thread_context.hh revision 13905
1/*
2 * Copyright (c) 2011-2012, 2016-2018 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_THREAD_CONTEXT_HH__
45#define __CPU_THREAD_CONTEXT_HH__
46
47#include <iostream>
48#include <string>
49
50#include "arch/registers.hh"
51#include "arch/types.hh"
52#include "base/types.hh"
53#include "config/the_isa.hh"
54#include "cpu/reg_class.hh"
55
56// @todo: Figure out a more architecture independent way to obtain the ITB and
57// DTB pointers.
58namespace TheISA
59{
60    class ISA;
61    class Decoder;
62}
63class BaseCPU;
64class BaseTLB;
65class CheckerCPU;
66class Checkpoint;
67class EndQuiesceEvent;
68class SETranslatingPortProxy;
69class FSTranslatingPortProxy;
70class PortProxy;
71class Process;
72class System;
73namespace Kernel {
74    class Statistics;
75}
76
77/**
78 * ThreadContext is the external interface to all thread state for
79 * anything outside of the CPU. It provides all accessor methods to
80 * state that might be needed by external objects, ranging from
81 * register values to things such as kernel stats. It is an abstract
82 * base class; the CPU can create its own ThreadContext by
83 * deriving from it.
84 *
85 * The ThreadContext is slightly different than the ExecContext.  The
86 * ThreadContext provides access to an individual thread's state; an
87 * ExecContext provides ISA access to the CPU (meaning it is
88 * implicitly multithreaded on SMT systems).  Additionally the
89 * ThreadState is an abstract class that exactly defines the
90 * interface; the ExecContext is a more implicit interface that must
91 * be implemented so that the ISA can access whatever state it needs.
92 */
93class ThreadContext
94{
95  protected:
96    typedef TheISA::MachInst MachInst;
97    using VecRegContainer = TheISA::VecRegContainer;
98    using VecElem = TheISA::VecElem;
99    using VecPredRegContainer = TheISA::VecPredRegContainer;
100
101  public:
102
103    enum Status
104    {
105        /// Running.  Instructions should be executed only when
106        /// the context is in this state.
107        Active,
108
109        /// Temporarily inactive.  Entered while waiting for
110        /// synchronization, etc.
111        Suspended,
112
113        /// Trying to exit and waiting for an event to completely exit.
114        /// Entered when target executes an exit syscall.
115        Halting,
116
117        /// Permanently shut down.  Entered when target executes
118        /// m5exit pseudo-instruction.  When all contexts enter
119        /// this state, the simulation will terminate.
120        Halted
121    };
122
123    virtual ~ThreadContext() { };
124
125    virtual BaseCPU *getCpuPtr() = 0;
126
127    virtual int cpuId() const = 0;
128
129    virtual uint32_t socketId() const = 0;
130
131    virtual int threadId() const = 0;
132
133    virtual void setThreadId(int id) = 0;
134
135    virtual ContextID contextId() const = 0;
136
137    virtual void setContextId(ContextID id) = 0;
138
139    virtual BaseTLB *getITBPtr() = 0;
140
141    virtual BaseTLB *getDTBPtr() = 0;
142
143    virtual CheckerCPU *getCheckerCpuPtr() = 0;
144
145    virtual TheISA::ISA *getIsaPtr() = 0;
146
147    virtual TheISA::Decoder *getDecoderPtr() = 0;
148
149    virtual System *getSystemPtr() = 0;
150
151    virtual ::Kernel::Statistics *getKernelStats() = 0;
152
153    virtual PortProxy &getPhysProxy() = 0;
154
155    virtual FSTranslatingPortProxy &getVirtProxy() = 0;
156
157    /**
158     * Initialise the physical and virtual port proxies and tie them to
159     * the data port of the CPU.
160     *
161     * tc ThreadContext for the virtual-to-physical translation
162     */
163    virtual void initMemProxies(ThreadContext *tc) = 0;
164
165    virtual SETranslatingPortProxy &getMemProxy() = 0;
166
167    virtual Process *getProcessPtr() = 0;
168
169    virtual void setProcessPtr(Process *p) = 0;
170
171    virtual Status status() const = 0;
172
173    virtual void setStatus(Status new_status) = 0;
174
175    /// Set the status to Active.
176    virtual void activate() = 0;
177
178    /// Set the status to Suspended.
179    virtual void suspend() = 0;
180
181    /// Set the status to Halted.
182    virtual void halt() = 0;
183
184    /// Quiesce thread context
185    void quiesce();
186
187    /// Quiesce, suspend, and schedule activate at resume
188    void quiesceTick(Tick resume);
189
190    virtual void dumpFuncProfile() = 0;
191
192    virtual void takeOverFrom(ThreadContext *old_context) = 0;
193
194    virtual void regStats(const std::string &name) = 0;
195
196    virtual EndQuiesceEvent *getQuiesceEvent() = 0;
197
198    // Not necessarily the best location for these...
199    // Having an extra function just to read these is obnoxious
200    virtual Tick readLastActivate() = 0;
201    virtual Tick readLastSuspend() = 0;
202
203    virtual void profileClear() = 0;
204    virtual void profileSample() = 0;
205
206    virtual void copyArchRegs(ThreadContext *tc) = 0;
207
208    virtual void clearArchRegs() = 0;
209
210    //
211    // New accessors for new decoder.
212    //
213    virtual RegVal readIntReg(RegIndex reg_idx) const = 0;
214
215    virtual RegVal readFloatReg(RegIndex reg_idx) const = 0;
216
217    virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0;
218    virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0;
219
220    /** Vector Register Lane Interfaces. */
221    /** @{ */
222    /** Reads source vector 8bit operand. */
223    virtual ConstVecLane8
224    readVec8BitLaneReg(const RegId& reg) const = 0;
225
226    /** Reads source vector 16bit operand. */
227    virtual ConstVecLane16
228    readVec16BitLaneReg(const RegId& reg) const = 0;
229
230    /** Reads source vector 32bit operand. */
231    virtual ConstVecLane32
232    readVec32BitLaneReg(const RegId& reg) const = 0;
233
234    /** Reads source vector 64bit operand. */
235    virtual ConstVecLane64
236    readVec64BitLaneReg(const RegId& reg) const = 0;
237
238    /** Write a lane of the destination vector register. */
239    virtual void setVecLane(const RegId& reg,
240            const LaneData<LaneSize::Byte>& val) = 0;
241    virtual void setVecLane(const RegId& reg,
242            const LaneData<LaneSize::TwoByte>& val) = 0;
243    virtual void setVecLane(const RegId& reg,
244            const LaneData<LaneSize::FourByte>& val) = 0;
245    virtual void setVecLane(const RegId& reg,
246            const LaneData<LaneSize::EightByte>& val) = 0;
247    /** @} */
248
249    virtual const VecElem& readVecElem(const RegId& reg) const = 0;
250
251    virtual const VecPredRegContainer& readVecPredReg(const RegId& reg)
252        const = 0;
253    virtual VecPredRegContainer& getWritableVecPredReg(const RegId& reg) = 0;
254
255    virtual RegVal readCCReg(RegIndex reg_idx) const = 0;
256
257    virtual void setIntReg(RegIndex reg_idx, RegVal val) = 0;
258
259    virtual void setFloatReg(RegIndex reg_idx, RegVal val) = 0;
260
261    virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0;
262
263    virtual void setVecElem(const RegId& reg, const VecElem& val) = 0;
264
265    virtual void setVecPredReg(const RegId& reg,
266                               const VecPredRegContainer& val) = 0;
267
268    virtual void setCCReg(RegIndex reg_idx, RegVal val) = 0;
269
270    virtual TheISA::PCState pcState() const = 0;
271
272    virtual void pcState(const TheISA::PCState &val) = 0;
273
274    void
275    setNPC(Addr val)
276    {
277        TheISA::PCState pc_state = pcState();
278        pc_state.setNPC(val);
279        pcState(pc_state);
280    }
281
282    virtual void pcStateNoRecord(const TheISA::PCState &val) = 0;
283
284    virtual Addr instAddr() const = 0;
285
286    virtual Addr nextInstAddr() const = 0;
287
288    virtual MicroPC microPC() const = 0;
289
290    virtual RegVal readMiscRegNoEffect(RegIndex misc_reg) const = 0;
291
292    virtual RegVal readMiscReg(RegIndex misc_reg) = 0;
293
294    virtual void setMiscRegNoEffect(RegIndex misc_reg, RegVal val) = 0;
295
296    virtual void setMiscReg(RegIndex misc_reg, RegVal val) = 0;
297
298    virtual RegId flattenRegId(const RegId& regId) const = 0;
299
300    // Also not necessarily the best location for these two.  Hopefully will go
301    // away once we decide upon where st cond failures goes.
302    virtual unsigned readStCondFailures() const = 0;
303
304    virtual void setStCondFailures(unsigned sc_failures) = 0;
305
306    // Same with st cond failures.
307    virtual Counter readFuncExeInst() const = 0;
308
309    virtual void syscall(int64_t callnum, Fault *fault) = 0;
310
311    // This function exits the thread context in the CPU and returns
312    // 1 if the CPU has no more active threads (meaning it's OK to exit);
313    // Used in syscall-emulation mode when a  thread calls the exit syscall.
314    virtual int exit() { return 1; };
315
316    /** function to compare two thread contexts (for debugging) */
317    static void compare(ThreadContext *one, ThreadContext *two);
318
319    /** @{ */
320    /**
321     * Flat register interfaces
322     *
323     * Some architectures have different registers visible in
324     * different modes. Such architectures "flatten" a register (see
325     * flattenRegId()) to map it into the
326     * gem5 register file. This interface provides a flat interface to
327     * the underlying register file, which allows for example
328     * serialization code to access all registers.
329     */
330
331    virtual RegVal readIntRegFlat(RegIndex idx) const = 0;
332    virtual void setIntRegFlat(RegIndex idx, RegVal val) = 0;
333
334    virtual RegVal readFloatRegFlat(RegIndex idx) const = 0;
335    virtual void setFloatRegFlat(RegIndex idx, RegVal val) = 0;
336
337    virtual const VecRegContainer& readVecRegFlat(RegIndex idx) const = 0;
338    virtual VecRegContainer& getWritableVecRegFlat(RegIndex idx) = 0;
339    virtual void setVecRegFlat(RegIndex idx, const VecRegContainer& val) = 0;
340
341    virtual const VecElem& readVecElemFlat(RegIndex idx,
342                                           const ElemIndex& elemIdx) const = 0;
343    virtual void setVecElemFlat(RegIndex idx, const ElemIndex& elemIdx,
344                                const VecElem& val) = 0;
345
346    virtual const VecPredRegContainer &
347        readVecPredRegFlat(RegIndex idx) const = 0;
348    virtual VecPredRegContainer& getWritableVecPredRegFlat(RegIndex idx) = 0;
349    virtual void setVecPredRegFlat(RegIndex idx,
350                                   const VecPredRegContainer& val) = 0;
351
352    virtual RegVal readCCRegFlat(RegIndex idx) const = 0;
353    virtual void setCCRegFlat(RegIndex idx, RegVal val) = 0;
354    /** @} */
355
356};
357
358/** @{ */
359/**
360 * Thread context serialization helpers
361 *
362 * These helper functions provide a way to the data in a
363 * ThreadContext. They are provided as separate helper function since
364 * implementing them as members of the ThreadContext interface would
365 * be confusing when the ThreadContext is exported via a proxy.
366 */
367
368void serialize(const ThreadContext &tc, CheckpointOut &cp);
369void unserialize(ThreadContext &tc, CheckpointIn &cp);
370
371/** @} */
372
373
374/**
375 * Copy state between thread contexts in preparation for CPU handover.
376 *
377 * @note This method modifies the old thread contexts as well as the
378 * new thread context. The old thread context will have its quiesce
379 * event descheduled if it is scheduled and its status set to halted.
380 *
381 * @param new_tc Destination ThreadContext.
382 * @param old_tc Source ThreadContext.
383 */
384void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc);
385
386#endif
387