:
309        pkt->set<uint32_t>(regs.manc());
310        break;
311      case REG_SWSM:
312        pkt->set<uint32_t>(regs.swsm());
313        regs.swsm.smbi(1);
314        break;
315      case REG_FWSM:
316        pkt->set<uint32_t>(regs.fwsm());
317        break;
318      case REG_SWFWSYNC:
319        pkt->set<uint32_t>(regs.sw_fw_sync);
320        break;
321      default:
322        if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
323            !(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
324            !(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)) &&
325            !(daddr >= REG_CRCERRS && daddr < (REG_CRCERRS + STATS_REGS_SIZE)))
326            panic("Read request to unknown register number: %#x\n", daddr);
327        else
328            pkt->set<uint32_t>(0);
329    };
330
331    pkt->makeAtomicResponse();
332    return pioDelay;
333}
334
335Tick
336IGbE::write(PacketPtr pkt)
337{
338    int bar;
339    Addr daddr;
340
341
342    if (!getBAR(pkt->getAddr(), bar, daddr))
343        panic("Invalid PCI memory access to unmapped memory.\n");
344
345    // Only Memory register BAR is allowed
346    assert(bar == 0);
347
348    // Only 32bit accesses allowed
349    assert(pkt->getSize() == sizeof(uint32_t));
350
351    DPRINTF(Ethernet, "Wrote device register %#X value %#X\n", daddr, pkt->get<uint32_t>());
352
353    ///
354    /// Handle write of register here
355    ///
356    uint32_t val = pkt->get<uint32_t>();
357
358    Regs::RCTL oldrctl;
359    Regs::TCTL oldtctl;
360
361    switch (daddr) {
362      case REG_CTRL:
363        regs.ctrl = val;
364        if (regs.ctrl.tfce())
365            warn("TX Flow control enabled, should implement\n");
366        if (regs.ctrl.rfce())
367            warn("RX Flow control enabled, should implement\n");
368        break;
369      case REG_CTRL_EXT:
370        regs.ctrl_ext = val;
371        break;
372      case REG_STATUS:
373        regs.sts = val;
374        break;
375      case REG_EECD:
376        int oldClk;
377        oldClk = regs.eecd.sk();
378        regs.eecd = val;
379        // See if this is a eeprom access and emulate accordingly
380        if (!oldClk && regs.eecd.sk()) {
381            if (eeOpBits < 8) {
382                eeOpcode = eeOpcode << 1 | regs.eecd.din();
383                eeOpBits++;
384            } else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
385                eeAddr = eeAddr << 1 | regs.eecd.din();
386                eeAddrBits++;
387            } else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
388                assert(eeAddr>>1 < EEPROM_SIZE);
389                DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
390                        flash[eeAddr>>1] >> eeDataBits & 0x1, flash[eeAddr>>1]);
391                regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
392                eeDataBits++;
393            } else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
394                regs.eecd.dout(0);
395                eeDataBits++;
396            } else
397                panic("What's going on with eeprom interface? opcode:"
398                       " %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
399                       (uint32_t)eeOpBits, (uint32_t)eeAddr,
400                       (uint32_t)eeAddrBits, (uint32_t)eeDataBits);
401
402            // Reset everything for the next command
403            if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
404               (eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
405                eeOpBits = 0;
406                eeAddrBits = 0;
407                eeDataBits = 0;
408               eeOpcode = 0;
409                eeAddr = 0;
410            }
411
412           DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
413                    (uint32_t)eeOpcode, (uint32_t) eeOpBits,
414                    (uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
415           if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
416                                   eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
417                panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
418                        (uint32_t)eeOpBits);
419
420
421        }
422        // If driver requests eeprom access, immediately give it to it
423        regs.eecd.ee_gnt(regs.eecd.ee_req());
424        break;
425      case REG_EERD:
426        regs.eerd = val;
427        if (regs.eerd.start()) {
428            regs.eerd.done(1);
429            assert(regs.eerd.addr() < EEPROM_SIZE);
430            regs.eerd.data(flash[regs.eerd.addr()]);
431            regs.eerd.start(0);
432            DPRINTF(EthernetEEPROM, "EEPROM: read addr: %#X data %#x\n",
433                    regs.eerd.addr(), regs.eerd.data());
434        }
435        break;
436      case REG_MDIC:
437        regs.mdic = val;
438        if (regs.mdic.i())
439            panic("No support for interrupt on mdic complete\n");
440        if (regs.mdic.phyadd() != 1)
441            panic("No support for reading anything but phy\n");
442        DPRINTF(Ethernet, "%s phy address %x\n", regs.mdic.op() == 1 ? "Writing"
443                : "Reading", regs.mdic.regadd());
444        switch (regs.mdic.regadd()) {
445            case PHY_PSTATUS:
446                regs.mdic.data(0x796D); // link up
447                break;
448            case PHY_PID:
449                if (params()->is8257)
450                    regs.mdic.data(0x0141);
451                else
452                    regs.mdic.data(0x02A8);
453                break;
454            case PHY_EPID:
455                if (params()->is8257)
456                    regs.mdic.data(0x0CC0);
457                else
458                    regs.mdic.data(0x0380);
459                break;
460            case PHY_GSTATUS:
461                regs.mdic.data(0x7C00);
462                break;
463            case PHY_EPSTATUS:
464                regs.mdic.data(0x3000);
465                break;
466            case PHY_AGC:
467                regs.mdic.data(0x180); // some random length
468                break;
469            default:
470                regs.mdic.data(0);
471        }
472        regs.mdic.r(1);
473        break;
474      case REG_ICR:
475        DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
476                regs.imr, regs.iam, regs.ctrl_ext.iame());
477        if (regs.ctrl_ext.iame())
478            regs.imr &= ~regs.iam;
479        regs.icr = ~bits(val,30,0) & regs.icr();
480        chkInterrupt();
481        break;
482      case REG_ITR:
483        regs.itr = val;
484        break;
485      case REG_ICS:
486        DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
487        postInterrupt((IntTypes)val);
488        break;
489       case REG_IMS:
490        regs.imr |= val;
491        chkInterrupt();
492        break;
493      case REG_IMC:
494        regs.imr &= ~val;
495        chkInterrupt();
496        break;
497      case REG_IAM:
498        regs.iam = val;
499        break;
500      case REG_RCTL:
501        oldrctl = regs.rctl;
502        regs.rctl = val;
503        if (regs.rctl.rst()) {
504            rxDescCache.reset();
505            DPRINTF(EthernetSM, "RXS: Got RESET!\n");
506            rxFifo.clear();
507            regs.rctl.rst(0);
508        }
509        if (regs.rctl.en())
510            rxTick = true;
511        restartClock();
512        break;
513      case REG_FCTTV:
514        regs.fcttv = val;
515        break;
516      case REG_TCTL:
517        regs.tctl = val;
518        oldtctl = regs.tctl;
519        regs.tctl = val;
520        if (regs.tctl.en())
521           txTick = true;
522        restartClock();
523        if (regs.tctl.en() && !oldtctl.en()) {
524            txDescCache.reset();
525        }
526         break;
527      case REG_PBA:
528        regs.pba.rxa(val);
529        regs.pba.txa(64 - regs.pba.rxa());
530        break;
531      case REG_WUC:
532      case REG_LEDCTL:
533      case REG_FCAL:
534      case REG_FCAH:
535      case REG_FCT:
536      case REG_VET:
537      case REG_AIFS:
538      case REG_TIPG:
539        ; // We don't care, so don't store anything
540        break;
541      case REG_IVAR0:
542        warn("Writing to IVAR0, ignoring...\n");
543        break;
544      case REG_FCRTL:
545        regs.fcrtl = val;
546        break;
547      case REG_FCRTH:
548        regs.fcrth = val;
549        break;
550      case REG_RDBAL:
551        regs.rdba.rdbal( val & ~mask(4));
552        rxDescCache.areaChanged();
553        break;
554      case REG_RDBAH:
555        regs.rdba.rdbah(val);
556        rxDescCache.areaChanged();
557        break;
558      case REG_RDLEN:
559        regs.rdlen = val & ~mask(7);
560        rxDescCache.areaChanged();
561        break;
562      case REG_SRRCTL:
563        regs.srrctl = val;
564        break;
565      case REG_RDH:
566        regs.rdh = val;
567        rxDescCache.areaChanged();
568        break;
569      case REG_RDT:
570        regs.rdt = val;
571        DPRINTF(EthernetSM, "RXS: RDT Updated.\n");
572        if (getState() == SimObject::Running) {
573            DPRINTF(EthernetSM, "RXS: RDT Fetching Descriptors!\n");
574            rxDescCache.fetchDescriptors();
575        } else {
576            DPRINTF(EthernetSM, "RXS: RDT NOT Fetching Desc b/c draining!\n");
577        }
578        break;
579      case REG_RDTR:
580        regs.rdtr = val;
581        break;
582      case REG_RADV:
583        regs.radv = val;
584        break;
585      case REG_RXDCTL:
586        regs.rxdctl = val;
587        break;
588      case REG_TDBAL:
589        regs.tdba.tdbal( val & ~mask(4));
590        txDescCache.areaChanged();
591        break;
592      case REG_TDBAH:
593        regs.tdba.tdbah(val);
594        txDescCache.areaChanged();
595        break;
596      case REG_TDLEN:
597        regs.tdlen = val & ~mask(7);
598        txDescCache.areaChanged();
599        break;
600      case REG_TDH:
601        regs.tdh = val;
602        txDescCache.areaChanged();
603        break;
604      case REG_TXDCA_CTL:
605        regs.txdca_ctl = val;
606        if (regs.txdca_ctl.enabled())
607            panic("No support for DCA\n");
608        break;
609      case REG_TDT:
610        regs.tdt = val;
611        DPRINTF(EthernetSM, "TXS: TX Tail pointer updated\n");
612        if (getState() == SimObject::Running) {
613            DPRINTF(EthernetSM, "TXS: TDT Fetching Descriptors!\n");
614            txDescCache.fetchDescriptors();
615        } else {
616            DPRINTF(EthernetSM, "TXS: TDT NOT Fetching Desc b/c draining!\n");
617        }
618        break;
619      case REG_TIDV:
620        regs.tidv = val;
621        break;
622      case REG_TXDCTL:
623        regs.txdctl = val;
624        break;
625      case REG_TADV:
626        regs.tadv = val;
627        break;
628      case REG_TDWBAL:
629        regs.tdwba &= ~mask(32);
630        regs.tdwba |= val;
631        txDescCache.completionWriteback(regs.tdwba & ~mask(1), regs.tdwba & mask(1));
632        break;
633      case REG_TDWBAH:
634        regs.tdwba &= mask(32);
635        regs.tdwba |= (uint64_t)val << 32;
636        txDescCache.completionWriteback(regs.tdwba & ~mask(1), regs.tdwba & mask(1));
637        break;
638      case REG_RXCSUM:
639        regs.rxcsum = val;
640        break;
641      case REG_RLPML:
642        regs.rlpml = val;
643        break;
644      case REG_RFCTL:
645        regs.rfctl = val;
646        if (regs.rfctl.exsten())
647            panic("Extended RX descriptors not implemented\n");
648        break;
649      case REG_MANC:
650        regs.manc = val;
651        break;
652      case REG_SWSM:
653        regs.swsm = val;
654        if (regs.fwsm.eep_fw_semaphore())
655            regs.swsm.swesmbi(0);
656        break;
657      case REG_SWFWSYNC:
658        regs.sw_fw_sync = val;
659        break;
660      default:
661       if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
662           !(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
663           !(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)))
664           panic("Write request to unknown register number: %#x\n", daddr);
665    };
666
667    pkt->makeAtomicResponse();
668    return pioDelay;
669}
670
671void
672IGbE::postInterrupt(IntTypes t, bool now)
673{
674    assert(t);
675
676    // Interrupt is already pending
677    if (t & regs.icr() && !now)
678        return;
679
680    regs.icr = regs.icr() | t;
681
682    Tick itr_interval = Clock::Int::ns * 256 * regs.itr.interval();
683    DPRINTF(EthernetIntr, "EINT: postInterrupt() curTick: %d itr: %d interval: %d\n",
684            curTick, regs.itr.interval(), itr_interval);
685
686    if (regs.itr.interval() == 0 || now || lastInterrupt + itr_interval <= curTick) {
687        if (interEvent.scheduled()) {
688            deschedule(interEvent);
689        }
690        cpuPostInt();
691    } else {
692       Tick int_time = lastInterrupt + itr_interval;
693       assert(int_time > 0);
694       DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for tick %d\n",
695                int_time);
696       if (!interEvent.scheduled()) {
697           schedule(interEvent, int_time);
698       }
699    }
700}
701
702void
703IGbE::delayIntEvent()
704{
705    cpuPostInt();
706}
707
708
709void
710IGbE::cpuPostInt()
711{
712
713    postedInterrupts++;
714
715    if (!(regs.icr() & regs.imr)) {
716        DPRINTF(Ethernet, "Interrupt Masked. Not Posting\n");
717        return;
718    }
719
720    DPRINTF(Ethernet, "Posting Interrupt\n");
721
722
723    if (interEvent.scheduled()) {
724        deschedule(interEvent);
725    }
726
727    if (rdtrEvent.scheduled()) {
728        regs.icr.rxt0(1);
729        deschedule(rdtrEvent);
730    }
731    if (radvEvent.scheduled()) {
732        regs.icr.rxt0(1);
733        deschedule(radvEvent);
734    }
735    if (tadvEvent.scheduled()) {
736        regs.icr.txdw(1);
737        deschedule(tadvEvent);
738    }
739    if (tidvEvent.scheduled()) {
740        regs.icr.txdw(1);
741        deschedule(tidvEvent);
742    }
743
744    regs.icr.int_assert(1);
745    DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
746            regs.icr());
747
748    intrPost();
749
750    lastInterrupt = curTick;
751}
752
753void
754IGbE::cpuClearInt()
755{
756    if (regs.icr.int_assert()) {
757        regs.icr.int_assert(0);
758        DPRINTF(EthernetIntr, "EINT: Clearing interrupt to CPU now. Vector %#x\n",
759                regs.icr());
760        intrClear();
761    }
762}
763
764void
765IGbE::chkInterrupt()
766{
767    DPRINTF(Ethernet, "Checking interrupts icr: %#x imr: %#x\n", regs.icr(),
768            regs.imr);
769    // Check if we need to clear the cpu interrupt
770    if (!(regs.icr() & regs.imr)) {
771        DPRINTF(Ethernet, "Mask cleaned all interrupts\n");
772        if (interEvent.scheduled())
773           deschedule(interEvent);
774        if (regs.icr.int_assert())
775            cpuClearInt();
776    }
777    DPRINTF(Ethernet, "ITR = %#X itr.interval = %#X\n", regs.itr(), regs.itr.interval());
778
779    if (regs.icr() & regs.imr) {
780        if (regs.itr.interval() == 0)  {
781            cpuPostInt();
782        } else {
783            DPRINTF(Ethernet, "Possibly scheduling interrupt because of imr write\n");
784            if (!interEvent.scheduled()) {
785               DPRINTF(Ethernet, "Scheduling for %d\n", curTick + Clock::Int::ns
786                       * 256 * regs.itr.interval());
787               schedule(interEvent,
788                   curTick + Clock::Int::ns * 256 * regs.itr.interval());
789            }
790        }
791    }
792
793
794}
795
796
797IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
798    : DescCache<RxDesc>(i, n, s), pktDone(false), pktEvent(this)
799
800{
801}
802
803void
804IGbE::RxDescCache::writePacket(EthPacketPtr packet)
805{
806        assert(unusedCache.size());
807    //if (!unusedCache.size())
808    //    return false;
809
810    pktPtr = packet;
811    pktDone = false;
812
813    Addr buf;
814    RxDesc *desc = unusedCache.front();
815    switch (igbe->regs.srrctl.desctype()) {
816      case RXDT_LEGACY:
817        buf = desc->legacy.buf;
818        DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
819            packet->length, igbe->regs.rctl.descSize());
820        assert(packet->length < igbe->regs.rctl.descSize());
821        break;
822      case RXDT_ADV_ONEBUF:
823        int buf_len;
824        buf_len = igbe->regs.rctl.lpe() ? igbe->regs.srrctl.bufLen() :
825                                              igbe->regs.rctl.descSize();
826        DPRINTF(EthernetDesc, "Packet Length: %d srrctl: %#x Desc Size: %d\n",
827            packet->length, igbe->regs.srrctl(), buf_len);
828        assert(packet->length < buf_len);
829        buf = desc->adv_read.pkt;
830        break;
831      default:
832        panic("Unimplemnted RX receive buffer type: %d\n",
833                igbe->regs.srrctl.desctype());
834    }
835
836    igbe->dmaWrite(igbe->platform->pciToDma(buf), packet->length, &pktEvent,
837                packet->data, igbe->rxWriteDelay);
838}
839
840void
841IGbE::RxDescCache::pktComplete()
842{
843    assert(unusedCache.size());
844    RxDesc *desc;
845    desc = unusedCache.front();
846
847    uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
848    DPRINTF(EthernetDesc, "pktPtr->length: %d stripcrc offset: %d value written: %d %d\n",
849            pktPtr->length, crcfixup,
850            htole((uint16_t)(pktPtr->length + crcfixup)),
851            (uint16_t)(pktPtr->length + crcfixup));
852
853    // no support for anything but starting at 0
854    assert(igbe->regs.rxcsum.pcss() == 0);
855
856    DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
857
858    uint16_t status = RXDS_DD | RXDS_EOP;
859    uint8_t err = 0;
860    uint16_t ext_err = 0;
861    uint16_t csum = 0;
862    uint16_t ptype = 0;
863    uint16_t ip_id = 0;
864
865    IpPtr ip(pktPtr);
866
867    if (ip) {
868        DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
869        ptype |= RXDP_IPV4;
870        ip_id = ip->id();
871
872        if (igbe->regs.rxcsum.ipofld()) {
873            DPRINTF(EthernetDesc, "Checking IP checksum\n");
874            status |= RXDS_IPCS;
875            csum = htole(cksum(ip));
876            igbe->rxIpChecksums++;
877            if (cksum(ip) != 0) {
878                err |= RXDE_IPE;
879                ext_err |= RXDEE_IPE;
880                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
881            }
882        }
883        TcpPtr tcp(ip);
884        if (tcp && igbe->regs.rxcsum.tuofld()) {
885            DPRINTF(EthernetDesc, "Checking TCP checksum\n");
886            status |= RXDS_TCPCS;
887            ptype |= RXDP_TCP;
888            csum = htole(cksum(tcp));
889            igbe->rxTcpChecksums++;
890            if (cksum(tcp) != 0) {
891                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
892                err |= RXDE_TCPE;
893                ext_err |= RXDEE_TCPE;
894            }
895        }
896
897        UdpPtr udp(ip);
898        if (udp && igbe->regs.rxcsum.tuofld()) {
899            DPRINTF(EthernetDesc, "Checking UDP checksum\n");
900            status |= RXDS_UDPCS;
901            ptype |= RXDP_UDP;
902            csum = htole(cksum(udp));
903            igbe->rxUdpChecksums++;
904            if (cksum(udp) != 0) {
905                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
906                ext_err |= RXDEE_TCPE;
907                err |= RXDE_TCPE;
908            }
909        }
910    } else { // if ip
911        DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
912    }
913
914    switch (igbe->regs.srrctl.desctype()) {
915      case RXDT_LEGACY:
916        desc->legacy.len = htole((uint16_t)(pktPtr->length + crcfixup));
917        desc->legacy.status = htole(status);
918        desc->legacy.errors = htole(err);
919        // No vlan support at this point... just set it to 0
920        desc->legacy.vlan = 0;
921        break;
922      case RXDT_ADV_ONEBUF:
923        desc->adv_wb.pkt_len = htole((uint16_t)(pktPtr->length + crcfixup));
924        desc->adv_wb.rss_type = htole(0);
925        desc->adv_wb.pkt_type = htole(ptype);
926        // no header splititng support yet
927        desc->adv_wb.header_len = htole(0);
928        desc->adv_wb.sph = htole(0);
929        if (igbe->regs.rxcsum.pcsd()) {
930            // no rss support right now
931            desc->adv_wb.rss_hash = htole(0);
932        } else {
933            desc->adv_wb.id = htole(ip_id);
934            desc->adv_wb.csum = htole(csum);
935        }
936        desc->adv_wb.status = htole(status);
937        desc->adv_wb.errors = htole(ext_err);
938        // no vlan support
939        desc->adv_wb.vlan_tag = htole(0);
940        break;
941      default:
942        panic("Unimplemnted RX receive buffer type %d\n",
943                igbe->regs.srrctl.desctype());
944    }
945
946
947    // Deal with the rx timer interrupts
948    if (igbe->regs.rdtr.delay()) {
949        DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n",
950                igbe->regs.rdtr.delay() * igbe->intClock());
951        igbe->reschedule(igbe->rdtrEvent,
952            curTick + igbe->regs.rdtr.delay() * igbe->intClock(), true);
953    }
954
955    if (igbe->regs.radv.idv()) {
956        DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n",
957                igbe->regs.radv.idv() * igbe->intClock());
958        if (!igbe->radvEvent.scheduled()) {
959            igbe->schedule(igbe->radvEvent,
960                curTick + igbe->regs.radv.idv() * igbe->intClock());
961        }
962    }
963
964    // if neither radv or rdtr, maybe itr is set...
965    if (!igbe->regs.rdtr.delay() && !igbe->regs.radv.idv()) {
966        DPRINTF(EthernetSM, "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
967        igbe->postInterrupt(IT_RXT);
968    }
969
970    // If the packet is small enough, interrupt appropriately
971    // I wonder if this is delayed or not?!
972    if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
973        DPRINTF(EthernetSM, "RXS: Posting IT_SRPD beacuse small packet received\n");
974        igbe->postInterrupt(IT_SRPD);
975    }
976
977    DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
978    unusedCache.pop_front();
979    usedCache.push_back(desc);
980
981
982    pktPtr = NULL;
983    enableSm();
984    pktDone = true;
985    igbe->checkDrain();
986
987}
988
989void
990IGbE::RxDescCache::enableSm()
991{
992    if (!igbe->drainEvent) {
993        igbe->rxTick = true;
994        igbe->restartClock();
995    }
996}
997
998bool
999IGbE::RxDescCache::packetDone()
1000{
1001    if (pktDone) {
1002        pktDone = false;
1003        return true;
1004    }
1005    return false;
1006}
1007
1008bool
1009IGbE::RxDescCache::hasOutstandingEvents()
1010{
1011    return pktEvent.scheduled() || wbEvent.scheduled() ||
1012        fetchEvent.scheduled();
1013}
1014
1015void
1016IGbE::RxDescCache::serialize(std::ostream &os)
1017{
1018    DescCache<RxDesc>::serialize(os);
1019    SERIALIZE_SCALAR(pktDone);
1020}
1021
1022void
1023IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1024{
1025    DescCache<RxDesc>::unserialize(cp, section);
1026    UNSERIALIZE_SCALAR(pktDone);
1027}
1028
1029
1030///////////////////////////////////// IGbE::TxDesc /////////////////////////////////
1031
1032IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
1033    : DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false), pktWaiting(false),
1034       useTso(false), pktEvent(this), headerEvent(this), nullEvent(this)
1035
1036{
1037}
1038
1039void
1040IGbE::TxDescCache::processContextDesc()
1041{
1042    assert(unusedCache.size());
1043    TxDesc *desc;
1044
1045    DPRINTF(EthernetDesc, "Checking and  processing context descriptors\n");
1046
1047    while (!useTso && unusedCache.size() && TxdOp::isContext(unusedCache.front())) {
1048        DPRINTF(EthernetDesc, "Got context descriptor type...\n");
1049
1050        desc = unusedCache.front();
1051        DPRINTF(EthernetDesc, "Descriptor upper: %#x lower: %#X\n",
1052                    desc->d1, desc->d2);
1053
1054
1055        // is this going to be a tcp or udp packet?
1056        isTcp = TxdOp::tcp(desc) ? true : false;
1057
1058        // setup all the TSO variables, they'll be ignored if we don't use
1059        // tso for this connection
1060        tsoHeaderLen = TxdOp::hdrlen(desc);
1061        tsoMss  = TxdOp::mss(desc);
1062
1063        if (TxdOp::isType(desc, TxdOp::TXD_CNXT) && TxdOp::tse(desc)) {
1064            DPRINTF(EthernetDesc, "TCP offload enabled for packet hdrlen: %d mss: %d paylen %d\n",
1065                    TxdOp::hdrlen(desc), TxdOp::mss(desc), TxdOp::getLen(desc));
1066            useTso = true;
1067            tsoTotalLen = TxdOp::getLen(desc);
1068            tsoLoadedHeader = false;
1069            tsoDescBytesUsed = 0;
1070            tsoUsedLen = 0;
1071            tsoPrevSeq = 0;
1072            tsoPktHasHeader = false;
1073            tsoPkts = 0;
1074
1075        }
1076
1077        TxdOp::setDd(desc);
1078        unusedCache.pop_front();
1079        usedCache.push_back(desc);
1080    }
1081
1082    if (!unusedCache.size())
1083        return;
1084
1085    desc = unusedCache.front();
1086    if (!useTso && TxdOp::isType(desc, TxdOp::TXD_ADVDATA) && TxdOp::tse(desc)) {
1087        DPRINTF(EthernetDesc, "TCP offload(adv) enabled for packet hdrlen: %d mss: %d paylen %d\n",
1088                tsoHeaderLen, tsoMss, TxdOp::getTsoLen(desc));
1089        useTso = true;
1090        tsoTotalLen = TxdOp::getTsoLen(desc);
1091        tsoLoadedHeader = false;
1092        tsoDescBytesUsed = 0;
1093        tsoUsedLen = 0;
1094        tsoPrevSeq = 0;
1095        tsoPktHasHeader = false;
1096        tsoPkts = 0;
1097    }
1098
1099    if (useTso && !tsoLoadedHeader) {
1100        // we need to fetch a header
1101        DPRINTF(EthernetDesc, "Starting DMA of TSO header\n");
1102        assert(TxdOp::isData(desc) && TxdOp::getLen(desc) >= tsoHeaderLen);
1103        pktWaiting = true;
1104        assert(tsoHeaderLen <= 256);
1105        igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)),
1106                tsoHeaderLen, &headerEvent, tsoHeader, 0);
1107    }
1108}
1109
1110void
1111IGbE::TxDescCache::headerComplete()
1112{
1113    DPRINTF(EthernetDesc, "TSO: Fetching TSO header complete\n");
1114    pktWaiting = false;
1115
1116    assert(unusedCache.size());
1117    TxDesc *desc = unusedCache.front();
1118    DPRINTF(EthernetDesc, "TSO: len: %d tsoHeaderLen: %d\n",
1119            TxdOp::getLen(desc), tsoHeaderLen);
1120
1121    if (TxdOp::getLen(desc) == tsoHeaderLen) {
1122        tsoDescBytesUsed = 0;
1123        tsoLoadedHeader = true;
1124        unusedCache.pop_front();
1125        usedCache.push_back(desc);
1126    } else {
1127        // I don't think this case happens, I think the headrer is always
1128        // it's own packet, if it wasn't it might be as simple as just
1129        // incrementing descBytesUsed by the header length, but I'm not
1130        // completely sure
1131        panic("TSO header part of bigger packet, not implemented\n");
1132    }
1133    enableSm();
1134    igbe->checkDrain();
1135}
1136
1137int
1138IGbE::TxDescCache::getPacketSize(EthPacketPtr p)
1139{
1140    TxDesc *desc;
1141
1142
1143    if (!unusedCache.size())
1144        return -1;
1145
1146    DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
1147
1148    assert(!useTso || tsoLoadedHeader);
1149    desc = unusedCache.front();
1150
1151
1152    if (useTso) {
1153        DPRINTF(EthernetDesc, "getPacket(): TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1154        DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d used: %d loaded hdr: %d\n",
1155                useTso, tsoHeaderLen, tsoMss, tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1156        DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d this descLen: %d\n",
1157                tsoDescBytesUsed, tsoCopyBytes, TxdOp::getLen(desc));
1158        DPRINTF(EthernetDesc, "TSO: pktHasHeader: %d\n", tsoPktHasHeader);
1159
1160        if (tsoPktHasHeader)
1161            tsoCopyBytes =  std::min((tsoMss + tsoHeaderLen) - p->length, TxdOp::getLen(desc) - tsoDescBytesUsed);
1162        else
1163            tsoCopyBytes =  std::min(tsoMss, TxdOp::getLen(desc) - tsoDescBytesUsed);
1164        Addr pkt_size = tsoCopyBytes + (tsoPktHasHeader ? 0 : tsoHeaderLen);
1165        DPRINTF(EthernetDesc, "TSO: Next packet is %d bytes\n", pkt_size);
1166        return pkt_size;
1167    }
1168
1169    DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
1170                TxdOp::getLen(unusedCache.front()));
1171    return TxdOp::getLen(desc);
1172}
1173
1174void
1175IGbE::TxDescCache::getPacketData(EthPacketPtr p)
1176{
1177    assert(unusedCache.size());
1178
1179    TxDesc *desc;
1180    desc = unusedCache.front();
1181
1182    DPRINTF(EthernetDesc, "getPacketData(): TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1183    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));
1184
1185    pktPtr = p;
1186
1187    pktWaiting = true;
1188
1189    DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d\n", p->length);
1190
1191    if (useTso) {
1192        assert(tsoLoadedHeader);
1193        if (!tsoPktHasHeader) {
1194            DPRINTF(EthernetDesc, "Loading TSO header (%d bytes) into start of packet\n",
1195                   tsoHeaderLen);
1196            memcpy(p->data, &tsoHeader,tsoHeaderLen);
1197            p->length +=tsoHeaderLen;
1198            tsoPktHasHeader = true;
1199        }
1200    }
1201
1202    if (useTso) {
1203        tsoDescBytesUsed += tsoCopyBytes;
1204        assert(tsoDescBytesUsed <= TxdOp::getLen(desc));
1205        DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d length: %d\n",
1206                p->length, tsoCopyBytes);
1207        igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)) + tsoDescBytesUsed,
1208            tsoCopyBytes, &pktEvent, p->data + p->length, igbe->txReadDelay);
1209    } else {
1210        igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)),
1211            TxdOp::getLen(desc), &pktEvent, p->data + p->length, igbe->txReadDelay);
1212    }
1213}
1214
1215void
1216IGbE::TxDescCache::pktComplete()
1217{
1218
1219    TxDesc *desc;
1220    assert(unusedCache.size());
1221    assert(pktPtr);
1222
1223    DPRINTF(EthernetDesc, "DMA of packet complete\n");
1224
1225
1226    desc = unusedCache.front();
1227    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));
1228
1229    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1230    DPRINTF(EthernetDesc, "TSO: use: %d hdrlen: %d mss: %d total: %d used: %d loaded hdr: %d\n",
1231            useTso, tsoHeaderLen, tsoMss, tsoTotalLen, tsoUsedLen, tsoLoadedHeader);
1232
1233    // Set the length of the data in the EtherPacket
1234    if (useTso) {
1235        pktPtr->length += tsoCopyBytes;
1236        tsoUsedLen += tsoCopyBytes;
1237    } else
1238        pktPtr->length += TxdOp::getLen(desc);
1239
1240    DPRINTF(EthernetDesc, "TSO: descBytesUsed: %d copyBytes: %d\n",
1241            tsoDescBytesUsed, tsoCopyBytes);
1242
1243
1244    if ((!TxdOp::eop(desc) && !useTso) ||
1245            (pktPtr->length < ( tsoMss + tsoHeaderLen) && tsoTotalLen != tsoUsedLen)) {
1246        assert(!useTso || (tsoDescBytesUsed == TxdOp::getLen(desc)));
1247        unusedCache.pop_front();
1248        usedCache.push_back(desc);
1249
1250        tsoDescBytesUsed = 0;
1251        pktDone = true;
1252        pktWaiting = false;
1253        pktMultiDesc = true;
1254
1255        DPRINTF(EthernetDesc, "Partial Packet Descriptor of %d bytes Done\n",
1256                pktPtr->length);
1257        pktPtr = NULL;
1258
1259        enableSm();
1260        igbe->checkDrain();
1261        return;
1262    }
1263
1264
1265    pktMultiDesc = false;
1266    // no support for vlans
1267    assert(!TxdOp::vle(desc));
1268
1269    // we only support single packet descriptors at this point
1270    if (!useTso)
1271        assert(TxdOp::eop(desc));
1272
1273    // set that this packet is done
1274    if (TxdOp::rs(desc))
1275        TxdOp::setDd(desc);
1276
1277    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
1278
1279    if (useTso) {
1280        IpPtr ip(pktPtr);
1281        if (ip) {
1282            DPRINTF(EthernetDesc, "TSO: Modifying IP header. Id + %d\n",
1283                    tsoPkts);
1284            ip->id(ip->id() + tsoPkts++);
1285            ip->len(pktPtr->length - EthPtr(pktPtr)->size());
1286
1287            TcpPtr tcp(ip);
1288            if (tcp) {
1289                DPRINTF(EthernetDesc, "TSO: Modifying TCP header. old seq %d + %d\n",
1290                    tcp->seq(), tsoPrevSeq);
1291                tcp->seq(tcp->seq() + tsoPrevSeq);
1292                if (tsoUsedLen != tsoTotalLen)
1293                    tcp->flags(tcp->flags() & ~9); // clear fin & psh
1294            }
1295            UdpPtr udp(ip);
1296            if (udp) {
1297                DPRINTF(EthernetDesc, "TSO: Modifying UDP header.\n");
1298                udp->len(pktPtr->length - EthPtr(pktPtr)->size());
1299            }
1300        }
1301        tsoPrevSeq = tsoUsedLen;
1302    }
1303
1304    if (DTRACE(EthernetDesc)) {
1305        IpPtr ip(pktPtr);
1306        if (ip)
1307            DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
1308                    ip->id());
1309        else
1310            DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
1311    }
1312
1313    // Checksums are only ofloaded for new descriptor types
1314    if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
1315        DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
1316        IpPtr ip(pktPtr);
1317        assert(ip);
1318        if (TxdOp::ixsm(desc)) {
1319            ip->sum(0);
1320            ip->sum(cksum(ip));
1321            igbe->txIpChecksums++;
1322            DPRINTF(EthernetDesc, "Calculated IP checksum\n");
1323        }
1324        if (TxdOp::txsm(desc)) {
1325            TcpPtr tcp(ip);
1326            UdpPtr udp(ip);
1327            if (tcp) {
1328                 tcp->sum(0);
1329                 tcp->sum(cksum(tcp));
1330                 igbe->txTcpChecksums++;
1331                 DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
1332            } else if (udp) {
1333                 assert(udp);
1334                 udp->sum(0);
1335                 udp->sum(cksum(udp));
1336                 igbe->txUdpChecksums++;
1337                 DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
1338            } else {
1339                panic("Told to checksum, but don't know how\n");
1340            }
1341        }
1342    }
1343
1344    if (TxdOp::ide(desc)) {
1345        // Deal with the rx timer interrupts
1346        DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
1347        if (igbe->regs.tidv.idv()) {
1348            DPRINTF(EthernetDesc, "setting tidv\n");
1349            igbe->reschedule(igbe->tidvEvent,
1350                curTick + igbe->regs.tidv.idv() * igbe->intClock(), true);
1351        }
1352
1353        if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
1354            DPRINTF(EthernetDesc, "setting tadv\n");
1355            if (!igbe->tadvEvent.scheduled()) {
1356                igbe->schedule(igbe->tadvEvent,
1357                    curTick + igbe->regs.tadv.idv() * igbe->intClock());
1358            }
1359        }
1360    }
1361
1362
1363    if (!useTso ||  TxdOp::getLen(desc) == tsoDescBytesUsed) {
1364        DPRINTF(EthernetDesc, "Descriptor Done\n");
1365        unusedCache.pop_front();
1366        usedCache.push_back(desc);
1367        tsoDescBytesUsed = 0;
1368    }
1369
1370    if (useTso && tsoUsedLen == tsoTotalLen)
1371        useTso = false;
1372
1373
1374    DPRINTF(EthernetDesc, "------Packet of %d bytes ready for transmission-------\n",
1375            pktPtr->length);
1376    pktDone = true;
1377    pktWaiting = false;
1378    pktPtr = NULL;
1379    tsoPktHasHeader = false;
1380
1381    if (igbe->regs.txdctl.wthresh() == 0) {
1382        DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
1383        writeback(0);
1384    } else if (igbe->regs.txdctl.gran() && igbe->regs.txdctl.wthresh() >=
1385            descInBlock(usedCache.size())) {
1386        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1387        writeback((igbe->cacheBlockSize()-1)>>4);
1388    } else if (igbe->regs.txdctl.wthresh() >= usedCache.size()) {
1389        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
1390        writeback((igbe->cacheBlockSize()-1)>>4);
1391    }
1392
1393    enableSm();
1394    igbe->checkDrain();
1395}
1396
1397void
1398IGbE::TxDescCache::actionAfterWb()
1399{
1400    DPRINTF(EthernetDesc, "actionAfterWb() completionEnabled: %d\n",
1401            completionEnabled);
1402    igbe->postInterrupt(iGbReg::IT_TXDW);
1403    if (completionEnabled) {
1404        descEnd = igbe->regs.tdh();
1405        DPRINTF(EthernetDesc, "Completion writing back value: %d to addr: %#x\n", descEnd,
1406                completionAddress);
1407        igbe->dmaWrite(igbe->platform->pciToDma(mbits(completionAddress, 63, 2)),
1408                    sizeof(descEnd), &nullEvent, (uint8_t*)&descEnd, 0);
1409    }
1410}
1411
1412void
1413IGbE::TxDescCache::serialize(std::ostream &os)
1414{
1415    DescCache<TxDesc>::serialize(os);
1416    SERIALIZE_SCALAR(pktDone);
1417    SERIALIZE_SCALAR(isTcp);
1418    SERIALIZE_SCALAR(pktWaiting);
1419    SERIALIZE_SCALAR(pktMultiDesc);
1420
1421    SERIALIZE_SCALAR(useTso);
1422    SERIALIZE_SCALAR(tsoHeaderLen);
1423    SERIALIZE_SCALAR(tsoMss);
1424    SERIALIZE_SCALAR(tsoTotalLen);
1425    SERIALIZE_SCALAR(tsoUsedLen);
1426    SERIALIZE_SCALAR(tsoPrevSeq);;
1427    SERIALIZE_SCALAR(tsoPktPayloadBytes);
1428    SERIALIZE_SCALAR(tsoLoadedHeader);
1429    SERIALIZE_SCALAR(tsoPktHasHeader);
1430    SERIALIZE_ARRAY(tsoHeader, 256);
1431    SERIALIZE_SCALAR(tsoDescBytesUsed);
1432    SERIALIZE_SCALAR(tsoCopyBytes);
1433    SERIALIZE_SCALAR(tsoPkts);
1434
1435    SERIALIZE_SCALAR(completionAddress);
1436    SERIALIZE_SCALAR(completionEnabled);
1437    SERIALIZE_SCALAR(descEnd);
1438}
1439
1440void
1441IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
1442{
1443    DescCache<TxDesc>::unserialize(cp, section);
1444    UNSERIALIZE_SCALAR(pktDone);
1445    UNSERIALIZE_SCALAR(isTcp);
1446    UNSERIALIZE_SCALAR(pktWaiting);
1447    UNSERIALIZE_SCALAR(pktMultiDesc);
1448
1449    UNSERIALIZE_SCALAR(useTso);
1450    UNSERIALIZE_SCALAR(tsoHeaderLen);
1451    UNSERIALIZE_SCALAR(tsoMss);
1452    UNSERIALIZE_SCALAR(tsoTotalLen);
1453    UNSERIALIZE_SCALAR(tsoUsedLen);
1454    UNSERIALIZE_SCALAR(tsoPrevSeq);;
1455    UNSERIALIZE_SCALAR(tsoPktPayloadBytes);
1456    UNSERIALIZE_SCALAR(tsoLoadedHeader);
1457    UNSERIALIZE_SCALAR(tsoPktHasHeader);
1458    UNSERIALIZE_ARRAY(tsoHeader, 256);
1459    UNSERIALIZE_SCALAR(tsoDescBytesUsed);
1460    UNSERIALIZE_SCALAR(tsoCopyBytes);
1461    UNSERIALIZE_SCALAR(tsoPkts);
1462
1463    UNSERIALIZE_SCALAR(completionAddress);
1464    UNSERIALIZE_SCALAR(completionEnabled);
1465    UNSERIALIZE_SCALAR(descEnd);
1466}
1467
1468bool
1469IGbE::TxDescCache::packetAvailable()
1470{
1471    if (pktDone) {
1472        pktDone = false;
1473        return true;
1474    }
1475    return false;
1476}
1477
1478void
1479IGbE::TxDescCache::enableSm()
1480{
1481    if (!igbe->drainEvent) {
1482        igbe->txTick = true;
1483        igbe->restartClock();
1484    }
1485}
1486
1487bool
1488IGbE::TxDescCache::hasOutstandingEvents()
1489{
1490    return pktEvent.scheduled() || wbEvent.scheduled() ||
1491        fetchEvent.scheduled();
1492}
1493
1494
1495///////////////////////////////////// IGbE /////////////////////////////////
1496
1497void
1498IGbE::restartClock()
1499{
1500    if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) &&
1501        getState() == SimObject::Running)
1502        schedule(tickEvent, (curTick / ticks(1)) * ticks(1) + ticks(1));
1503}
1504
1505unsigned int
1506IGbE::drain(Event *de)
1507{
1508    unsigned int count;
1509    count = pioPort->drain(de) + dmaPort->drain(de);
1510    if (rxDescCache.hasOutstandingEvents() ||
1511            txDescCache.hasOutstandingEvents()) {
1512        count++;
1513        drainEvent = de;
1514    }
1515
1516    txFifoTick = false;
1517    txTick = false;
1518    rxTick = false;
1519
1520    if (tickEvent.scheduled())
1521        deschedule(tickEvent);
1522
1523    if (count)
1524        changeState(Draining);
1525    else
1526        changeState(Drained);
1527
1528    return count;
1529}
1530
1531void
1532IGbE::resume()
1533{
1534    SimObject::resume();
1535
1536    txFifoTick = true;
1537    txTick = true;
1538    rxTick = true;
1539
1540    restartClock();
1541}
1542
1543void
1544IGbE::checkDrain()
1545{
1546    if (!drainEvent)
1547        return;
1548
1549    txFifoTick = false;
1550    txTick = false;
1551    rxTick = false;
1552    if (!rxDescCache.hasOutstandingEvents() &&
1553            !txDescCache.hasOutstandingEvents()) {
1554        drainEvent->process();
1555        drainEvent = NULL;
1556    }
1557}
1558
1559void
1560IGbE::txStateMachine()
1561{
1562    if (!regs.tctl.en()) {
1563        txTick = false;
1564        DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
1565        return;
1566    }
1567
1568    // If we have a packet available and it's length is not 0 (meaning it's not
1569    // a multidescriptor packet) put it in the fifo, otherwise an the next
1570    // iteration we'll get the rest of the data
1571    if (txPacket && txDescCache.packetAvailable()
1572                 && !txDescCache.packetMultiDesc() && txPacket->length) {
1573        bool success;
1574
1575        DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
1576        success = txFifo.push(txPacket);
1577        txFifoTick = true && !drainEvent;
1578        assert(success);
1579        txPacket = NULL;
1580        txDescCache.writeback((cacheBlockSize()-1)>>4);
1581        return;
1582    }
1583
1584    // Only support descriptor granularity
1585    if (regs.txdctl.lwthresh() && txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
1586        DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
1587        postInterrupt(IT_TXDLOW);
1588    }
1589
1590    if (!txPacket) {
1591        txPacket = new EthPacketData(16384);
1592    }
1593
1594    if (!txDescCache.packetWaiting()) {
1595        if (txDescCache.descLeft() == 0) {
1596            postInterrupt(IT_TXQE);
1597            txDescCache.writeback(0);
1598            txDescCache.fetchDescriptors();
1599            DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
1600                    "writeback stopping ticking and posting TXQE\n");
1601            txTick = false;
1602            return;
1603        }
1604
1605
1606        if (!(txDescCache.descUnused())) {
1607            txDescCache.fetchDescriptors();
1608            DPRINTF(EthernetSM, "TXS: No descriptors available in cache, fetching and stopping ticking\n");
1609            txTick = false;
1610            return;
1611        }
1612
1613
1614        txDescCache.processContextDesc();
1615        if (txDescCache.packetWaiting()) {
1616            DPRINTF(EthernetSM, "TXS: Fetching TSO header, stopping ticking\n");
1617            txTick = false;
1618            return;
1619        }
1620
1621        int size;
1622        size = txDescCache.getPacketSize(txPacket);
1623        if (size > 0 && txFifo.avail() > size) {
1624            DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and begining "
1625                    "DMA of next packet\n", size);
1626            txFifo.reserve(size);
1627            txDescCache.getPacketData(txPacket);
1628        } else if (size <= 0) {
1629            DPRINTF(EthernetSM, "TXS: getPacketSize returned: %d\n", size);
1630            DPRINTF(EthernetSM, "TXS: No packets to get, writing back used descriptors\n");
1631            txDescCache.writeback(0);
1632        } else {
1633            DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
1634                    "available in FIFO\n");
1635            txTick = false;
1636        }
1637
1638
1639        return;
1640    }
1641    DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
1642    txTick = false;
1643}
1644
1645bool
1646IGbE::ethRxPkt(EthPacketPtr pkt)
1647{
1648    rxBytes += pkt->length;
1649    rxPackets++;
1650
1651    DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
1652
1653    if (!regs.rctl.en()) {
1654        DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
1655        return true;
1656    }
1657
1658    // restart the state machines if they are stopped
1659    rxTick = true && !drainEvent;
1660    if ((rxTick || txTick) && !tickEvent.scheduled()) {
1661        DPRINTF(EthernetSM, "RXS: received packet into fifo, starting ticking\n");
1662        restartClock();
1663    }
1664
1665    if (!rxFifo.push(pkt)) {
1666        DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
1667        postInterrupt(IT_RXO, true);
1668        return false;
1669    }
1670
1671    return true;
1672}
1673
1674
1675void
1676IGbE::rxStateMachine()
1677{
1678    if (!regs.rctl.en()) {
1679        rxTick = false;
1680        DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
1681        return;
1682    }
1683
1684    // If the packet is done check for interrupts/descriptors/etc
1685    if (rxDescCache.packetDone()) {
1686        rxDmaPacket = false;
1687        DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
1688        int descLeft = rxDescCache.descLeft();
1689        switch (regs.rctl.rdmts()) {
1690            case 2: if (descLeft > .125 * regs.rdlen()) break;
1691            case 1: if (descLeft > .250 * regs.rdlen()) break;
1692            case 0: if (descLeft > .500 * regs.rdlen())  break;
1693                DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) because of descriptors left\n");
1694                postInterrupt(IT_RXDMT);
1695                break;
1696        }
1697
1698        if (descLeft == 0) {
1699            rxDescCache.writeback(0);
1700            DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
1701                    " writeback and stopping ticking\n");
1702            rxTick = false;
1703        }
1704
1705        // only support descriptor granulaties
1706        assert(regs.rxdctl.gran());
1707
1708        if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
1709            DPRINTF(EthernetSM, "RXS: Writing back because WTHRESH >= descUsed\n");
1710            if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
1711                rxDescCache.writeback(regs.rxdctl.wthresh()-1);
1712            else
1713                rxDescCache.writeback((cacheBlockSize()-1)>>4);
1714        }
1715
1716        if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
1717             ((rxDescCache.descLeft() - rxDescCache.descUnused()) > regs.rxdctl.hthresh())) {
1718            DPRINTF(EthernetSM, "RXS: Fetching descriptors because descUnused < PTHRESH\n");
1719            rxDescCache.fetchDescriptors();
1720        }
1721
1722        if (rxDescCache.descUnused() == 0) {
1723            rxDescCache.fetchDescriptors();
1724            DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
1725                    "fetching descriptors and stopping ticking\n");
1726            rxTick = false;
1727        }
1728        return;
1729    }
1730
1731    if (rxDmaPacket) {
1732        DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
1733        rxTick = false;
1734        return;
1735    }
1736
1737    if (!rxDescCache.descUnused()) {
1738        rxDescCache.fetchDescriptors();
1739        DPRINTF(EthernetSM, "RXS: No descriptors available in cache, stopping ticking\n");
1740        rxTick = false;
1741        DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
1742        return;
1743    }
1744
1745    if (rxFifo.empty()) {
1746        DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
1747        rxTick = false;
1748        return;
1749    }
1750
1751    EthPacketPtr pkt;
1752    pkt = rxFifo.front();
1753
1754
1755    rxDescCache.writePacket(pkt);
1756    DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
1757    DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
1758    rxFifo.pop();
1759    DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
1760    rxTick = false;
1761    rxDmaPacket = true;
1762}
1763
1764void
1765IGbE::txWire()
1766{
1767    if (txFifo.empty()) {
1768        txFifoTick = false;
1769        return;
1770    }
1771
1772
1773    if (etherInt->sendPacket(txFifo.front())) {
1774        if (DTRACE(EthernetSM)) {
1775            IpPtr ip(txFifo.front());
1776            if (ip)
1777                DPRINTF(EthernetSM, "Transmitting Ip packet with Id=%d\n",
1778                        ip->id());
1779            else
1780                DPRINTF(EthernetSM, "Transmitting Non-Ip packet\n");
1781        }
1782        DPRINTF(EthernetSM, "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
1783                txFifo.avail());
1784
1785        txBytes += txFifo.front()->length;
1786        txPackets++;
1787        txFifoTick = false;
1788
1789        txFifo.pop();
1790    } else {
1791        // We'll get woken up when the packet ethTxDone() gets called
1792        txFifoTick = false;
1793    }
1794}
1795
1796void
1797IGbE::tick()
1798{
1799    DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
1800
1801    if (rxTick)
1802        rxStateMachine();
1803
1804    if (txTick)
1805        txStateMachine();
1806
1807    if (txFifoTick)
1808        txWire();
1809
1810
1811    if (rxTick || txTick || txFifoTick)
1812        schedule(tickEvent, curTick + ticks(1));
1813}
1814
1815void
1816IGbE::ethTxDone()
1817{
1818    // restart the tx state machines if they are stopped
1819    // fifo to send another packet
1820    // tx sm to put more data into the fifo
1821    txFifoTick = true && !drainEvent;
1822    if (txDescCache.descLeft() != 0 && !drainEvent)
1823        txTick = true;
1824
1825    restartClock();
1826    txWire();
1827    DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
1828}
1829
1830void
1831IGbE::serialize(std::ostream &os)
1832{
1833    PciDev::serialize(os);
1834
1835    regs.serialize(os);
1836    SERIALIZE_SCALAR(eeOpBits);
1837    SERIALIZE_SCALAR(eeAddrBits);
1838    SERIALIZE_SCALAR(eeDataBits);
1839    SERIALIZE_SCALAR(eeOpcode);
1840    SERIALIZE_SCALAR(eeAddr);
1841    SERIALIZE_SCALAR(lastInterrupt);
1842    SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
1843
1844    rxFifo.serialize("rxfifo", os);
1845    txFifo.serialize("txfifo", os);
1846
1847    bool txPktExists = txPacket;
1848    SERIALIZE_SCALAR(txPktExists);
1849    if (txPktExists)
1850        txPacket->serialize("txpacket", os);
1851
1852    Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
1853         inter_time = 0;
1854
1855    if (rdtrEvent.scheduled())
1856       rdtr_time = rdtrEvent.when();
1857    SERIALIZE_SCALAR(rdtr_time);
1858
1859    if (radvEvent.scheduled())
1860       radv_time = radvEvent.when();
1861    SERIALIZE_SCALAR(radv_time);
1862
1863    if (tidvEvent.scheduled())
1864       tidv_time = tidvEvent.when();
1865    SERIALIZE_SCALAR(tidv_time);
1866
1867    if (tadvEvent.scheduled())
1868       tadv_time = tadvEvent.when();
1869    SERIALIZE_SCALAR(tadv_time);
1870
1871    if (interEvent.scheduled())
1872       inter_time = interEvent.when();
1873    SERIALIZE_SCALAR(inter_time);
1874
1875    nameOut(os, csprintf("%s.TxDescCache", name()));
1876    txDescCache.serialize(os);
1877
1878    nameOut(os, csprintf("%s.RxDescCache", name()));
1879    rxDescCache.serialize(os);
1880}
1881
1882void
1883IGbE::unserialize(Checkpoint *cp, const std::string &section)
1884{
1885    PciDev::unserialize(cp, section);
1886
1887    regs.unserialize(cp, section);
1888    UNSERIALIZE_SCALAR(eeOpBits);
1889    UNSERIALIZE_SCALAR(eeAddrBits);
1890    UNSERIALIZE_SCALAR(eeDataBits);
1891    UNSERIALIZE_SCALAR(eeOpcode);
1892    UNSERIALIZE_SCALAR(eeAddr);
1893    UNSERIALIZE_SCALAR(lastInterrupt);
1894    UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
1895
1896    rxFifo.unserialize("rxfifo", cp, section);
1897    txFifo.unserialize("txfifo", cp, section);
1898
1899    bool txPktExists;
1900    UNSERIALIZE_SCALAR(txPktExists);
1901    if (txPktExists) {
1902        txPacket = new EthPacketData(16384);
1903        txPacket->unserialize("txpacket", cp, section);
1904    }
1905
1906    rxTick = true;
1907    txTick = true;
1908    txFifoTick = true;
1909
1910    Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
1911    UNSERIALIZE_SCALAR(rdtr_time);
1912    UNSERIALIZE_SCALAR(radv_time);
1913    UNSERIALIZE_SCALAR(tidv_time);
1914    UNSERIALIZE_SCALAR(tadv_time);
1915    UNSERIALIZE_SCALAR(inter_time);
1916
1917    if (rdtr_time)
1918        schedule(rdtrEvent, rdtr_time);
1919
1920    if (radv_time)
1921        schedule(radvEvent, radv_time);
1922
1923    if (tidv_time)
1924        schedule(tidvEvent, tidv_time);
1925
1926    if (tadv_time)
1927        schedule(tadvEvent, tadv_time);
1928
1929    if (inter_time)
1930        schedule(interEvent, inter_time);
1931
1932    txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));
1933
1934    rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
1935}
1936
1937IGbE *
1938IGbEParams::create()
1939{
1940    return new IGbE(this);
1941}
1942