thread_context.hh revision 13622:ba31c2a23eca
1/*
2 * Copyright (c) 2011-2012, 2016-2018 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_THREAD_CONTEXT_HH__
45#define __CPU_THREAD_CONTEXT_HH__
46
47#include <iostream>
48#include <string>
49
50#include "arch/registers.hh"
51#include "arch/types.hh"
52#include "base/types.hh"
53#include "config/the_isa.hh"
54#include "cpu/reg_class.hh"
55
56// @todo: Figure out a more architecture independent way to obtain the ITB and
57// DTB pointers.
58namespace TheISA
59{
60    class Decoder;
61}
62class BaseCPU;
63class BaseTLB;
64class CheckerCPU;
65class Checkpoint;
66class EndQuiesceEvent;
67class SETranslatingPortProxy;
68class FSTranslatingPortProxy;
69class PortProxy;
70class Process;
71class System;
72namespace TheISA {
73    namespace Kernel {
74        class Statistics;
75    }
76}
77
78/**
79 * ThreadContext is the external interface to all thread state for
80 * anything outside of the CPU. It provides all accessor methods to
81 * state that might be needed by external objects, ranging from
82 * register values to things such as kernel stats. It is an abstract
83 * base class; the CPU can create its own ThreadContext by either
84 * deriving from it, or using the templated ProxyThreadContext.
85 *
86 * The ThreadContext is slightly different than the ExecContext.  The
87 * ThreadContext provides access to an individual thread's state; an
88 * ExecContext provides ISA access to the CPU (meaning it is
89 * implicitly multithreaded on SMT systems).  Additionally the
90 * ThreadState is an abstract class that exactly defines the
91 * interface; the ExecContext is a more implicit interface that must
92 * be implemented so that the ISA can access whatever state it needs.
93 */
94class ThreadContext
95{
96  protected:
97    typedef TheISA::MachInst MachInst;
98    using VecRegContainer = TheISA::VecRegContainer;
99    using VecElem = TheISA::VecElem;
100    using VecPredRegContainer = TheISA::VecPredRegContainer;
101
102  public:
103
104    enum Status
105    {
106        /// Running.  Instructions should be executed only when
107        /// the context is in this state.
108        Active,
109
110        /// Temporarily inactive.  Entered while waiting for
111        /// synchronization, etc.
112        Suspended,
113
114        /// Permanently shut down.  Entered when target executes
115        /// m5exit pseudo-instruction.  When all contexts enter
116        /// this state, the simulation will terminate.
117        Halted
118    };
119
120    virtual ~ThreadContext() { };
121
122    virtual BaseCPU *getCpuPtr() = 0;
123
124    virtual int cpuId() const = 0;
125
126    virtual uint32_t socketId() const = 0;
127
128    virtual int threadId() const = 0;
129
130    virtual void setThreadId(int id) = 0;
131
132    virtual int contextId() const = 0;
133
134    virtual void setContextId(int id) = 0;
135
136    virtual BaseTLB *getITBPtr() = 0;
137
138    virtual BaseTLB *getDTBPtr() = 0;
139
140    virtual CheckerCPU *getCheckerCpuPtr() = 0;
141
142    virtual TheISA::Decoder *getDecoderPtr() = 0;
143
144    virtual System *getSystemPtr() = 0;
145
146    virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
147
148    virtual PortProxy &getPhysProxy() = 0;
149
150    virtual FSTranslatingPortProxy &getVirtProxy() = 0;
151
152    /**
153     * Initialise the physical and virtual port proxies and tie them to
154     * the data port of the CPU.
155     *
156     * tc ThreadContext for the virtual-to-physical translation
157     */
158    virtual void initMemProxies(ThreadContext *tc) = 0;
159
160    virtual SETranslatingPortProxy &getMemProxy() = 0;
161
162    virtual Process *getProcessPtr() = 0;
163
164    virtual void setProcessPtr(Process *p) = 0;
165
166    virtual Status status() const = 0;
167
168    virtual void setStatus(Status new_status) = 0;
169
170    /// Set the status to Active.
171    virtual void activate() = 0;
172
173    /// Set the status to Suspended.
174    virtual void suspend() = 0;
175
176    /// Set the status to Halted.
177    virtual void halt() = 0;
178
179    /// Quiesce thread context
180    void quiesce();
181
182    /// Quiesce, suspend, and schedule activate at resume
183    void quiesceTick(Tick resume);
184
185    virtual void dumpFuncProfile() = 0;
186
187    virtual void takeOverFrom(ThreadContext *old_context) = 0;
188
189    virtual void regStats(const std::string &name) = 0;
190
191    virtual EndQuiesceEvent *getQuiesceEvent() = 0;
192
193    // Not necessarily the best location for these...
194    // Having an extra function just to read these is obnoxious
195    virtual Tick readLastActivate() = 0;
196    virtual Tick readLastSuspend() = 0;
197
198    virtual void profileClear() = 0;
199    virtual void profileSample() = 0;
200
201    virtual void copyArchRegs(ThreadContext *tc) = 0;
202
203    virtual void clearArchRegs() = 0;
204
205    //
206    // New accessors for new decoder.
207    //
208    virtual RegVal readIntReg(int reg_idx) = 0;
209
210    virtual RegVal readFloatReg(int reg_idx) = 0;
211
212    virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0;
213    virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0;
214
215    /** Vector Register Lane Interfaces. */
216    /** @{ */
217    /** Reads source vector 8bit operand. */
218    virtual ConstVecLane8
219    readVec8BitLaneReg(const RegId& reg) const = 0;
220
221    /** Reads source vector 16bit operand. */
222    virtual ConstVecLane16
223    readVec16BitLaneReg(const RegId& reg) const = 0;
224
225    /** Reads source vector 32bit operand. */
226    virtual ConstVecLane32
227    readVec32BitLaneReg(const RegId& reg) const = 0;
228
229    /** Reads source vector 64bit operand. */
230    virtual ConstVecLane64
231    readVec64BitLaneReg(const RegId& reg) const = 0;
232
233    /** Write a lane of the destination vector register. */
234    virtual void setVecLane(const RegId& reg,
235            const LaneData<LaneSize::Byte>& val) = 0;
236    virtual void setVecLane(const RegId& reg,
237            const LaneData<LaneSize::TwoByte>& val) = 0;
238    virtual void setVecLane(const RegId& reg,
239            const LaneData<LaneSize::FourByte>& val) = 0;
240    virtual void setVecLane(const RegId& reg,
241            const LaneData<LaneSize::EightByte>& val) = 0;
242    /** @} */
243
244    virtual const VecElem& readVecElem(const RegId& reg) const = 0;
245
246    virtual const VecPredRegContainer& readVecPredReg(const RegId& reg)
247        const = 0;
248    virtual VecPredRegContainer& getWritableVecPredReg(const RegId& reg) = 0;
249
250    virtual RegVal readCCReg(int reg_idx) = 0;
251
252    virtual void setIntReg(int reg_idx, RegVal val) = 0;
253
254    virtual void setFloatReg(int reg_idx, RegVal val) = 0;
255
256    virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0;
257
258    virtual void setVecElem(const RegId& reg, const VecElem& val) = 0;
259
260    virtual void setVecPredReg(const RegId& reg,
261                               const VecPredRegContainer& val) = 0;
262
263    virtual void setCCReg(int reg_idx, RegVal val) = 0;
264
265    virtual TheISA::PCState pcState() = 0;
266
267    virtual void pcState(const TheISA::PCState &val) = 0;
268
269    void
270    setNPC(Addr val)
271    {
272        TheISA::PCState pc_state = pcState();
273        pc_state.setNPC(val);
274        pcState(pc_state);
275    }
276
277    virtual void pcStateNoRecord(const TheISA::PCState &val) = 0;
278
279    virtual Addr instAddr() = 0;
280
281    virtual Addr nextInstAddr() = 0;
282
283    virtual MicroPC microPC() = 0;
284
285    virtual RegVal readMiscRegNoEffect(int misc_reg) const = 0;
286
287    virtual RegVal readMiscReg(int misc_reg) = 0;
288
289    virtual void setMiscRegNoEffect(int misc_reg, RegVal val) = 0;
290
291    virtual void setMiscReg(int misc_reg, RegVal val) = 0;
292
293    virtual RegId flattenRegId(const RegId& regId) const = 0;
294
295    virtual RegVal
296    readRegOtherThread(const RegId& misc_reg, ThreadID tid)
297    {
298        return 0;
299    }
300
301    virtual void
302    setRegOtherThread(const RegId& misc_reg, RegVal val, ThreadID tid)
303    {
304    }
305
306    // Also not necessarily the best location for these two.  Hopefully will go
307    // away once we decide upon where st cond failures goes.
308    virtual unsigned readStCondFailures() = 0;
309
310    virtual void setStCondFailures(unsigned sc_failures) = 0;
311
312    // Same with st cond failures.
313    virtual Counter readFuncExeInst() = 0;
314
315    virtual void syscall(int64_t callnum, Fault *fault) = 0;
316
317    // This function exits the thread context in the CPU and returns
318    // 1 if the CPU has no more active threads (meaning it's OK to exit);
319    // Used in syscall-emulation mode when a  thread calls the exit syscall.
320    virtual int exit() { return 1; };
321
322    /** function to compare two thread contexts (for debugging) */
323    static void compare(ThreadContext *one, ThreadContext *two);
324
325    /** @{ */
326    /**
327     * Flat register interfaces
328     *
329     * Some architectures have different registers visible in
330     * different modes. Such architectures "flatten" a register (see
331     * flattenRegId()) to map it into the
332     * gem5 register file. This interface provides a flat interface to
333     * the underlying register file, which allows for example
334     * serialization code to access all registers.
335     */
336
337    virtual RegVal readIntRegFlat(int idx) = 0;
338    virtual void setIntRegFlat(int idx, RegVal val) = 0;
339
340    virtual RegVal readFloatRegFlat(int idx) = 0;
341    virtual void setFloatRegFlat(int idx, RegVal val) = 0;
342
343    virtual const VecRegContainer& readVecRegFlat(int idx) const = 0;
344    virtual VecRegContainer& getWritableVecRegFlat(int idx) = 0;
345    virtual void setVecRegFlat(int idx, const VecRegContainer& val) = 0;
346
347    virtual const VecElem& readVecElemFlat(const RegIndex& idx,
348                                           const ElemIndex& elemIdx) const = 0;
349    virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx,
350                                const VecElem& val) = 0;
351
352    virtual const VecPredRegContainer& readVecPredRegFlat(int idx) const = 0;
353    virtual VecPredRegContainer& getWritableVecPredRegFlat(int idx) = 0;
354    virtual void setVecPredRegFlat(int idx,
355                                   const VecPredRegContainer& val) = 0;
356
357    virtual RegVal readCCRegFlat(int idx) = 0;
358    virtual void setCCRegFlat(int idx, RegVal val) = 0;
359    /** @} */
360
361};
362
363/**
364 * ProxyThreadContext class that provides a way to implement a
365 * ThreadContext without having to derive from it. ThreadContext is an
366 * abstract class, so anything that derives from it and uses its
367 * interface will pay the overhead of virtual function calls.  This
368 * class is created to enable a user-defined Thread object to be used
369 * wherever ThreadContexts are used, without paying the overhead of
370 * virtual function calls when it is used by itself.  See
371 * simple_thread.hh for an example of this.
372 */
373template <class TC>
374class ProxyThreadContext : public ThreadContext
375{
376  public:
377    ProxyThreadContext(TC *actual_tc)
378    { actualTC = actual_tc; }
379
380  private:
381    TC *actualTC;
382
383  public:
384
385    BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }
386
387    int cpuId() const { return actualTC->cpuId(); }
388
389    uint32_t socketId() const { return actualTC->socketId(); }
390
391    int threadId() const { return actualTC->threadId(); }
392
393    void setThreadId(int id) { actualTC->setThreadId(id); }
394
395    int contextId() const { return actualTC->contextId(); }
396
397    void setContextId(int id) { actualTC->setContextId(id); }
398
399    BaseTLB *getITBPtr() { return actualTC->getITBPtr(); }
400
401    BaseTLB *getDTBPtr() { return actualTC->getDTBPtr(); }
402
403    CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); }
404
405    TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); }
406
407    System *getSystemPtr() { return actualTC->getSystemPtr(); }
408
409    TheISA::Kernel::Statistics *getKernelStats()
410    { return actualTC->getKernelStats(); }
411
412    PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); }
413
414    FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); }
415
416    void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); }
417
418    SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); }
419
420    Process *getProcessPtr() { return actualTC->getProcessPtr(); }
421
422    void setProcessPtr(Process *p) { actualTC->setProcessPtr(p); }
423
424    Status status() const { return actualTC->status(); }
425
426    void setStatus(Status new_status) { actualTC->setStatus(new_status); }
427
428    /// Set the status to Active.
429    void activate() { actualTC->activate(); }
430
431    /// Set the status to Suspended.
432    void suspend() { actualTC->suspend(); }
433
434    /// Set the status to Halted.
435    void halt() { actualTC->halt(); }
436
437    /// Quiesce thread context
438    void quiesce() { actualTC->quiesce(); }
439
440    /// Quiesce, suspend, and schedule activate at resume
441    void quiesceTick(Tick resume) { actualTC->quiesceTick(resume); }
442
443    void dumpFuncProfile() { actualTC->dumpFuncProfile(); }
444
445    void takeOverFrom(ThreadContext *oldContext)
446    { actualTC->takeOverFrom(oldContext); }
447
448    void regStats(const std::string &name) { actualTC->regStats(name); }
449
450    EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }
451
452    Tick readLastActivate() { return actualTC->readLastActivate(); }
453    Tick readLastSuspend() { return actualTC->readLastSuspend(); }
454
455    void profileClear() { return actualTC->profileClear(); }
456    void profileSample() { return actualTC->profileSample(); }
457
458    // @todo: Do I need this?
459    void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }
460
461    void clearArchRegs() { actualTC->clearArchRegs(); }
462
463    //
464    // New accessors for new decoder.
465    //
466    RegVal readIntReg(int reg_idx)
467    { return actualTC->readIntReg(reg_idx); }
468
469    RegVal readFloatReg(int reg_idx)
470    { return actualTC->readFloatReg(reg_idx); }
471
472    const VecRegContainer& readVecReg(const RegId& reg) const
473    { return actualTC->readVecReg(reg); }
474
475    VecRegContainer& getWritableVecReg(const RegId& reg)
476    { return actualTC->getWritableVecReg(reg); }
477
478    /** Vector Register Lane Interfaces. */
479    /** @{ */
480    /** Reads source vector 8bit operand. */
481    ConstVecLane8
482    readVec8BitLaneReg(const RegId& reg) const
483    { return actualTC->readVec8BitLaneReg(reg); }
484
485    /** Reads source vector 16bit operand. */
486    ConstVecLane16
487    readVec16BitLaneReg(const RegId& reg) const
488    { return actualTC->readVec16BitLaneReg(reg); }
489
490    /** Reads source vector 32bit operand. */
491    ConstVecLane32
492    readVec32BitLaneReg(const RegId& reg) const
493    { return actualTC->readVec32BitLaneReg(reg); }
494
495    /** Reads source vector 64bit operand. */
496    ConstVecLane64
497    readVec64BitLaneReg(const RegId& reg) const
498    { return actualTC->readVec64BitLaneReg(reg); }
499
500    /** Write a lane of the destination vector register. */
501    virtual void setVecLane(const RegId& reg,
502            const LaneData<LaneSize::Byte>& val)
503    { return actualTC->setVecLane(reg, val); }
504    virtual void setVecLane(const RegId& reg,
505            const LaneData<LaneSize::TwoByte>& val)
506    { return actualTC->setVecLane(reg, val); }
507    virtual void setVecLane(const RegId& reg,
508            const LaneData<LaneSize::FourByte>& val)
509    { return actualTC->setVecLane(reg, val); }
510    virtual void setVecLane(const RegId& reg,
511            const LaneData<LaneSize::EightByte>& val)
512    { return actualTC->setVecLane(reg, val); }
513    /** @} */
514
515    const VecElem& readVecElem(const RegId& reg) const
516    { return actualTC->readVecElem(reg); }
517
518    const VecPredRegContainer& readVecPredReg(const RegId& reg) const
519    { return actualTC->readVecPredReg(reg); }
520
521    VecPredRegContainer& getWritableVecPredReg(const RegId& reg)
522    { return actualTC->getWritableVecPredReg(reg); }
523
524    RegVal readCCReg(int reg_idx)
525    { return actualTC->readCCReg(reg_idx); }
526
527    void setIntReg(int reg_idx, RegVal val)
528    { actualTC->setIntReg(reg_idx, val); }
529
530    void setFloatReg(int reg_idx, RegVal val)
531    { actualTC->setFloatReg(reg_idx, val); }
532
533    void setVecReg(const RegId& reg, const VecRegContainer& val)
534    { actualTC->setVecReg(reg, val); }
535
536    void setVecPredReg(const RegId& reg, const VecPredRegContainer& val)
537    { actualTC->setVecPredReg(reg, val); }
538
539    void setVecElem(const RegId& reg, const VecElem& val)
540    { actualTC->setVecElem(reg, val); }
541
542    void setCCReg(int reg_idx, RegVal val)
543    { actualTC->setCCReg(reg_idx, val); }
544
545    TheISA::PCState pcState() { return actualTC->pcState(); }
546
547    void pcState(const TheISA::PCState &val) { actualTC->pcState(val); }
548
549    void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); }
550
551    Addr instAddr() { return actualTC->instAddr(); }
552    Addr nextInstAddr() { return actualTC->nextInstAddr(); }
553    MicroPC microPC() { return actualTC->microPC(); }
554
555    bool readPredicate() { return actualTC->readPredicate(); }
556
557    void setPredicate(bool val)
558    { actualTC->setPredicate(val); }
559
560    RegVal readMiscRegNoEffect(int misc_reg) const
561    { return actualTC->readMiscRegNoEffect(misc_reg); }
562
563    RegVal readMiscReg(int misc_reg)
564    { return actualTC->readMiscReg(misc_reg); }
565
566    void setMiscRegNoEffect(int misc_reg, RegVal val)
567    { return actualTC->setMiscRegNoEffect(misc_reg, val); }
568
569    void setMiscReg(int misc_reg, RegVal val)
570    { return actualTC->setMiscReg(misc_reg, val); }
571
572    RegId flattenRegId(const RegId& regId) const
573    { return actualTC->flattenRegId(regId); }
574
575    unsigned readStCondFailures()
576    { return actualTC->readStCondFailures(); }
577
578    void setStCondFailures(unsigned sc_failures)
579    { actualTC->setStCondFailures(sc_failures); }
580
581    void syscall(int64_t callnum, Fault *fault)
582    { actualTC->syscall(callnum, fault); }
583
584    Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
585
586    RegVal readIntRegFlat(int idx)
587    { return actualTC->readIntRegFlat(idx); }
588
589    void setIntRegFlat(int idx, RegVal val)
590    { actualTC->setIntRegFlat(idx, val); }
591
592    RegVal readFloatRegFlat(int idx)
593    { return actualTC->readFloatRegFlat(idx); }
594
595    void setFloatRegFlat(int idx, RegVal val)
596    { actualTC->setFloatRegFlat(idx, val); }
597
598    const VecRegContainer& readVecRegFlat(int id) const
599    { return actualTC->readVecRegFlat(id); }
600
601    VecRegContainer& getWritableVecRegFlat(int id)
602    { return actualTC->getWritableVecRegFlat(id); }
603
604    void setVecRegFlat(int idx, const VecRegContainer& val)
605    { actualTC->setVecRegFlat(idx, val); }
606
607    const VecElem& readVecElemFlat(const RegIndex& id,
608                                   const ElemIndex& elemIndex) const
609    { return actualTC->readVecElemFlat(id, elemIndex); }
610
611    void setVecElemFlat(const RegIndex& id, const ElemIndex& elemIndex,
612                        const VecElem& val)
613    { actualTC->setVecElemFlat(id, elemIndex, val); }
614
615    const VecPredRegContainer& readVecPredRegFlat(int id) const
616    { return actualTC->readVecPredRegFlat(id); }
617
618    VecPredRegContainer& getWritableVecPredRegFlat(int id)
619    { return actualTC->getWritableVecPredRegFlat(id); }
620
621    void setVecPredRegFlat(int idx, const VecPredRegContainer& val)
622    { actualTC->setVecPredRegFlat(idx, val); }
623
624    RegVal readCCRegFlat(int idx)
625    { return actualTC->readCCRegFlat(idx); }
626
627    void setCCRegFlat(int idx, RegVal val)
628    { actualTC->setCCRegFlat(idx, val); }
629};
630
631/** @{ */
632/**
633 * Thread context serialization helpers
634 *
635 * These helper functions provide a way to the data in a
636 * ThreadContext. They are provided as separate helper function since
637 * implementing them as members of the ThreadContext interface would
638 * be confusing when the ThreadContext is exported via a proxy.
639 */
640
641void serialize(ThreadContext &tc, CheckpointOut &cp);
642void unserialize(ThreadContext &tc, CheckpointIn &cp);
643
644/** @} */
645
646
647/**
648 * Copy state between thread contexts in preparation for CPU handover.
649 *
650 * @note This method modifies the old thread contexts as well as the
651 * new thread context. The old thread context will have its quiesce
652 * event descheduled if it is scheduled and its status set to halted.
653 *
654 * @param new_tc Destination ThreadContext.
655 * @param old_tc Source ThreadContext.
656 */
657void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc);
658
659#endif
660