ufs_device.cc revision 11179
1/*
2 * Copyright (c) 2013-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Rene de Jong
38 */
39
40/** @file
41 * This is a simulation model for a UFS interface
42 * The UFS interface consists of a host controller and (at least) one device.
43 * The device can contain multiple logic units.
44 * To make this interface as usefull as possible for future development, the
45 * decision has been made to split the UFS functionality from the SCSI
46 * functionality. The class UFS SCSIDevice can therefor be used as a starting
47 * point for creating a more generic SCSI device. This has as a consequence
48 * that the UFSHostDevice class contains functionality from both the host
49 * controller and the device. The current UFS standard (1.1) allows only one
50 * device, and up to 8 logic units. the logic units only handle the SCSI part
51 * of the command, and the device mainly the UFS part. Yet the split between
52 * the SCSIresume function and the SCSICMDHandle might seem a bit awkward.
53 * The SCSICMDHandle function is in essence a SCSI reply generator, and it
54 * distils the essential information from the command. A disktransfer cannot
55 * be made from this position because the scatter gather list is not included
56 * in the SCSI command, but in the Transfer Request descriptor. The device
57 * needs to manage the data transfer. This file is build up as follows: first
58 * the UFSSCSIDevice functions will be presented; then the UFSHostDevice
59 * functions. The UFSHostDevice functions are split in three parts: UFS
60 * transaction flow, data write transfer and data read transfer. The
61 * functions are then ordered in the order in which a transfer takes place.
62 */
63
64/**
65 * Reference material can be found at the JEDEC website:
66 * UFS standard
67 * http://www.jedec.org/standards-documents/results/jesd220
68 * UFS HCI specification
69 * http://www.jedec.org/standards-documents/results/jesd223
70 */
71
72#include "dev/arm/ufs_device.hh"
73
74/**
75 * Constructor and destructor functions of UFSHCM device
76 */
77UFSHostDevice::UFSSCSIDevice::UFSSCSIDevice(const UFSHostDeviceParams* p,
78                             uint32_t lun_id, Callback *transfer_cb,
79                             Callback *read_cb):
80    SimObject(p),
81    flashDisk(p->image[lun_id]),
82    flashDevice(p->internalflash[lun_id]),
83    blkSize(p->img_blk_size),
84    lunAvail(p->image.size()),
85    diskSize(flashDisk->size()),
86    capacityLower((diskSize - 1) & 0xffffffff),
87    capacityUpper((diskSize - SectorSize) >> 32),
88    lunID(lun_id),
89    transferCompleted(false),
90    readCompleted(false),
91    totalRead(0),
92    totalWrite(0),
93    amountOfWriteTransfers(0),
94    amountOfReadTransfers(0)
95{
96    /**
97     * These callbacks are used to communicate the events that are
98     * triggered upstream; e.g. from the Memory Device to the UFS SCSI Device
99     * or from the UFS SCSI device to the UFS host.
100     */
101    signalDone = transfer_cb;
102    memReadCallback = new MakeCallback<UFSSCSIDevice,
103        &UFSHostDevice::UFSSCSIDevice::readCallback>(this);
104    deviceReadCallback = read_cb;
105    memWriteCallback = new MakeCallback<UFSSCSIDevice,
106        &UFSHostDevice::UFSSCSIDevice::SSDWriteDone>(this);
107
108    /**
109     * make ascii out of lun_id (and add more characters)
110     * UFS allows up to 8 logic units, so the numbering should work out
111     */
112    uint32_t temp_id = ((lun_id | 0x30) << 24) | 0x3A4449;
113    lunInfo.dWord0 = 0x02060000;   //data
114    lunInfo.dWord1 = 0x0200001F;
115    lunInfo.vendor0 = 0x484D5241;  //ARMH (HMRA)
116    lunInfo.vendor1 = 0x424D4143;  //CAMB (BMAC)
117    lunInfo.product0 = 0x356D6567; //gem5  (5meg)
118    lunInfo.product1 = 0x4D534655; //UFSM (MSFU)
119    lunInfo.product2 = 0x4C45444F; //ODEL (LEDO)
120    lunInfo.product3 = temp_id;    // ID:"lun_id" ("lun_id":DI)
121    lunInfo.productRevision = 0x01000000; //0x01
122
123    DPRINTF(UFSHostDevice, "Logic unit %d assumes that %d logic units are"
124            " present in the system\n", lunID, lunAvail);
125    DPRINTF(UFSHostDevice,"The disksize of lun: %d should be %d blocks\n",
126            lunID, diskSize);
127    flashDevice->initializeMemory(diskSize, SectorSize);
128}
129
130
131/**
132 * These pages are SCSI specific. For more information refer to:
133 * Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
134 * http://www.jedec.org/standards-documents/results/jesd220
135 */
136const unsigned int UFSHostDevice::UFSSCSIDevice::controlPage[3] =
137                                                {0x01400A0A, 0x00000000,
138                                                 0x0000FFFF};
139const unsigned int UFSHostDevice::UFSSCSIDevice::recoveryPage[3] =
140                                                {0x03800A01, 0x00000000,
141                                                 0xFFFF0003};
142const unsigned int UFSHostDevice::UFSSCSIDevice::cachingPage[5] =
143                                                {0x00011208, 0x00000000,
144                                                 0x00000000, 0x00000020,
145                                                 0x00000000};
146
147UFSHostDevice::UFSSCSIDevice::~UFSSCSIDevice() {}
148
149/**
150 * UFS specific SCSI handling function.
151 * The following attributes may still be added: SCSI format unit,
152 * Send diagnostic and UNMAP;
153 * Synchronize Cache and buffer read/write could not be tested yet
154 * All parameters can be found in:
155 * Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
156 * http://www.jedec.org/standards-documents/results/jesd220
157 * (a JEDEC acount may be required {free of charge})
158 */
159
160struct UFSHostDevice::SCSIReply
161UFSHostDevice::UFSSCSIDevice::SCSICMDHandle(uint32_t* SCSI_msg)
162{
163    struct SCSIReply scsi_out;
164    memset(&scsi_out, 0, sizeof(struct SCSIReply));
165
166    /**
167     * Create the standard SCSI reponse information
168     * These values might changes over the course of a transfer
169     */
170    scsi_out.message.header.dWord0 = UPIUHeaderDataIndWord0 |
171        lunID << 16;
172    scsi_out.message.header.dWord1 = UPIUHeaderDataIndWord1;
173    scsi_out.message.header.dWord2 = UPIUHeaderDataIndWord2;
174    statusCheck(SCSIGood, scsi_out.senseCode);
175    scsi_out.senseSize = scsi_out.senseCode[0];
176    scsi_out.LUN = lunID;
177    scsi_out.status = SCSIGood;
178
179    DPRINTF(UFSHostDevice, "SCSI command:%2x\n", SCSI_msg[4]);
180    /**Determine what the message is and fill the response packet*/
181
182    switch (SCSI_msg[4] & 0xFF) {
183
184      case SCSIInquiry: {
185          /**
186           * SCSI inquiry: tell about this specific logic unit
187           */
188          scsi_out.msgSize = 36;
189          scsi_out.message.dataMsg.resize(9);
190
191          for (uint8_t count = 0; count < 9; count++)
192              scsi_out.message.dataMsg[count] =
193                  (reinterpret_cast<uint32_t*> (&lunInfo))[count];
194      } break;
195
196      case SCSIRead6: {
197          /**
198           * Read command. Number indicates the length of the command.
199           */
200          scsi_out.expectMore = 0x02;
201          scsi_out.msgSize = 0;
202
203          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
204
205          /**BE and not nicely aligned. Apart from that it only has
206           * information in five bits of the first byte that is relevant
207           * for this field.
208           */
209          uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
210          uint64_t read_offset = betoh(tmp) & 0x1FFFFF;
211
212          uint32_t read_size = tempptr[4];
213
214
215          scsi_out.msgSize =  read_size * blkSize;
216          scsi_out.offset = read_offset * blkSize;
217
218          if ((read_offset + read_size) > diskSize)
219              scsi_out.status = SCSIIllegalRequest;
220
221          DPRINTF(UFSHostDevice, "Read6 offset: 0x%8x, for %d blocks\n",
222                  read_offset, read_size);
223
224          /**
225           * Renew status check, for the request may have been illegal
226           */
227          statusCheck(scsi_out.status, scsi_out.senseCode);
228          scsi_out.senseSize = scsi_out.senseCode[0];
229          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
230              SCSICheckCondition;
231
232      } break;
233
234      case SCSIRead10: {
235          scsi_out.expectMore = 0x02;
236          scsi_out.msgSize = 0;
237
238          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
239
240          /**BE and not nicely aligned.*/
241          uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
242          uint64_t read_offset = betoh(tmp);
243
244          uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
245          uint32_t read_size = betoh(tmpsize);
246
247          scsi_out.msgSize =  read_size * blkSize;
248          scsi_out.offset = read_offset * blkSize;
249
250          if ((read_offset + read_size) > diskSize)
251              scsi_out.status = SCSIIllegalRequest;
252
253          DPRINTF(UFSHostDevice, "Read10 offset: 0x%8x, for %d blocks\n",
254                  read_offset, read_size);
255
256          /**
257           * Renew status check, for the request may have been illegal
258           */
259          statusCheck(scsi_out.status, scsi_out.senseCode);
260          scsi_out.senseSize = scsi_out.senseCode[0];
261          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
262              SCSICheckCondition;
263
264      } break;
265
266      case SCSIRead16: {
267          scsi_out.expectMore = 0x02;
268          scsi_out.msgSize = 0;
269
270          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
271
272          /**BE and not nicely aligned.*/
273          uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
274          uint64_t read_offset = betoh(tmp);
275
276          tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
277          read_offset = (read_offset << 32) | betoh(tmp);
278
279          tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
280          uint32_t read_size = betoh(tmp);
281
282          scsi_out.msgSize =  read_size * blkSize;
283          scsi_out.offset = read_offset * blkSize;
284
285          if ((read_offset + read_size) > diskSize)
286              scsi_out.status = SCSIIllegalRequest;
287
288          DPRINTF(UFSHostDevice, "Read16 offset: 0x%8x, for %d blocks\n",
289                  read_offset, read_size);
290
291          /**
292           * Renew status check, for the request may have been illegal
293           */
294          statusCheck(scsi_out.status, scsi_out.senseCode);
295          scsi_out.senseSize = scsi_out.senseCode[0];
296          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
297              SCSICheckCondition;
298
299      } break;
300
301      case SCSIReadCapacity10: {
302          /**
303           * read the capacity of the device
304           */
305          scsi_out.msgSize = 8;
306          scsi_out.message.dataMsg.resize(2);
307          scsi_out.message.dataMsg[0] =
308              betoh(capacityLower);//last block
309          scsi_out.message.dataMsg[1] = betoh(blkSize);//blocksize
310
311      } break;
312      case SCSIReadCapacity16: {
313          scsi_out.msgSize = 32;
314          scsi_out.message.dataMsg.resize(8);
315          scsi_out.message.dataMsg[0] =
316              betoh(capacityUpper);//last block
317          scsi_out.message.dataMsg[1] =
318              betoh(capacityLower);//last block
319          scsi_out.message.dataMsg[2] = betoh(blkSize);//blocksize
320          scsi_out.message.dataMsg[3] = 0x00;//
321          scsi_out.message.dataMsg[4] = 0x00;//reserved
322          scsi_out.message.dataMsg[5] = 0x00;//reserved
323          scsi_out.message.dataMsg[6] = 0x00;//reserved
324          scsi_out.message.dataMsg[7] = 0x00;//reserved
325
326      } break;
327
328      case SCSIReportLUNs: {
329          /**
330           * Find out how many Logic Units this device has.
331           */
332          scsi_out.msgSize = (lunAvail * 8) + 8;//list + overhead
333          scsi_out.message.dataMsg.resize(2 * lunAvail + 2);
334          scsi_out.message.dataMsg[0] = (lunAvail * 8) << 24;//LUN listlength
335          scsi_out.message.dataMsg[1] = 0x00;
336
337          for (uint8_t count = 0; count < lunAvail; count++) {
338              //LUN "count"
339              scsi_out.message.dataMsg[2 + 2 * count] = (count & 0x7F) << 8;
340              scsi_out.message.dataMsg[3 + 2 * count] = 0x00;
341          }
342
343      } break;
344
345      case SCSIStartStop: {
346          //Just acknowledge; not deemed relevant ATM
347          scsi_out.msgSize = 0;
348
349      } break;
350
351      case SCSITestUnitReady: {
352          //Just acknowledge; not deemed relevant ATM
353          scsi_out.msgSize = 0;
354
355      } break;
356
357      case SCSIVerify10: {
358          /**
359           * See if the blocks that the host plans to request are in range of
360           * the device.
361           */
362          scsi_out.msgSize = 0;
363
364          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
365
366          /**BE and not nicely aligned.*/
367          uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
368          uint64_t read_offset = betoh(tmp);
369
370          uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
371          uint32_t read_size = betoh(tmpsize);
372
373          if ((read_offset + read_size) > diskSize)
374              scsi_out.status = SCSIIllegalRequest;
375
376          /**
377           * Renew status check, for the request may have been illegal
378           */
379          statusCheck(scsi_out.status, scsi_out.senseCode);
380          scsi_out.senseSize = scsi_out.senseCode[0];
381          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
382              SCSICheckCondition;
383
384      } break;
385
386      case SCSIWrite6: {
387          /**
388           * Write command.
389           */
390
391          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
392
393          /**BE and not nicely aligned. Apart from that it only has
394           * information in five bits of the first byte that is relevant
395           * for this field.
396           */
397          uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
398          uint64_t write_offset = betoh(tmp) & 0x1FFFFF;
399
400          uint32_t write_size = tempptr[4];
401
402          scsi_out.msgSize =  write_size * blkSize;
403          scsi_out.offset = write_offset * blkSize;
404          scsi_out.expectMore = 0x01;
405
406          if ((write_offset + write_size) > diskSize)
407              scsi_out.status = SCSIIllegalRequest;
408
409          DPRINTF(UFSHostDevice, "Write6 offset: 0x%8x, for %d blocks\n",
410                  write_offset, write_size);
411
412          /**
413           * Renew status check, for the request may have been illegal
414           */
415          statusCheck(scsi_out.status, scsi_out.senseCode);
416          scsi_out.senseSize = scsi_out.senseCode[0];
417          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
418              SCSICheckCondition;
419
420      } break;
421
422      case SCSIWrite10: {
423          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
424
425          /**BE and not nicely aligned.*/
426          uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
427          uint64_t write_offset = betoh(tmp);
428
429          uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
430          uint32_t write_size = betoh(tmpsize);
431
432          scsi_out.msgSize =  write_size * blkSize;
433          scsi_out.offset = write_offset * blkSize;
434          scsi_out.expectMore = 0x01;
435
436          if ((write_offset + write_size) > diskSize)
437              scsi_out.status = SCSIIllegalRequest;
438
439          DPRINTF(UFSHostDevice, "Write10 offset: 0x%8x, for %d blocks\n",
440                  write_offset, write_size);
441
442          /**
443           * Renew status check, for the request may have been illegal
444           */
445          statusCheck(scsi_out.status, scsi_out.senseCode);
446          scsi_out.senseSize = scsi_out.senseCode[0];
447          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
448              SCSICheckCondition;
449
450      } break;
451
452      case SCSIWrite16: {
453          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
454
455          /**BE and not nicely aligned.*/
456          uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
457          uint64_t write_offset = betoh(tmp);
458
459          tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
460          write_offset = (write_offset << 32) | betoh(tmp);
461
462          tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
463          uint32_t write_size = betoh(tmp);
464
465          scsi_out.msgSize = write_size * blkSize;
466          scsi_out.offset = write_offset * blkSize;
467          scsi_out.expectMore = 0x01;
468
469          if ((write_offset + write_size) > diskSize)
470              scsi_out.status = SCSIIllegalRequest;
471
472          DPRINTF(UFSHostDevice, "Write16 offset: 0x%8x, for %d blocks\n",
473                  write_offset, write_size);
474
475          /**
476           * Renew status check, for the request may have been illegal
477           */
478          statusCheck(scsi_out.status, scsi_out.senseCode);
479          scsi_out.senseSize = scsi_out.senseCode[0];
480          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
481              SCSICheckCondition;
482
483      } break;
484
485      case SCSIFormatUnit: {//not yet verified
486          scsi_out.msgSize = 0;
487          scsi_out.expectMore = 0x01;
488
489      } break;
490
491      case SCSISendDiagnostic: {//not yet verified
492          scsi_out.msgSize = 0;
493
494      } break;
495
496      case SCSISynchronizeCache: {
497          //do we have cache (we don't have cache at this moment)
498          //TODO: here will synchronization happen when cache is modelled
499          scsi_out.msgSize = 0;
500
501      } break;
502
503        //UFS SCSI additional command set for full functionality
504      case SCSIModeSelect10:
505        //TODO:
506        //scsi_out.expectMore = 0x01;//not supported due to modepage support
507        //code isn't dead, code suggest what is to be done when implemented
508        break;
509
510      case SCSIModeSense6: case SCSIModeSense10: {
511          /**
512           * Get more discriptive information about the SCSI functionality
513           * within this logic unit.
514           */
515          if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x0A) {//control page
516              scsi_out.message.dataMsg.resize((sizeof(controlPage) >> 2) + 2);
517              scsi_out.message.dataMsg[0] = 0x00000A00;//control page code
518              scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
519
520              for (uint8_t count = 0; count < 3; count++)
521                  scsi_out.message.dataMsg[2 + count] = controlPage[count];
522
523              scsi_out.msgSize = 20;
524              DPRINTF(UFSHostDevice, "CONTROL page\n");
525
526          } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x01) {//recovery page
527              scsi_out.message.dataMsg.resize((sizeof(recoveryPage) >> 2)
528                                              + 2);
529
530              scsi_out.message.dataMsg[0] = 0x00000100;//recovery page code
531              scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
532
533              for (uint8_t count = 0; count < 3; count++)
534                  scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
535
536              scsi_out.msgSize = 20;
537              DPRINTF(UFSHostDevice, "RECOVERY page\n");
538
539          } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x08) {//caching page
540
541              scsi_out.message.dataMsg.resize((sizeof(cachingPage) >> 2) + 2);
542              scsi_out.message.dataMsg[0] = 0x00001200;//caching page code
543              scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
544
545              for (uint8_t count = 0; count < 5; count++)
546                  scsi_out.message.dataMsg[2 + count] = cachingPage[count];
547
548              scsi_out.msgSize = 20;
549              DPRINTF(UFSHostDevice, "CACHE page\n");
550
551          } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x3F) {//ALL the pages!
552
553              scsi_out.message.dataMsg.resize(((sizeof(controlPage) +
554                                                sizeof(recoveryPage) +
555                                                sizeof(cachingPage)) >> 2)
556                                              + 2);
557              scsi_out.message.dataMsg[0] = 0x00003200;//all page code
558              scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
559
560              for (uint8_t count = 0; count < 3; count++)
561                  scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
562
563              for (uint8_t count = 0; count < 5; count++)
564                  scsi_out.message.dataMsg[5 + count] = cachingPage[count];
565
566              for (uint8_t count = 0; count < 3; count++)
567                  scsi_out.message.dataMsg[10 + count] = controlPage[count];
568
569              scsi_out.msgSize = 52;
570              DPRINTF(UFSHostDevice, "Return ALL the pages!!!\n");
571
572          } else inform("Wrong mode page requested\n");
573
574          scsi_out.message.dataCount = scsi_out.msgSize << 24;
575      } break;
576
577      case SCSIRequestSense: {
578          scsi_out.msgSize = 0;
579
580      } break;
581
582      case SCSIUnmap:break;//not yet verified
583
584      case SCSIWriteBuffer: {
585          scsi_out.expectMore = 0x01;
586
587          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
588
589          /**BE and not nicely aligned.*/
590          uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
591          uint64_t write_offset = betoh(tmp) & 0xFFFFFF;
592
593          tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
594          uint32_t write_size = betoh(tmp) & 0xFFFFFF;
595
596          scsi_out.msgSize =  write_size;
597          scsi_out.offset = write_offset;
598
599      } break;
600
601      case SCSIReadBuffer: {
602          /**
603           * less trivial than normal read. Size is in bytes instead
604           * of blocks, and it is assumed (though not guaranteed) that
605           * reading is from cache.
606           */
607          scsi_out.expectMore = 0x02;
608
609          uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
610
611          /**BE and not nicely aligned.*/
612          uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
613          uint64_t read_offset = betoh(tmp) & 0xFFFFFF;
614
615          tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
616          uint32_t read_size = betoh(tmp) & 0xFFFFFF;
617
618          scsi_out.msgSize = read_size;
619          scsi_out.offset = read_offset;
620
621          if ((read_offset + read_size) > capacityLower * blkSize)
622              scsi_out.status = SCSIIllegalRequest;
623
624          DPRINTF(UFSHostDevice, "Read buffer location: 0x%8x\n",
625                  read_offset);
626          DPRINTF(UFSHostDevice, "Number of bytes: 0x%8x\n", read_size);
627
628          statusCheck(scsi_out.status, scsi_out.senseCode);
629          scsi_out.senseSize = scsi_out.senseCode[0];
630          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
631              SCSICheckCondition;
632
633      } break;
634
635      case SCSIMaintenanceIn: {
636          /**
637           * linux sends this command three times from kernel 3.9 onwards,
638           * UFS does not support it, nor does this model. Linux knows this,
639           * but tries anyway (useful for some SD card types).
640           * Lets make clear we don't want it and just ignore it.
641           */
642          DPRINTF(UFSHostDevice, "Ignoring Maintenance In command\n");
643          statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
644          scsi_out.senseSize = scsi_out.senseCode[0];
645          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
646              SCSICheckCondition;
647          scsi_out.msgSize = 0;
648      } break;
649
650      default: {
651          statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
652          scsi_out.senseSize = scsi_out.senseCode[0];
653          scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
654              SCSICheckCondition;
655          scsi_out.msgSize = 0;
656          inform("Unsupported scsi message type: %2x\n", SCSI_msg[4] & 0xFF);
657          inform("0x%8x\n", SCSI_msg[0]);
658          inform("0x%8x\n", SCSI_msg[1]);
659          inform("0x%8x\n", SCSI_msg[2]);
660          inform("0x%8x\n", SCSI_msg[3]);
661          inform("0x%8x\n", SCSI_msg[4]);
662      } break;
663    }
664
665    return scsi_out;
666}
667
668/**
669 * SCSI status check function. generic device test, creates sense codes
670 * Future versions may include TODO: device checks, which is why this is
671 * in a separate function.
672 */
673
674void
675UFSHostDevice::UFSSCSIDevice::statusCheck(uint8_t status,
676                                uint8_t* sensecodelist)
677{
678    for (uint8_t count = 0; count < 19; count++)
679        sensecodelist[count] = 0;
680
681    sensecodelist[0] = 18; //sense length
682    sensecodelist[1] = 0x70; //we send a valid frame
683    sensecodelist[3] = status & 0xF; //mask to be sure + sensecode
684    sensecodelist[8] = 0x1F; //data length
685}
686
687/**
688 * read from the flashdisk
689 */
690
691void
692UFSHostDevice::UFSSCSIDevice::readFlash(uint8_t* readaddr, uint64_t offset,
693                                   uint32_t size)
694{
695    /** read from image, and get to memory */
696    for(int count = 0; count < (size / SectorSize); count++)
697        flashDisk->read(&(readaddr[SectorSize*count]), (offset /
698                                                        SectorSize) + count);
699}
700
701/**
702 * Write to the flashdisk
703 */
704
705void
706UFSHostDevice::UFSSCSIDevice::writeFlash(uint8_t* writeaddr, uint64_t offset,
707                                    uint32_t size)
708{
709    /** Get from fifo and write to image*/
710    for(int count = 0; count < (size / SectorSize); count++)
711        flashDisk->write(&(writeaddr[SectorSize * count]),
712                         (offset / SectorSize) + count);
713}
714
715/**
716 * Constructor for the UFS Host device
717 */
718
719UFSHostDevice::UFSHostDevice(const UFSHostDeviceParams* p) :
720    DmaDevice(p),
721    pioAddr(p->pio_addr),
722    pioSize(0x0FFF),
723    pioDelay(p->pio_latency),
724    intNum(p->int_num),
725    gic(p->gic),
726    lunAvail(p->image.size()),
727    UFSSlots(p->ufs_slots - 1),
728    readPendingNum(0),
729    writePendingNum(0),
730    activeDoorbells(0),
731    pendingDoorbells(0),
732    countInt(0),
733    transferTrack(0),
734    taskCommandTrack(0),
735    idlePhaseStart(0),
736    SCSIResumeEvent(this),
737    UTPEvent(this)
738{
739    DPRINTF(UFSHostDevice, "The hostcontroller hosts %d Logic units\n",
740            lunAvail);
741    UFSDevice.resize(lunAvail);
742
743    transferDoneCallback = new MakeCallback<UFSHostDevice,
744        &UFSHostDevice::LUNSignal>(this);
745    memReadCallback = new MakeCallback<UFSHostDevice,
746        &UFSHostDevice::readCallback>(this);
747
748    for(int count = 0; count < lunAvail; count++) {
749        UFSDevice[count] = new UFSSCSIDevice(p, count, transferDoneCallback,
750                                             memReadCallback);
751    }
752
753    if (UFSSlots > 31)
754        warn("UFSSlots = %d, this will results in %d command slots",
755             UFSSlots, (UFSSlots & 0x1F));
756
757    if ((UFSSlots & 0x1F) == 0)
758        fatal("Number of UFS command slots should be between 1 and 32.");
759
760    setValues();
761}
762
763/**
764 * Create the parameters of this device
765 */
766
767UFSHostDevice*
768UFSHostDeviceParams::create()
769{
770    return new UFSHostDevice(this);
771}
772
773
774void
775UFSHostDevice::regStats()
776{
777    using namespace Stats;
778
779    std::string UFSHost_name = name() + ".UFSDiskHost";
780
781    // Register the stats
782    /** Queue lengths */
783    stats.currentSCSIQueue
784        .name(UFSHost_name + ".currentSCSIQueue")
785        .desc("Most up to date length of the command queue")
786        .flags(none);
787    stats.currentReadSSDQueue
788        .name(UFSHost_name + ".currentReadSSDQueue")
789        .desc("Most up to date length of the read SSD queue")
790        .flags(none);
791    stats.currentWriteSSDQueue
792        .name(UFSHost_name + ".currentWriteSSDQueue")
793        .desc("Most up to date length of the write SSD queue")
794        .flags(none);
795
796    /** Amount of data read/written */
797    stats.totalReadSSD
798        .name(UFSHost_name + ".totalReadSSD")
799        .desc("Number of bytes read from SSD")
800        .flags(none);
801
802    stats.totalWrittenSSD
803        .name(UFSHost_name + ".totalWrittenSSD")
804        .desc("Number of bytes written to SSD")
805        .flags(none);
806
807    stats.totalReadDiskTransactions
808        .name(UFSHost_name + ".totalReadDiskTransactions")
809        .desc("Number of transactions from disk")
810        .flags(none);
811    stats.totalWriteDiskTransactions
812        .name(UFSHost_name + ".totalWriteDiskTransactions")
813        .desc("Number of transactions to disk")
814        .flags(none);
815    stats.totalReadUFSTransactions
816        .name(UFSHost_name + ".totalReadUFSTransactions")
817        .desc("Number of transactions from device")
818        .flags(none);
819    stats.totalWriteUFSTransactions
820        .name(UFSHost_name + ".totalWriteUFSTransactions")
821        .desc("Number of transactions to device")
822        .flags(none);
823
824    /** Average bandwidth for reads and writes */
825    stats.averageReadSSDBW
826        .name(UFSHost_name + ".averageReadSSDBandwidth")
827        .desc("Average read bandwidth (bytes/s)")
828        .flags(nozero);
829
830    stats.averageReadSSDBW = stats.totalReadSSD / simSeconds;
831
832    stats.averageWriteSSDBW
833        .name(UFSHost_name + ".averageWriteSSDBandwidth")
834        .desc("Average write bandwidth (bytes/s)")
835        .flags(nozero);
836
837    stats.averageWriteSSDBW = stats.totalWrittenSSD / simSeconds;
838
839    stats.averageSCSIQueue
840        .name(UFSHost_name + ".averageSCSIQueueLength")
841        .desc("Average command queue length")
842        .flags(nozero);
843    stats.averageReadSSDQueue
844        .name(UFSHost_name + ".averageReadSSDQueueLength")
845        .desc("Average read queue length")
846        .flags(nozero);
847    stats.averageWriteSSDQueue
848        .name(UFSHost_name + ".averageWriteSSDQueueLength")
849        .desc("Average write queue length")
850        .flags(nozero);
851
852    /** Number of doorbells rung*/
853    stats.curDoorbell
854        .name(UFSHost_name + ".curDoorbell")
855        .desc("Most up to date number of doorbells used")
856        .flags(none);
857
858    stats.curDoorbell = activeDoorbells;
859
860    stats.maxDoorbell
861        .name(UFSHost_name + ".maxDoorbell")
862        .desc("Maximum number of doorbells utilized")
863        .flags(none);
864    stats.averageDoorbell
865        .name(UFSHost_name + ".averageDoorbell")
866        .desc("Average number of Doorbells used")
867        .flags(nozero);
868
869    /** Latency*/
870    stats.transactionLatency
871        .init(100)
872        .name(UFSHost_name + ".transactionLatency")
873        .desc("Histogram of transaction times")
874        .flags(pdf);
875
876    stats.idleTimes
877        .init(100)
878        .name(UFSHost_name + ".idlePeriods")
879        .desc("Histogram of idle times")
880        .flags(pdf);
881
882}
883
884/**
885 * Register init
886 */
887void UFSHostDevice::setValues()
888{
889    /**
890     * The capability register is built up as follows:
891     * 31-29 RES; Testmode support; O3 delivery; 64 bit addr;
892     * 23-19 RES; 18-16 #TM Req slots; 15-5 RES;4-0 # TR slots
893     */
894    UFSHCIMem.HCCAP = 0x06070000 | (UFSSlots & 0x1F);
895    UFSHCIMem.HCversion = 0x00010000; //version is 1.0
896    UFSHCIMem.HCHCDDID = 0xAA003C3C;// Arbitrary number
897    UFSHCIMem.HCHCPMID = 0x41524D48; //ARMH (not an official MIPI number)
898    UFSHCIMem.TRUTRLDBR = 0x00;
899    UFSHCIMem.TMUTMRLDBR = 0x00;
900    UFSHCIMem.CMDUICCMDR = 0x00;
901    // We can process CMD, TM, TR, device present
902    UFSHCIMem.ORHostControllerStatus = 0x08;
903    UFSHCIMem.TRUTRLBA = 0x00;
904    UFSHCIMem.TRUTRLBAU = 0x00;
905    UFSHCIMem.TMUTMRLBA = 0x00;
906    UFSHCIMem.TMUTMRLBAU = 0x00;
907}
908
909/**
910 * Determine address ranges
911 */
912
913AddrRangeList
914UFSHostDevice::getAddrRanges() const
915{
916    AddrRangeList ranges;
917    ranges.push_back(RangeSize(pioAddr, pioSize));
918    return ranges;
919}
920
921/**
922 * UFSHCD read register. This function allows the system to read the
923 * register entries
924 */
925
926Tick
927UFSHostDevice::read(PacketPtr pkt)
928{
929    uint32_t data = 0;
930
931    switch (pkt->getAddr() & 0xFF)
932    {
933
934      case regControllerCapabilities:
935        data = UFSHCIMem.HCCAP;
936        break;
937
938      case regUFSVersion:
939        data = UFSHCIMem.HCversion;
940        break;
941
942      case regControllerDEVID:
943        data = UFSHCIMem.HCHCDDID;
944        break;
945
946      case regControllerPRODID:
947        data = UFSHCIMem.HCHCPMID;
948        break;
949
950      case regInterruptStatus:
951        data = UFSHCIMem.ORInterruptStatus;
952        UFSHCIMem.ORInterruptStatus = 0x00;
953        //TODO: Revise and extend
954        clearInterrupt();
955        break;
956
957      case regInterruptEnable:
958        data = UFSHCIMem.ORInterruptEnable;
959        break;
960
961      case regControllerStatus:
962        data = UFSHCIMem.ORHostControllerStatus;
963        break;
964
965      case regControllerEnable:
966        data = UFSHCIMem.ORHostControllerEnable;
967        break;
968
969      case regUICErrorCodePHYAdapterLayer:
970        data = UFSHCIMem.ORUECPA;
971        break;
972
973      case regUICErrorCodeDataLinkLayer:
974        data = UFSHCIMem.ORUECDL;
975        break;
976
977      case regUICErrorCodeNetworkLayer:
978        data = UFSHCIMem.ORUECN;
979        break;
980
981      case regUICErrorCodeTransportLayer:
982        data = UFSHCIMem.ORUECT;
983        break;
984
985      case regUICErrorCodeDME:
986        data = UFSHCIMem.ORUECDME;
987        break;
988
989      case regUTPTransferREQINTAGGControl:
990        data = UFSHCIMem.ORUTRIACR;
991        break;
992
993      case regUTPTransferREQListBaseL:
994        data = UFSHCIMem.TRUTRLBA;
995        break;
996
997      case regUTPTransferREQListBaseH:
998        data = UFSHCIMem.TRUTRLBAU;
999        break;
1000
1001      case regUTPTransferREQDoorbell:
1002        data = UFSHCIMem.TRUTRLDBR;
1003        break;
1004
1005      case regUTPTransferREQListClear:
1006        data = UFSHCIMem.TRUTRLCLR;
1007        break;
1008
1009      case regUTPTransferREQListRunStop:
1010        data = UFSHCIMem.TRUTRLRSR;
1011        break;
1012
1013      case regUTPTaskREQListBaseL:
1014        data = UFSHCIMem.TMUTMRLBA;
1015        break;
1016
1017      case regUTPTaskREQListBaseH:
1018        data = UFSHCIMem.TMUTMRLBAU;
1019        break;
1020
1021      case regUTPTaskREQDoorbell:
1022        data = UFSHCIMem.TMUTMRLDBR;
1023        break;
1024
1025      case regUTPTaskREQListClear:
1026        data = UFSHCIMem.TMUTMRLCLR;
1027        break;
1028
1029      case regUTPTaskREQListRunStop:
1030        data = UFSHCIMem.TMUTMRLRSR;
1031        break;
1032
1033      case regUICCommand:
1034        data = UFSHCIMem.CMDUICCMDR;
1035        break;
1036
1037      case regUICCommandArg1:
1038        data = UFSHCIMem.CMDUCMDARG1;
1039        break;
1040
1041      case regUICCommandArg2:
1042        data = UFSHCIMem.CMDUCMDARG2;
1043        break;
1044
1045      case regUICCommandArg3:
1046        data = UFSHCIMem.CMDUCMDARG3;
1047        break;
1048
1049      default:
1050        data = 0x00;
1051        break;
1052    }
1053
1054    pkt->set<uint32_t>(data);
1055    pkt->makeResponse();
1056    return pioDelay;
1057}
1058
1059/**
1060 * UFSHCD write function. This function allows access to the writeable
1061 * registers. If any function attempts to write value to an unwriteable
1062 * register entry, then the value will not be written.
1063 */
1064Tick
1065UFSHostDevice::write(PacketPtr pkt)
1066{
1067    uint32_t data = 0;
1068
1069    switch (pkt->getSize()) {
1070
1071      case 1:
1072        data = pkt->get<uint8_t>();
1073        break;
1074
1075      case 2:
1076        data = pkt->get<uint16_t>();
1077        break;
1078
1079      case 4:
1080        data = pkt->get<uint32_t>();
1081        break;
1082
1083      default:
1084        panic("Undefined UFSHCD controller write size!\n");
1085        break;
1086    }
1087
1088    switch (pkt->getAddr() & 0xFF)
1089    {
1090      case regControllerCapabilities://you shall not write to this
1091        break;
1092
1093      case regUFSVersion://you shall not write to this
1094        break;
1095
1096      case regControllerDEVID://you shall not write to this
1097        break;
1098
1099      case regControllerPRODID://you shall not write to this
1100        break;
1101
1102      case regInterruptStatus://you shall not write to this
1103        break;
1104
1105      case regInterruptEnable:
1106        UFSHCIMem.ORInterruptEnable = data;
1107        break;
1108
1109      case regControllerStatus:
1110        UFSHCIMem.ORHostControllerStatus = data;
1111        break;
1112
1113      case regControllerEnable:
1114        UFSHCIMem.ORHostControllerEnable = data;
1115        break;
1116
1117      case regUICErrorCodePHYAdapterLayer:
1118        UFSHCIMem.ORUECPA = data;
1119        break;
1120
1121      case regUICErrorCodeDataLinkLayer:
1122        UFSHCIMem.ORUECDL = data;
1123        break;
1124
1125      case regUICErrorCodeNetworkLayer:
1126        UFSHCIMem.ORUECN = data;
1127        break;
1128
1129      case regUICErrorCodeTransportLayer:
1130        UFSHCIMem.ORUECT = data;
1131        break;
1132
1133      case regUICErrorCodeDME:
1134        UFSHCIMem.ORUECDME = data;
1135        break;
1136
1137      case regUTPTransferREQINTAGGControl:
1138        UFSHCIMem.ORUTRIACR = data;
1139        break;
1140
1141      case regUTPTransferREQListBaseL:
1142        UFSHCIMem.TRUTRLBA = data;
1143        if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1144            ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU)!= 0x00))
1145            UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1146        break;
1147
1148      case regUTPTransferREQListBaseH:
1149        UFSHCIMem.TRUTRLBAU = data;
1150        if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1151            ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1152            UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1153        break;
1154
1155      case regUTPTransferREQDoorbell:
1156        if (!(UFSHCIMem.TRUTRLDBR) && data)
1157            stats.idleTimes.sample(curTick() - idlePhaseStart);
1158        UFSHCIMem.TRUTRLDBR |= data;
1159        requestHandler();
1160        break;
1161
1162      case regUTPTransferREQListClear:
1163        UFSHCIMem.TRUTRLCLR = data;
1164        break;
1165
1166      case regUTPTransferREQListRunStop:
1167        UFSHCIMem.TRUTRLRSR = data;
1168        break;
1169
1170      case regUTPTaskREQListBaseL:
1171        UFSHCIMem.TMUTMRLBA = data;
1172        if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1173            ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1174            UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1175        break;
1176
1177      case regUTPTaskREQListBaseH:
1178        UFSHCIMem.TMUTMRLBAU = data;
1179        if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1180            ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1181            UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1182        break;
1183
1184      case regUTPTaskREQDoorbell:
1185        UFSHCIMem.TMUTMRLDBR |= data;
1186        requestHandler();
1187        break;
1188
1189      case regUTPTaskREQListClear:
1190        UFSHCIMem.TMUTMRLCLR = data;
1191        break;
1192
1193      case regUTPTaskREQListRunStop:
1194        UFSHCIMem.TMUTMRLRSR = data;
1195        break;
1196
1197      case regUICCommand:
1198        UFSHCIMem.CMDUICCMDR = data;
1199        requestHandler();
1200        break;
1201
1202      case regUICCommandArg1:
1203        UFSHCIMem.CMDUCMDARG1 = data;
1204        break;
1205
1206      case regUICCommandArg2:
1207        UFSHCIMem.CMDUCMDARG2 = data;
1208        break;
1209
1210      case regUICCommandArg3:
1211        UFSHCIMem.CMDUCMDARG3 = data;
1212        break;
1213
1214      default:break;//nothing happens, you try to access a register that
1215                    //does not exist
1216
1217    }
1218
1219    pkt->makeResponse();
1220    return pioDelay;
1221}
1222
1223/**
1224 * Request handler. Determines where the request comes from and initiates the
1225 * appropriate actions accordingly.
1226 */
1227
1228void
1229UFSHostDevice::requestHandler()
1230{
1231    Addr address = 0x00;
1232    int mask = 0x01;
1233    int size;
1234    int count = 0;
1235    struct taskStart task_info;
1236    struct transferStart transferstart_info;
1237    transferstart_info.done = 0;
1238
1239    /**
1240     * step1 determine what called us
1241     * step2 determine where to get it
1242     * Look for any request of which we where not yet aware
1243     */
1244    while (((UFSHCIMem.CMDUICCMDR > 0x00) |
1245            ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) |
1246            ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00)) ) {
1247
1248        if (UFSHCIMem.CMDUICCMDR > 0x00) {
1249            /**
1250             * Command; general control of the Host controller.
1251             * no DMA transfer needed
1252             */
1253            commandHandler();
1254            UFSHCIMem.ORInterruptStatus |= UICCommandCOMPL;
1255            generateInterrupt();
1256            UFSHCIMem.CMDUICCMDR = 0x00;
1257            return; //command, nothing more we can do
1258
1259        } else if ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) {
1260            /**
1261             * Task; flow control, meant for the device/Logic unit
1262             * DMA transfer is needed, flash will not be approached
1263             */
1264            size = sizeof(UTPUPIUTaskReq);
1265            /**Find the position that is not handled yet*/
1266            count = findLsbSet((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack));
1267            address = UFSHCIMem.TMUTMRLBAU;
1268            //<-64 bit
1269            address = (count * size) + (address << 32) +
1270                UFSHCIMem.TMUTMRLBA;
1271            taskCommandTrack |= mask << count;
1272
1273            inform("UFSmodel received a task from the system; this might"
1274                   " lead to untested behaviour.\n");
1275
1276            task_info.mask = mask << count;
1277            task_info.address = address;
1278            task_info.size = size;
1279            task_info.done = UFSHCIMem.TMUTMRLDBR;
1280            taskInfo.push_back(task_info);
1281            taskEventQueue.push_back(this);
1282            writeDevice(&taskEventQueue.back(), false, address, size,
1283                        reinterpret_cast<uint8_t*>
1284                        (&taskInfo.back().destination), 0, 0);
1285
1286        } else if ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00) {
1287            /**
1288             * Transfer; Data transfer from or to the disk. There will be DMA
1289             * transfers, and the flash might be approached. Further
1290             * commands, are needed to specify the exact command.
1291             */
1292            size = sizeof(UTPTransferReqDesc);
1293            /**Find the position that is not handled yet*/
1294            count = findLsbSet((UFSHCIMem.TRUTRLDBR ^ transferTrack));
1295            address = UFSHCIMem.TRUTRLBAU;
1296            //<-64 bit
1297            address = (count * size) + (address << 32) + UFSHCIMem.TRUTRLBA;
1298
1299            transferTrack |= mask << count;
1300            DPRINTF(UFSHostDevice, "Doorbell register: 0x%8x select #:"
1301                    " 0x%8x completion info: 0x%8x\n", UFSHCIMem.TRUTRLDBR,
1302                    count, transferstart_info.done);
1303
1304            transferstart_info.done = UFSHCIMem.TRUTRLDBR;
1305
1306            /**stats**/
1307            transactionStart[count] = curTick(); //note the start time
1308            ++activeDoorbells;
1309            stats.maxDoorbell = (stats.maxDoorbell.value() < activeDoorbells)
1310                ? activeDoorbells : stats.maxDoorbell.value();
1311            stats.averageDoorbell = stats.maxDoorbell.value();
1312
1313            /**
1314             * step3 start transfer
1315             * step4 register information; allowing the host to respond in
1316             * the end
1317             */
1318            transferstart_info.mask = mask << count;
1319            transferstart_info.address = address;
1320            transferstart_info.size = size;
1321            transferstart_info.done = UFSHCIMem.TRUTRLDBR;
1322            transferStartInfo.push_back(transferstart_info);
1323
1324            /**Deleted in readDone, queued in finalUTP*/
1325            transferStartInfo.back().destination = new struct
1326                UTPTransferReqDesc;
1327            DPRINTF(UFSHostDevice, "Initial transfer start: 0x%8x\n",
1328                    transferstart_info.done);
1329            transferEventQueue.push_back(this);
1330
1331            if (transferEventQueue.size() < 2) {
1332                writeDevice(&transferEventQueue.front(), false,
1333                            address, size, reinterpret_cast<uint8_t*>
1334                            (transferStartInfo.front().destination),0, 0);
1335                DPRINTF(UFSHostDevice, "Transfer scheduled\n");
1336            }
1337        }
1338    }
1339}
1340
1341/**
1342 * Task start event
1343 */
1344
1345void
1346UFSHostDevice::taskStart()
1347{
1348    DPRINTF(UFSHostDevice, "Task start");
1349    taskHandler(&taskInfo.front().destination, taskInfo.front().mask,
1350                taskInfo.front().address, taskInfo.front().size);
1351    taskInfo.pop_front();
1352    taskEventQueue.pop_front();
1353}
1354
1355/**
1356 * Transfer start event
1357 */
1358
1359void
1360UFSHostDevice::transferStart()
1361{
1362    DPRINTF(UFSHostDevice, "Enter transfer event\n");
1363    transferHandler(transferStartInfo.front().destination,
1364                    transferStartInfo.front().mask,
1365                    transferStartInfo.front().address,
1366                    transferStartInfo.front().size,
1367                    transferStartInfo.front().done);
1368
1369    transferStartInfo.pop_front();
1370    DPRINTF(UFSHostDevice, "Transfer queue size at end of event: "
1371            "0x%8x\n", transferEventQueue.size());
1372}
1373
1374/**
1375 * Handles the commands that are given. At this point in time, not many
1376 * commands have been implemented in the driver.
1377 */
1378
1379void
1380UFSHostDevice::commandHandler()
1381{
1382    if (UFSHCIMem.CMDUICCMDR == 0x16) {
1383        UFSHCIMem.ORHostControllerStatus |= 0x0F;//link startup
1384    }
1385
1386}
1387
1388/**
1389 * Handles the tasks that are given. At this point in time, not many tasks
1390 * have been implemented in the driver.
1391 */
1392
1393void
1394UFSHostDevice::taskHandler(struct UTPUPIUTaskReq* request_in,
1395                           uint32_t req_pos, Addr finaladdress, uint32_t
1396                           finalsize)
1397{
1398    /**
1399     * For now, just unpack and acknowledge the task without doing anything.
1400     * TODO Implement UFS tasks.
1401     */
1402    inform("taskHandler\n");
1403    inform("%8x\n", request_in->header.dWord0);
1404    inform("%8x\n", request_in->header.dWord1);
1405    inform("%8x\n", request_in->header.dWord2);
1406
1407    request_in->header.dWord2 &= 0xffffff00;
1408
1409    UFSHCIMem.TMUTMRLDBR &= ~(req_pos);
1410    taskCommandTrack &= ~(req_pos);
1411    UFSHCIMem.ORInterruptStatus |= UTPTaskREQCOMPL;
1412
1413    readDevice(true, finaladdress, finalsize, reinterpret_cast<uint8_t*>
1414               (request_in), true, NULL);
1415
1416}
1417
1418/**
1419 * Obtains the SCSI command (if any)
1420 * Two possibilities: if it contains a SCSI command, then it is a usable
1421 * message; if it doesnt contain a SCSI message, then it can't be handeld
1422 * by this code.
1423 * This is the second stage of the transfer. We have the information about
1424 * where the next command can be found and what the type of command is. The
1425 * actions that are needed from the device its side are: get the information
1426 * and store the information such that we can reply.
1427 */
1428
1429void
1430UFSHostDevice::transferHandler(struct UTPTransferReqDesc* request_in,
1431                               int req_pos, Addr finaladdress, uint32_t
1432                               finalsize, uint32_t done)
1433{
1434
1435    Addr cmd_desc_addr = 0x00;
1436
1437
1438    //acknowledge handling of the message
1439    DPRINTF(UFSHostDevice, "SCSI message detected\n");
1440    request_in->header.dWord2 &= 0xffffff00;
1441    SCSIInfo.RequestIn = request_in;
1442    SCSIInfo.reqPos = req_pos;
1443    SCSIInfo.finalAddress = finaladdress;
1444    SCSIInfo.finalSize = finalsize;
1445    SCSIInfo.destination.resize(request_in->PRDTableOffset * 4
1446        + request_in->PRDTableLength * sizeof(UFSHCDSGEntry));
1447    SCSIInfo.done = done;
1448
1449    assert(!SCSIResumeEvent.scheduled());
1450    /**
1451     *Get the UTP command that has the SCSI command
1452     */
1453    cmd_desc_addr = request_in->commandDescBaseAddrHi;
1454    cmd_desc_addr = (cmd_desc_addr << 32) |
1455        (request_in->commandDescBaseAddrLo & 0xffffffff);
1456
1457    writeDevice(&SCSIResumeEvent, false, cmd_desc_addr,
1458                SCSIInfo.destination.size(), &SCSIInfo.destination[0],0, 0);
1459
1460    DPRINTF(UFSHostDevice, "SCSI scheduled\n");
1461
1462    transferEventQueue.pop_front();
1463}
1464
1465/**
1466 * Obtain LUN and put it in the right LUN queue. Each LUN has its own queue
1467 * of commands that need to be executed. This is the first instance where it
1468 * can be determined which Logic unit should handle the transfer. Then check
1469 * wether it should wait and queue or if it can continue.
1470 */
1471
1472void
1473UFSHostDevice::SCSIStart()
1474{
1475    DPRINTF(UFSHostDevice, "SCSI message on hold until ready\n");
1476    uint32_t LUN = SCSIInfo.destination[2];
1477    UFSDevice[LUN]->SCSIInfoQueue.push_back(SCSIInfo);
1478
1479    DPRINTF(UFSHostDevice, "SCSI queue %d has %d elements\n", LUN,
1480            UFSDevice[LUN]->SCSIInfoQueue.size());
1481
1482    /**There are 32 doorbells, so at max there can be 32 transactions*/
1483    if (UFSDevice[LUN]->SCSIInfoQueue.size() < 2) //LUN is available
1484        SCSIResume(LUN);
1485
1486    else if (UFSDevice[LUN]->SCSIInfoQueue.size() > 32)
1487        panic("SCSI queue is getting too big %d\n", UFSDevice[LUN]->
1488              SCSIInfoQueue.size());
1489
1490    /**
1491     * First transfer is done, fetch the next;
1492     * At this point, the device is busy, not the HC
1493     */
1494    if (!transferEventQueue.empty()) {
1495
1496        /**
1497         * loading next data packet in case Another LUN
1498         * is approached in the mean time
1499         */
1500        writeDevice(&transferEventQueue.front(), false,
1501                    transferStartInfo.front().address,
1502                    transferStartInfo.front().size, reinterpret_cast<uint8_t*>
1503                    (transferStartInfo.front().destination), 0, 0);
1504
1505        DPRINTF(UFSHostDevice, "Transfer scheduled");
1506    }
1507}
1508
1509/**
1510 * Handles the transfer requests that are given.
1511 * There can be three types of transfer. SCSI specific, Reads and writes
1512 * apart from the data transfer, this also generates its own reply (UPIU
1513 * response). Information for this reply is stored in transferInfo and will
1514 * be used in transferDone
1515 */
1516
1517void
1518UFSHostDevice::SCSIResume(uint32_t lun_id)
1519{
1520    DPRINTF(UFSHostDevice, "SCSIresume\n");
1521    if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
1522        panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
1523              UFSHCIMem.TRUTRLDBR);
1524
1525    /**old info, lets form it such that we can understand it*/
1526    struct UTPTransferReqDesc* request_in = UFSDevice[lun_id]->
1527        SCSIInfoQueue.front().RequestIn;
1528
1529    uint32_t req_pos = UFSDevice[lun_id]->SCSIInfoQueue.front().reqPos;
1530
1531    Addr finaladdress = UFSDevice[lun_id]->SCSIInfoQueue.front().
1532        finalAddress;
1533
1534    uint32_t finalsize = UFSDevice[lun_id]->SCSIInfoQueue.front().finalSize;
1535
1536    uint32_t* transfercommand = reinterpret_cast<uint32_t*>
1537        (&(UFSDevice[lun_id]->SCSIInfoQueue.front().destination[0]));
1538
1539    DPRINTF(UFSHostDevice, "Task tag: 0x%8x\n", transfercommand[0]>>24);
1540    /**call logic unit to handle SCSI command*/
1541    request_out_datain = UFSDevice[(transfercommand[0] & 0xFF0000) >> 16]->
1542        SCSICMDHandle(transfercommand);
1543
1544    DPRINTF(UFSHostDevice, "LUN: %d\n", request_out_datain.LUN);
1545
1546    /**
1547     * build response stating that it was succesful
1548     * command completion, Logic unit number, and Task tag
1549     */
1550    request_in->header.dWord0 = ((request_in->header.dWord0 >> 24) == 0x21)
1551        ? 0x36 : 0x21;
1552    UFSDevice[lun_id]->transferInfo.requestOut.header.dWord0 =
1553        request_in->header.dWord0 | (request_out_datain.LUN << 8)
1554        | (transfercommand[0] & 0xFF000000);
1555    /**SCSI status reply*/
1556    UFSDevice[lun_id]->transferInfo.requestOut.header.dWord1 = 0x00000000 |
1557        (request_out_datain.status << 24);
1558    /**segment size + EHS length (see UFS standard ch7)*/
1559    UFSDevice[lun_id]->transferInfo.requestOut.header.dWord2 = 0x00000000 |
1560        ((request_out_datain.senseSize + 2) << 24) | 0x05;
1561    /**amount of data that will follow*/
1562    UFSDevice[lun_id]->transferInfo.requestOut.senseDataLen =
1563        request_out_datain.senseSize;
1564
1565    //data
1566    for (uint8_t count = 0; count<request_out_datain.senseSize; count++) {
1567        UFSDevice[lun_id]->transferInfo.requestOut.senseData[count] =
1568            request_out_datain.senseCode[count + 1];
1569    }
1570
1571    /*
1572     * At position defined by "request_in->PRDTableOffset" (counting 32 bit
1573     * words) in array "transfercommand" we have a scatter gather list, which
1574     * is usefull to us if we interpreted it as a UFSHCDSGEntry structure.
1575     */
1576    struct UFSHCDSGEntry* sglist =  reinterpret_cast<UFSHCDSGEntry*>
1577        (&(transfercommand[(request_in->PRDTableOffset)]));
1578
1579    uint32_t length = request_in->PRDTableLength;
1580    DPRINTF(UFSHostDevice, "# PRDT entries: %d\n", length);
1581
1582    Addr response_addr = request_in->commandDescBaseAddrHi;
1583    response_addr = (response_addr << 32) |
1584        ((request_in->commandDescBaseAddrLo +
1585          (request_in->responseUPIULength << 2)) & 0xffffffff);
1586
1587    /**transferdone information packet filling*/
1588    UFSDevice[lun_id]->transferInfo.responseStartAddr = response_addr;
1589    UFSDevice[lun_id]->transferInfo.reqPos = req_pos;
1590    UFSDevice[lun_id]->transferInfo.size = finalsize;
1591    UFSDevice[lun_id]->transferInfo.address = finaladdress;
1592    UFSDevice[lun_id]->transferInfo.destination = reinterpret_cast<uint8_t*>
1593        (UFSDevice[lun_id]->SCSIInfoQueue.front().RequestIn);
1594    UFSDevice[lun_id]->transferInfo.finished = true;
1595    UFSDevice[lun_id]->transferInfo.lunID = request_out_datain.LUN;
1596
1597    /**
1598     * In this part the data that needs to be transfered will be initiated
1599     * and the chain of DMA (and potentially) disk transactions will be
1600     * started.
1601     */
1602    if (request_out_datain.expectMore == 0x01) {
1603        /**write transfer*/
1604        manageWriteTransfer(request_out_datain.LUN, request_out_datain.offset,
1605                            length, sglist);
1606
1607    } else if (request_out_datain.expectMore == 0x02) {
1608        /**read transfer*/
1609        manageReadTransfer(request_out_datain.msgSize, request_out_datain.LUN,
1610                           request_out_datain.offset, length, sglist);
1611
1612    } else {
1613        /**not disk related transfer, SCSI maintanance*/
1614        uint32_t count = 0;
1615        uint32_t size_accum = 0;
1616        DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
1617                request_out_datain.msgSize);
1618
1619        /**Transport the SCSI reponse data according to the SG list*/
1620        while ((length > count) && size_accum
1621               < (request_out_datain.msgSize - 1) &&
1622               (request_out_datain.msgSize != 0x00)) {
1623            Addr SCSI_start = sglist[count].upperAddr;
1624            SCSI_start = (SCSI_start << 32) |
1625                (sglist[count].baseAddr & 0xFFFFFFFF);
1626            DPRINTF(UFSHostDevice, "Data DMA start: 0x%8x\n", SCSI_start);
1627            DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
1628                    (sglist[count].size + 1));
1629            /**
1630             * safetynet; it has been shown that sg list may be optimistic in
1631             * the amount of data allocated, which can potentially lead to
1632             * some garbage data being send over. Hence this construction
1633             * that finds the least amount of data that needs to be
1634             * transfered.
1635             */
1636            uint32_t size_to_send = sglist[count].size + 1;
1637
1638            if (request_out_datain.msgSize < (size_to_send + size_accum))
1639                size_to_send = request_out_datain.msgSize - size_accum;
1640
1641            readDevice(false, SCSI_start, size_to_send,
1642                       reinterpret_cast<uint8_t*>
1643                       (&(request_out_datain.message.dataMsg[size_accum])),
1644                       false, NULL);
1645
1646            size_accum += size_to_send;
1647            DPRINTF(UFSHostDevice, "Total remaining: 0x%8x,accumulated so far"
1648                    " : 0x%8x\n", (request_out_datain.msgSize - size_accum),
1649                    size_accum);
1650
1651            ++count;
1652            DPRINTF(UFSHostDevice, "Transfer #: %d\n", count);
1653        }
1654
1655        /**Go to the next stage of the answering process*/
1656        transferDone(response_addr, req_pos, UFSDevice[lun_id]->
1657                     transferInfo.requestOut, finalsize, finaladdress,
1658                     reinterpret_cast<uint8_t*>(request_in), true, lun_id);
1659    }
1660
1661    DPRINTF(UFSHostDevice, "SCSI resume done\n");
1662}
1663
1664/**
1665 * Find finished transfer. Callback function. One of the LUNs is done with
1666 * the disk transfer and reports back to the controller. This function finds
1667 * out who it was, and calls transferDone.
1668 */
1669void
1670UFSHostDevice::LUNSignal()
1671{
1672    uint8_t this_lun = 0;
1673
1674    //while we haven't found the right lun, keep searching
1675    while((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedCommand())
1676        ++this_lun;
1677
1678    if (this_lun < lunAvail) {
1679        //Clear signal.
1680        UFSDevice[this_lun]->clearSignal();
1681        //found it; call transferDone
1682        transferDone(UFSDevice[this_lun]->transferInfo.responseStartAddr,
1683                     UFSDevice[this_lun]->transferInfo.reqPos,
1684                     UFSDevice[this_lun]->transferInfo.requestOut,
1685                     UFSDevice[this_lun]->transferInfo.size,
1686                     UFSDevice[this_lun]->transferInfo.address,
1687                     UFSDevice[this_lun]->transferInfo.destination,
1688                     UFSDevice[this_lun]->transferInfo.finished,
1689                     UFSDevice[this_lun]->transferInfo.lunID);
1690    }
1691
1692    else
1693        panic("no LUN finished in tick %d\n", curTick());
1694}
1695
1696/**
1697 * Transfer done. When the data transfer is done, this function ensures
1698 * that the application is notified.
1699 */
1700
1701void
1702UFSHostDevice::transferDone(Addr responseStartAddr, uint32_t req_pos,
1703                            struct UTPUPIURSP request_out, uint32_t size,
1704                            Addr address, uint8_t* destination,
1705                            bool finished, uint32_t lun_id)
1706{
1707    /**Test whether SCSI queue hasn't popped prematurely*/
1708    if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
1709        panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
1710              UFSHCIMem.TRUTRLDBR);
1711
1712    DPRINTF(UFSHostDevice, "DMA start: 0x%8x; DMA size: 0x%8x\n",
1713            responseStartAddr, sizeof(request_out));
1714
1715    struct transferStart lastinfo;
1716    lastinfo.mask = req_pos;
1717    lastinfo.done = finished;
1718    lastinfo.address = address;
1719    lastinfo.size = size;
1720    lastinfo.destination = reinterpret_cast<UTPTransferReqDesc*>
1721        (destination);
1722    lastinfo.lun_id = lun_id;
1723
1724    transferEnd.push_back(lastinfo);
1725
1726    DPRINTF(UFSHostDevice, "Transfer done start\n");
1727
1728    readDevice(false, responseStartAddr, sizeof(request_out),
1729               reinterpret_cast<uint8_t*>
1730               (&(UFSDevice[lun_id]->transferInfo.requestOut)),
1731               true, &UTPEvent);
1732}
1733
1734/**
1735 * finalUTP. Second part of the transfer done event.
1736 * this sends the final response: the UTP response. After this transaction
1737 * the doorbell shall be cleared, and the interupt shall be set.
1738 */
1739
1740void
1741UFSHostDevice::finalUTP()
1742{
1743    uint32_t lun_id = transferEnd.front().lun_id;
1744
1745    UFSDevice[lun_id]->SCSIInfoQueue.pop_front();
1746    DPRINTF(UFSHostDevice, "SCSIInfoQueue size: %d, lun: %d\n",
1747            UFSDevice[lun_id]->SCSIInfoQueue.size(), lun_id);
1748
1749    /**stats**/
1750    if (UFSHCIMem.TRUTRLDBR & transferEnd.front().mask) {
1751        uint8_t count = 0;
1752        while (!(transferEnd.front().mask & (0x1 << count)))
1753            ++count;
1754        stats.transactionLatency.sample(curTick() -
1755                                        transactionStart[count]);
1756    }
1757
1758    /**Last message that will be transfered*/
1759    readDevice(true, transferEnd.front().address,
1760               transferEnd.front().size, reinterpret_cast<uint8_t*>
1761               (transferEnd.front().destination), true, NULL);
1762
1763    /**clean and ensure that the tracker is updated*/
1764    transferTrack &= ~(transferEnd.front().mask);
1765    --activeDoorbells;
1766    ++pendingDoorbells;
1767    garbage.push_back(transferEnd.front().destination);
1768    transferEnd.pop_front();
1769    DPRINTF(UFSHostDevice, "UTP handled\n");
1770
1771    /**stats**/
1772    stats.averageDoorbell = stats.maxDoorbell.value();
1773
1774    DPRINTF(UFSHostDevice, "activeDoorbells: %d, pendingDoorbells: %d,"
1775            " garbage: %d, TransferEvent: %d\n", activeDoorbells,
1776            pendingDoorbells, garbage.size(), transferEventQueue.size());
1777
1778    /**This is the moment that the device is available again*/
1779    if (!UFSDevice[lun_id]->SCSIInfoQueue.empty())
1780        SCSIResume(lun_id);
1781}
1782
1783/**
1784 * Read done handling function, is only initiated at the end of a transaction
1785 */
1786void
1787UFSHostDevice::readDone()
1788{
1789    DPRINTF(UFSHostDevice, "Read done start\n");
1790    --readPendingNum;
1791
1792    /**Garbage collection; sort out the allocated UTP descriptor*/
1793    if (garbage.size() > 0) {
1794        delete garbage.front();
1795        garbage.pop_front();
1796        }
1797
1798    /**done, generate interrupt if we havent got one already*/
1799    if(!(UFSHCIMem.ORInterruptStatus & 0x01)) {
1800        UFSHCIMem.ORInterruptStatus |= UTPTransferREQCOMPL;
1801        generateInterrupt();
1802    }
1803
1804
1805    if(!readDoneEvent.empty()) {
1806        readDoneEvent.pop_front();
1807    }
1808}
1809
1810/**
1811 * set interrupt and sort out the doorbell register.
1812 */
1813
1814void
1815UFSHostDevice::generateInterrupt()
1816{
1817    /**just to keep track of the transactions*/
1818    countInt++;
1819
1820    /**step5 clear doorbell*/
1821    UFSHCIMem.TRUTRLDBR &= transferTrack;
1822    pendingDoorbells = 0;
1823    DPRINTF(UFSHostDevice, "Clear doorbell %X\n", UFSHCIMem.TRUTRLDBR);
1824
1825    checkDrain();
1826
1827    /**step6 raise interrupt*/
1828    gic->sendInt(intNum);
1829    DPRINTF(UFSHostDevice, "Send interrupt @ transaction: 0x%8x!\n",
1830            countInt);
1831}
1832
1833/**
1834 * Clear interrupt
1835 */
1836
1837void
1838UFSHostDevice::clearInterrupt()
1839{
1840    gic->clearInt(intNum);
1841    DPRINTF(UFSHostDevice, "Clear interrupt: 0x%8x!\n", countInt);
1842
1843    checkDrain();
1844
1845    if (!(UFSHCIMem.TRUTRLDBR)) {
1846        idlePhaseStart = curTick();
1847    }
1848    /**end of a transaction*/
1849}
1850
1851/**
1852 * Important to understand about the transfer flow:
1853 * We have basically three stages, The "system memory" stage, the "device
1854 * buffer" stage and the "disk" stage. In this model we assume an infinite
1855 * buffer, or a buffer that is big enough to store all the data in the
1856 * biggest transaction. Between the three stages are two queues. Those queues
1857 * store the messages to simulate their transaction from one stage to the
1858 * next. The manage{Action} function fills up one of the queues and triggers
1859 * the first event, which causes a chain reaction of events executed once
1860 * they pass through their queues. For a write action the stages are ordered
1861 * "system memory", "device buffer" and "disk", whereas the read transfers
1862 * happen "disk", "device buffer" and "system memory". The dma action in the
1863 * dma device is written from a bus perspective whereas this model is written
1864 * from a device perspective. To avoid confusion, the translation between the
1865 * two has been made in the writeDevice and readDevice funtions.
1866 */
1867
1868
1869/**
1870 * Dma transaction function: write device. Note that the dma action is
1871 * from a device perspective, while this function is from an initiator
1872 * perspective
1873 */
1874
1875void
1876UFSHostDevice::writeDevice(Event* additional_action, bool toDisk, Addr
1877                           start, int size, uint8_t* destination, uint64_t
1878                           SCSIDiskOffset, uint32_t lun_id)
1879{
1880    DPRINTF(UFSHostDevice, "Write transaction Start: 0x%8x; Size: %d\n",
1881            start, size);
1882
1883    /**check whether transfer is all the way to the flash*/
1884    if (toDisk) {
1885        ++writePendingNum;
1886
1887        while(!writeDoneEvent.empty() && (writeDoneEvent.front().when()
1888                                          < curTick()))
1889            writeDoneEvent.pop_front();
1890
1891        writeDoneEvent.push_back(this);
1892        assert(!writeDoneEvent.back().scheduled());
1893
1894        /**destination is an offset here since we are writing to a disk*/
1895        struct transferInfo new_transfer;
1896        new_transfer.offset = SCSIDiskOffset;
1897        new_transfer.size = size;
1898        new_transfer.lunID = lun_id;
1899        new_transfer.filePointer = 0;
1900        SSDWriteinfo.push_back(new_transfer);
1901
1902        /**allocate appropriate buffer*/
1903        SSDWriteinfo.back().buffer.resize(size);
1904
1905        /**transaction*/
1906        dmaPort.dmaAction(MemCmd::ReadReq, start, size,
1907                          &writeDoneEvent.back(),
1908                          &SSDWriteinfo.back().buffer[0], 0);
1909        //yes, a readreq at a write device function is correct.
1910        DPRINTF(UFSHostDevice, "Write to disk scheduled\n");
1911
1912    } else {
1913        assert(!additional_action->scheduled());
1914        dmaPort.dmaAction(MemCmd::ReadReq, start, size,
1915                          additional_action, destination, 0);
1916        DPRINTF(UFSHostDevice, "Write scheduled\n");
1917    }
1918}
1919
1920/**
1921 * Manage write transfer. Manages correct transfer flow and makes sure that
1922 * the queues are filled on time
1923 */
1924
1925void
1926UFSHostDevice::manageWriteTransfer(uint8_t LUN, uint64_t offset, uint32_t
1927                                   sg_table_length, struct UFSHCDSGEntry*
1928                                   sglist)
1929{
1930    struct writeToDiskBurst next_packet;
1931
1932    next_packet.SCSIDiskOffset = offset;
1933
1934    UFSDevice[LUN]->setTotalWrite(sg_table_length);
1935
1936    /**
1937     * Break-up the transactions into actions defined by the scatter gather
1938     * list.
1939     */
1940    for (uint32_t count = 0; count < sg_table_length; count++) {
1941        next_packet.start = sglist[count].upperAddr;
1942        next_packet.start = (next_packet.start << 32) |
1943            (sglist[count].baseAddr & 0xFFFFFFFF);
1944        next_packet.LUN = LUN;
1945        DPRINTF(UFSHostDevice, "Write data DMA start: 0x%8x\n",
1946                next_packet.start);
1947        DPRINTF(UFSHostDevice, "Write data DMA size: 0x%8x\n",
1948                (sglist[count].size + 1));
1949        assert(sglist[count].size > 0);
1950
1951        if (count != 0)
1952            next_packet.SCSIDiskOffset = next_packet.SCSIDiskOffset +
1953                (sglist[count - 1].size + 1);
1954
1955        next_packet.size = sglist[count].size + 1;
1956
1957        /**If the queue is empty, the transaction should be initiated*/
1958        if (dmaWriteInfo.empty())
1959            writeDevice(NULL, true, next_packet.start, next_packet.size,
1960                        NULL, next_packet.SCSIDiskOffset, next_packet.LUN);
1961        else
1962            DPRINTF(UFSHostDevice, "Write not initiated queue: %d\n",
1963                    dmaWriteInfo.size());
1964
1965        dmaWriteInfo.push_back(next_packet);
1966        DPRINTF(UFSHostDevice, "Write Location: 0x%8x\n",
1967                next_packet.SCSIDiskOffset);
1968
1969        DPRINTF(UFSHostDevice, "Write transfer #: 0x%8x\n", count + 1);
1970
1971        /** stats **/
1972        stats.totalWrittenSSD += (sglist[count].size + 1);
1973    }
1974
1975    /**stats**/
1976    ++stats.totalWriteUFSTransactions;
1977}
1978
1979/**
1980 * Write done handling function. Is only initiated when the flash is directly
1981 * approached
1982 */
1983
1984void
1985UFSHostDevice::writeDone()
1986{
1987    /**DMA is done, information no longer needed*/
1988    assert(dmaWriteInfo.size() > 0);
1989    dmaWriteInfo.pop_front();
1990    assert(SSDWriteinfo.size() > 0);
1991    uint32_t lun = SSDWriteinfo.front().lunID;
1992
1993    /**If there is nothing on the way, we need to start the events*/
1994    DPRINTF(UFSHostDevice, "Write done entered, queue: %d\n",
1995            UFSDevice[lun]->SSDWriteDoneInfo.size());
1996    /**Write the disk*/
1997    UFSDevice[lun]->writeFlash(&SSDWriteinfo.front().buffer[0],
1998                               SSDWriteinfo.front().offset,
1999                               SSDWriteinfo.front().size);
2000
2001    /**
2002     * Move to the second queue, enter the logic unit
2003     * This is where the disk is approached and the flash transaction is
2004     * handled SSDWriteDone will take care of the timing
2005     */
2006    UFSDevice[lun]->SSDWriteDoneInfo.push_back(SSDWriteinfo.front());
2007    SSDWriteinfo.pop_front();
2008
2009    --writePendingNum;
2010    /**so far, only the DMA part has been handled, lets do the disk delay*/
2011    UFSDevice[lun]->SSDWriteStart();
2012
2013    /** stats **/
2014    stats.currentWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
2015    stats.averageWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
2016    ++stats.totalWriteDiskTransactions;
2017
2018    /**initiate the next dma action (if any)*/
2019    if (!dmaWriteInfo.empty())
2020        writeDevice(NULL, true, dmaWriteInfo.front().start,
2021                    dmaWriteInfo.front().size,  NULL,
2022                    dmaWriteInfo.front().SCSIDiskOffset,
2023                    dmaWriteInfo.front().LUN);
2024    DPRINTF(UFSHostDevice, "Write done end\n");
2025}
2026
2027/**
2028 * SSD write start. Starts the write action in the timing model
2029 */
2030void
2031UFSHostDevice::UFSSCSIDevice::SSDWriteStart()
2032{
2033    assert(SSDWriteDoneInfo.size() > 0);
2034    flashDevice->writeMemory(
2035        SSDWriteDoneInfo.front().offset,
2036        SSDWriteDoneInfo.front().size, memWriteCallback);
2037
2038    SSDWriteDoneInfo.pop_front();
2039
2040    DPRINTF(UFSHostDevice, "Write is started; left in queue: %d\n",
2041            SSDWriteDoneInfo.size());
2042}
2043
2044
2045/**
2046 * SSDisk write done
2047 */
2048
2049void
2050UFSHostDevice::UFSSCSIDevice::SSDWriteDone()
2051{
2052    DPRINTF(UFSHostDevice, "Write disk, aiming for %d messages, %d so far\n",
2053            totalWrite, amountOfWriteTransfers);
2054
2055    //we have done one extra transfer
2056    ++amountOfWriteTransfers;
2057
2058    /**test whether call was correct*/
2059    assert(totalWrite >= amountOfWriteTransfers && totalWrite != 0);
2060
2061    /**are we there yet? (did we do everything)*/
2062    if (totalWrite == amountOfWriteTransfers) {
2063        DPRINTF(UFSHostDevice, "Write transactions finished\n");
2064        totalWrite = 0;
2065        amountOfWriteTransfers = 0;
2066
2067        //Callback UFS Host
2068        setSignal();
2069        signalDone->process();
2070    }
2071
2072}
2073
2074/**
2075 * Dma transaction function: read device. Notice that the dma action is from
2076 * a device perspective, while this function is from an initiator perspective
2077 */
2078
2079void
2080UFSHostDevice::readDevice(bool lastTransfer, Addr start, uint32_t size,
2081                          uint8_t* destination, bool no_cache, Event*
2082                          additional_action)
2083{
2084    DPRINTF(UFSHostDevice, "Read start: 0x%8x; Size: %d, data[0]: 0x%8x\n",
2085            start, size, (reinterpret_cast<uint32_t *>(destination))[0]);
2086
2087    /** check wether interrupt is needed */
2088    if (lastTransfer) {
2089        ++readPendingNum;
2090        readDoneEvent.push_back(this);
2091        assert(!readDoneEvent.back().scheduled());
2092        dmaPort.dmaAction(MemCmd::WriteReq, start, size,
2093                          &readDoneEvent.back(), destination, 0);
2094        //yes, a writereq at a read device function is correct.
2095
2096    } else {
2097        if (additional_action != NULL)
2098            assert(!additional_action->scheduled());
2099
2100        dmaPort.dmaAction(MemCmd::WriteReq, start, size,
2101                          additional_action, destination, 0);
2102
2103    }
2104
2105}
2106
2107/**
2108 * Manage read transfer. Manages correct transfer flow and makes sure that
2109 * the queues are filled on time
2110 */
2111
2112void
2113UFSHostDevice::manageReadTransfer(uint32_t size, uint32_t LUN, uint64_t
2114                                  offset, uint32_t sg_table_length,
2115                                  struct UFSHCDSGEntry* sglist)
2116{
2117    uint32_t size_accum = 0;
2118
2119    DPRINTF(UFSHostDevice, "Data READ size: %d\n", size);
2120
2121    /**
2122     * Break-up the transactions into actions defined by the scatter gather
2123     * list.
2124     */
2125    for (uint32_t count = 0; count < sg_table_length; count++) {
2126        struct transferInfo new_transfer;
2127        new_transfer.offset = sglist[count].upperAddr;
2128        new_transfer.offset = (new_transfer.offset << 32) |
2129            (sglist[count].baseAddr & 0xFFFFFFFF);
2130        new_transfer.filePointer = offset + size_accum;
2131        new_transfer.size = (sglist[count].size + 1);
2132        new_transfer.lunID = LUN;
2133
2134        DPRINTF(UFSHostDevice, "Data READ start: 0x%8x; size: %d\n",
2135                new_transfer.offset, new_transfer.size);
2136
2137        UFSDevice[LUN]->SSDReadInfo.push_back(new_transfer);
2138        UFSDevice[LUN]->SSDReadInfo.back().buffer.resize(sglist[count].size
2139                                                         + 1);
2140
2141        /**
2142         * The disk image is read here; but the action is simultated later
2143         * You can see this as the preparation stage, whereas later is the
2144         * simulation phase.
2145         */
2146        UFSDevice[LUN]->readFlash(&UFSDevice[LUN]->
2147                                  SSDReadInfo.back().buffer[0],
2148                                  offset + size_accum,
2149                                  sglist[count].size + 1);
2150
2151        size_accum += (sglist[count].size + 1);
2152
2153        DPRINTF(UFSHostDevice, "Transfer %d; Remaining: 0x%8x, Accumulated:"
2154                " 0x%8x\n", (count + 1), (size-size_accum), size_accum);
2155
2156        /** stats **/
2157        stats.totalReadSSD += (sglist[count].size + 1);
2158        stats.currentReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
2159        stats.averageReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
2160    }
2161
2162    UFSDevice[LUN]->SSDReadStart(sg_table_length);
2163
2164    /** stats **/
2165    ++stats.totalReadUFSTransactions;
2166
2167}
2168
2169
2170
2171/**
2172 * SSDisk start read; this function was created to keep the interfaces
2173 * between the layers simpler. Without this function UFSHost would need to
2174 * know about the flashdevice.
2175 */
2176
2177void
2178UFSHostDevice::UFSSCSIDevice::SSDReadStart(uint32_t total_read)
2179{
2180    totalRead = total_read;
2181    for (uint32_t number_handled = 0; number_handled < SSDReadInfo.size();
2182         number_handled++) {
2183        /**
2184         * Load all the read request to the Memory device.
2185         * It will call back when done.
2186         */
2187        flashDevice->readMemory(SSDReadInfo.front().filePointer,
2188                                SSDReadInfo.front().size, memReadCallback);
2189    }
2190
2191}
2192
2193
2194/**
2195 * SSDisk read done
2196 */
2197
2198void
2199UFSHostDevice::UFSSCSIDevice::SSDReadDone()
2200{
2201    DPRINTF(UFSHostDevice, "SSD read done at lun %d, Aiming for %d messages,"
2202            " %d so far\n", lunID, totalRead, amountOfReadTransfers);
2203
2204    if (totalRead == amountOfReadTransfers) {
2205        totalRead = 0;
2206        amountOfReadTransfers = 0;
2207
2208        /**Callback: transferdone*/
2209        setSignal();
2210        signalDone->process();
2211    }
2212
2213}
2214
2215/**
2216 * Read callback, on the way from the disk to the DMA. Called by the flash
2217 * layer. Intermediate step to the host layer
2218 */
2219void
2220UFSHostDevice::UFSSCSIDevice::readCallback()
2221{
2222    ++amountOfReadTransfers;
2223
2224    /**Callback; make sure data is transfered upstream:
2225     * UFSHostDevice::readCallback
2226     */
2227    setReadSignal();
2228    deviceReadCallback->process();
2229
2230    //Are we done yet?
2231    SSDReadDone();
2232}
2233
2234/**
2235 * Read callback, on the way from the disk to the DMA. Called by the UFSSCSI
2236 * layer.
2237 */
2238
2239void
2240UFSHostDevice::readCallback()
2241{
2242    DPRINTF(UFSHostDevice, "Read Callback\n");
2243    uint8_t this_lun = 0;
2244
2245    //while we haven't found the right lun, keep searching
2246    while((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedRead())
2247        ++this_lun;
2248
2249    DPRINTF(UFSHostDevice, "Found LUN %d messages pending for clean: %d\n",
2250            this_lun, SSDReadPending.size());
2251
2252    if (this_lun < lunAvail) {
2253        //Clear signal.
2254        UFSDevice[this_lun]->clearReadSignal();
2255        SSDReadPending.push_back(UFSDevice[this_lun]->SSDReadInfo.front());
2256        UFSDevice[this_lun]->SSDReadInfo.pop_front();
2257        readGarbageEventQueue.push_back(this);
2258
2259        //make sure the queue is popped a the end of the dma transaction
2260        readDevice(false, SSDReadPending.front().offset,
2261                   SSDReadPending.front().size,
2262                   &SSDReadPending.front().buffer[0], false,
2263                   &readGarbageEventQueue.back());
2264
2265        /**stats*/
2266        ++stats.totalReadDiskTransactions;
2267    }
2268    else
2269        panic("no read finished in tick %d\n", curTick());
2270}
2271
2272/**
2273 * After a disk read DMA transfer, the structure needs to be freed. This is
2274 * done in this function.
2275 */
2276void
2277UFSHostDevice::readGarbage()
2278{
2279    DPRINTF(UFSHostDevice, "Clean read data, %d\n", SSDReadPending.size());
2280    SSDReadPending.pop_front();
2281    readGarbageEventQueue.pop_front();
2282}
2283
2284/**
2285 * Serialize; needed to make checkpoints
2286 */
2287
2288void
2289UFSHostDevice::serialize(CheckpointOut &cp) const
2290{
2291    DmaDevice::serialize(cp);
2292
2293    const uint8_t* temp_HCI_mem = reinterpret_cast<const uint8_t*>(&UFSHCIMem);
2294    SERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
2295
2296    uint32_t lun_avail = lunAvail;
2297    SERIALIZE_SCALAR(lun_avail);
2298}
2299
2300
2301/**
2302 * Unserialize; needed to restore from checkpoints
2303 */
2304
2305void
2306UFSHostDevice::unserialize(CheckpointIn &cp)
2307{
2308    DmaDevice::unserialize(cp);
2309    uint8_t* temp_HCI_mem = reinterpret_cast<uint8_t*>(&UFSHCIMem);
2310    UNSERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
2311
2312    uint32_t lun_avail;
2313    UNSERIALIZE_SCALAR(lun_avail);
2314    assert(lunAvail == lun_avail);
2315}
2316
2317
2318/**
2319 * Drain; needed to enable checkpoints
2320 */
2321
2322DrainState
2323UFSHostDevice::drain()
2324{
2325    if (UFSHCIMem.TRUTRLDBR) {
2326        DPRINTF(UFSHostDevice, "UFSDevice is draining...\n");
2327        return DrainState::Draining;
2328    } else {
2329        DPRINTF(UFSHostDevice, "UFSDevice drained\n");
2330        return DrainState::Drained;
2331    }
2332}
2333
2334/**
2335 * Checkdrain; needed to enable checkpoints
2336 */
2337
2338void
2339UFSHostDevice::checkDrain()
2340{
2341    if (drainState() != DrainState::Draining)
2342        return;
2343
2344    if (UFSHCIMem.TRUTRLDBR) {
2345        DPRINTF(UFSHostDevice, "UFSDevice is still draining; with %d active"
2346            " doorbells\n", activeDoorbells);
2347    } else {
2348        DPRINTF(UFSHostDevice, "UFSDevice is done draining\n");
2349        signalDrainDone();
2350    }
2351}
2352