thread_context.hh revision 13900:d4bcfecd871e
1/*
2 * Copyright (c) 2011-2012, 2016-2018 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_THREAD_CONTEXT_HH__
45#define __CPU_THREAD_CONTEXT_HH__
46
47#include <iostream>
48#include <string>
49
50#include "arch/registers.hh"
51#include "arch/types.hh"
52#include "base/types.hh"
53#include "config/the_isa.hh"
54#include "cpu/reg_class.hh"
55
56// @todo: Figure out a more architecture independent way to obtain the ITB and
57// DTB pointers.
58namespace TheISA
59{
60    class ISA;
61    class Decoder;
62}
63class BaseCPU;
64class BaseTLB;
65class CheckerCPU;
66class Checkpoint;
67class EndQuiesceEvent;
68class SETranslatingPortProxy;
69class FSTranslatingPortProxy;
70class PortProxy;
71class Process;
72class System;
73namespace TheISA {
74    namespace Kernel {
75        class Statistics;
76    }
77}
78
79/**
80 * ThreadContext is the external interface to all thread state for
81 * anything outside of the CPU. It provides all accessor methods to
82 * state that might be needed by external objects, ranging from
83 * register values to things such as kernel stats. It is an abstract
84 * base class; the CPU can create its own ThreadContext by
85 * deriving from it.
86 *
87 * The ThreadContext is slightly different than the ExecContext.  The
88 * ThreadContext provides access to an individual thread's state; an
89 * ExecContext provides ISA access to the CPU (meaning it is
90 * implicitly multithreaded on SMT systems).  Additionally the
91 * ThreadState is an abstract class that exactly defines the
92 * interface; the ExecContext is a more implicit interface that must
93 * be implemented so that the ISA can access whatever state it needs.
94 */
95class ThreadContext
96{
97  protected:
98    typedef TheISA::MachInst MachInst;
99    using VecRegContainer = TheISA::VecRegContainer;
100    using VecElem = TheISA::VecElem;
101    using VecPredRegContainer = TheISA::VecPredRegContainer;
102
103  public:
104
105    enum Status
106    {
107        /// Running.  Instructions should be executed only when
108        /// the context is in this state.
109        Active,
110
111        /// Temporarily inactive.  Entered while waiting for
112        /// synchronization, etc.
113        Suspended,
114
115        /// Trying to exit and waiting for an event to completely exit.
116        /// Entered when target executes an exit syscall.
117        Halting,
118
119        /// Permanently shut down.  Entered when target executes
120        /// m5exit pseudo-instruction.  When all contexts enter
121        /// this state, the simulation will terminate.
122        Halted
123    };
124
125    virtual ~ThreadContext() { };
126
127    virtual BaseCPU *getCpuPtr() = 0;
128
129    virtual int cpuId() const = 0;
130
131    virtual uint32_t socketId() const = 0;
132
133    virtual int threadId() const = 0;
134
135    virtual void setThreadId(int id) = 0;
136
137    virtual ContextID contextId() const = 0;
138
139    virtual void setContextId(ContextID id) = 0;
140
141    virtual BaseTLB *getITBPtr() = 0;
142
143    virtual BaseTLB *getDTBPtr() = 0;
144
145    virtual CheckerCPU *getCheckerCpuPtr() = 0;
146
147    virtual TheISA::ISA *getIsaPtr() = 0;
148
149    virtual TheISA::Decoder *getDecoderPtr() = 0;
150
151    virtual System *getSystemPtr() = 0;
152
153    virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
154
155    virtual PortProxy &getPhysProxy() = 0;
156
157    virtual FSTranslatingPortProxy &getVirtProxy() = 0;
158
159    /**
160     * Initialise the physical and virtual port proxies and tie them to
161     * the data port of the CPU.
162     *
163     * tc ThreadContext for the virtual-to-physical translation
164     */
165    virtual void initMemProxies(ThreadContext *tc) = 0;
166
167    virtual SETranslatingPortProxy &getMemProxy() = 0;
168
169    virtual Process *getProcessPtr() = 0;
170
171    virtual void setProcessPtr(Process *p) = 0;
172
173    virtual Status status() const = 0;
174
175    virtual void setStatus(Status new_status) = 0;
176
177    /// Set the status to Active.
178    virtual void activate() = 0;
179
180    /// Set the status to Suspended.
181    virtual void suspend() = 0;
182
183    /// Set the status to Halted.
184    virtual void halt() = 0;
185
186    /// Quiesce thread context
187    void quiesce();
188
189    /// Quiesce, suspend, and schedule activate at resume
190    void quiesceTick(Tick resume);
191
192    virtual void dumpFuncProfile() = 0;
193
194    virtual void takeOverFrom(ThreadContext *old_context) = 0;
195
196    virtual void regStats(const std::string &name) = 0;
197
198    virtual EndQuiesceEvent *getQuiesceEvent() = 0;
199
200    // Not necessarily the best location for these...
201    // Having an extra function just to read these is obnoxious
202    virtual Tick readLastActivate() = 0;
203    virtual Tick readLastSuspend() = 0;
204
205    virtual void profileClear() = 0;
206    virtual void profileSample() = 0;
207
208    virtual void copyArchRegs(ThreadContext *tc) = 0;
209
210    virtual void clearArchRegs() = 0;
211
212    //
213    // New accessors for new decoder.
214    //
215    virtual RegVal readIntReg(RegIndex reg_idx) const = 0;
216
217    virtual RegVal readFloatReg(RegIndex reg_idx) const = 0;
218
219    virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0;
220    virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0;
221
222    /** Vector Register Lane Interfaces. */
223    /** @{ */
224    /** Reads source vector 8bit operand. */
225    virtual ConstVecLane8
226    readVec8BitLaneReg(const RegId& reg) const = 0;
227
228    /** Reads source vector 16bit operand. */
229    virtual ConstVecLane16
230    readVec16BitLaneReg(const RegId& reg) const = 0;
231
232    /** Reads source vector 32bit operand. */
233    virtual ConstVecLane32
234    readVec32BitLaneReg(const RegId& reg) const = 0;
235
236    /** Reads source vector 64bit operand. */
237    virtual ConstVecLane64
238    readVec64BitLaneReg(const RegId& reg) const = 0;
239
240    /** Write a lane of the destination vector register. */
241    virtual void setVecLane(const RegId& reg,
242            const LaneData<LaneSize::Byte>& val) = 0;
243    virtual void setVecLane(const RegId& reg,
244            const LaneData<LaneSize::TwoByte>& val) = 0;
245    virtual void setVecLane(const RegId& reg,
246            const LaneData<LaneSize::FourByte>& val) = 0;
247    virtual void setVecLane(const RegId& reg,
248            const LaneData<LaneSize::EightByte>& val) = 0;
249    /** @} */
250
251    virtual const VecElem& readVecElem(const RegId& reg) const = 0;
252
253    virtual const VecPredRegContainer& readVecPredReg(const RegId& reg)
254        const = 0;
255    virtual VecPredRegContainer& getWritableVecPredReg(const RegId& reg) = 0;
256
257    virtual RegVal readCCReg(RegIndex reg_idx) const = 0;
258
259    virtual void setIntReg(RegIndex reg_idx, RegVal val) = 0;
260
261    virtual void setFloatReg(RegIndex reg_idx, RegVal val) = 0;
262
263    virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0;
264
265    virtual void setVecElem(const RegId& reg, const VecElem& val) = 0;
266
267    virtual void setVecPredReg(const RegId& reg,
268                               const VecPredRegContainer& val) = 0;
269
270    virtual void setCCReg(RegIndex reg_idx, RegVal val) = 0;
271
272    virtual TheISA::PCState pcState() const = 0;
273
274    virtual void pcState(const TheISA::PCState &val) = 0;
275
276    void
277    setNPC(Addr val)
278    {
279        TheISA::PCState pc_state = pcState();
280        pc_state.setNPC(val);
281        pcState(pc_state);
282    }
283
284    virtual void pcStateNoRecord(const TheISA::PCState &val) = 0;
285
286    virtual Addr instAddr() const = 0;
287
288    virtual Addr nextInstAddr() const = 0;
289
290    virtual MicroPC microPC() const = 0;
291
292    virtual RegVal readMiscRegNoEffect(RegIndex misc_reg) const = 0;
293
294    virtual RegVal readMiscReg(RegIndex misc_reg) = 0;
295
296    virtual void setMiscRegNoEffect(RegIndex misc_reg, RegVal val) = 0;
297
298    virtual void setMiscReg(RegIndex misc_reg, RegVal val) = 0;
299
300    virtual RegId flattenRegId(const RegId& regId) const = 0;
301
302    // Also not necessarily the best location for these two.  Hopefully will go
303    // away once we decide upon where st cond failures goes.
304    virtual unsigned readStCondFailures() const = 0;
305
306    virtual void setStCondFailures(unsigned sc_failures) = 0;
307
308    // Same with st cond failures.
309    virtual Counter readFuncExeInst() const = 0;
310
311    virtual void syscall(int64_t callnum, Fault *fault) = 0;
312
313    // This function exits the thread context in the CPU and returns
314    // 1 if the CPU has no more active threads (meaning it's OK to exit);
315    // Used in syscall-emulation mode when a  thread calls the exit syscall.
316    virtual int exit() { return 1; };
317
318    /** function to compare two thread contexts (for debugging) */
319    static void compare(ThreadContext *one, ThreadContext *two);
320
321    /** @{ */
322    /**
323     * Flat register interfaces
324     *
325     * Some architectures have different registers visible in
326     * different modes. Such architectures "flatten" a register (see
327     * flattenRegId()) to map it into the
328     * gem5 register file. This interface provides a flat interface to
329     * the underlying register file, which allows for example
330     * serialization code to access all registers.
331     */
332
333    virtual RegVal readIntRegFlat(RegIndex idx) const = 0;
334    virtual void setIntRegFlat(RegIndex idx, RegVal val) = 0;
335
336    virtual RegVal readFloatRegFlat(RegIndex idx) const = 0;
337    virtual void setFloatRegFlat(RegIndex idx, RegVal val) = 0;
338
339    virtual const VecRegContainer& readVecRegFlat(RegIndex idx) const = 0;
340    virtual VecRegContainer& getWritableVecRegFlat(RegIndex idx) = 0;
341    virtual void setVecRegFlat(RegIndex idx, const VecRegContainer& val) = 0;
342
343    virtual const VecElem& readVecElemFlat(RegIndex idx,
344                                           const ElemIndex& elemIdx) const = 0;
345    virtual void setVecElemFlat(RegIndex idx, const ElemIndex& elemIdx,
346                                const VecElem& val) = 0;
347
348    virtual const VecPredRegContainer &
349        readVecPredRegFlat(RegIndex idx) const = 0;
350    virtual VecPredRegContainer& getWritableVecPredRegFlat(RegIndex idx) = 0;
351    virtual void setVecPredRegFlat(RegIndex idx,
352                                   const VecPredRegContainer& val) = 0;
353
354    virtual RegVal readCCRegFlat(RegIndex idx) const = 0;
355    virtual void setCCRegFlat(RegIndex idx, RegVal val) = 0;
356    /** @} */
357
358};
359
360/** @{ */
361/**
362 * Thread context serialization helpers
363 *
364 * These helper functions provide a way to the data in a
365 * ThreadContext. They are provided as separate helper function since
366 * implementing them as members of the ThreadContext interface would
367 * be confusing when the ThreadContext is exported via a proxy.
368 */
369
370void serialize(const ThreadContext &tc, CheckpointOut &cp);
371void unserialize(ThreadContext &tc, CheckpointIn &cp);
372
373/** @} */
374
375
376/**
377 * Copy state between thread contexts in preparation for CPU handover.
378 *
379 * @note This method modifies the old thread contexts as well as the
380 * new thread context. The old thread context will have its quiesce
381 * event descheduled if it is scheduled and its status set to halted.
382 *
383 * @param new_tc Destination ThreadContext.
384 * @param old_tc Source ThreadContext.
385 */
386void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc);
387
388#endif
389