simple_thread.hh revision 8794:e2ac2b7164dd
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/registers.hh"
38#include "arch/tlb.hh"
39#include "arch/types.hh"
40#include "base/types.hh"
41#include "config/the_isa.hh"
42#include "cpu/decode.hh"
43#include "cpu/thread_context.hh"
44#include "cpu/thread_state.hh"
45#include "debug/FloatRegs.hh"
46#include "debug/IntRegs.hh"
47#include "mem/page_table.hh"
48#include "mem/request.hh"
49#include "sim/byteswap.hh"
50#include "sim/eventq.hh"
51#include "sim/process.hh"
52#include "sim/serialize.hh"
53#include "sim/system.hh"
54
55class BaseCPU;
56
57
58class FunctionProfile;
59class ProfileNode;
60class FunctionalPort;
61class PhysicalPort;
62class TranslatingPort;
63
64namespace TheISA {
65    namespace Kernel {
66        class Statistics;
67    };
68};
69
70/**
71 * The SimpleThread object provides a combination of the ThreadState
72 * object and the ThreadContext interface. It implements the
73 * ThreadContext interface so that a ProxyThreadContext class can be
74 * made using SimpleThread as the template parameter (see
75 * thread_context.hh). It adds to the ThreadState object by adding all
76 * the objects needed for simple functional execution, including a
77 * simple architectural register file, and pointers to the ITB and DTB
78 * in full system mode. For CPU models that do not need more advanced
79 * ways to hold state (i.e. a separate physical register file, or
80 * separate fetch and commit PC's), this SimpleThread class provides
81 * all the necessary state for full architecture-level functional
82 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
83 * examples.
84 */
85
86class SimpleThread : public ThreadState
87{
88  protected:
89    typedef TheISA::MachInst MachInst;
90    typedef TheISA::MiscReg MiscReg;
91    typedef TheISA::FloatReg FloatReg;
92    typedef TheISA::FloatRegBits FloatRegBits;
93  public:
94    typedef ThreadContext::Status Status;
95
96  protected:
97    union {
98        FloatReg f[TheISA::NumFloatRegs];
99        FloatRegBits i[TheISA::NumFloatRegs];
100    } floatRegs;
101    TheISA::IntReg intRegs[TheISA::NumIntRegs];
102    TheISA::ISA isa;    // one "instance" of the current ISA.
103
104    TheISA::PCState _pcState;
105
106    /** Did this instruction execute or is it predicated false */
107    bool predicate;
108
109  public:
110    std::string name() const
111    {
112        return csprintf("%s.[tid:%i]", cpu->name(), tc->threadId());
113    }
114
115    // pointer to CPU associated with this SimpleThread
116    BaseCPU *cpu;
117
118    ProxyThreadContext<SimpleThread> *tc;
119
120    System *system;
121
122    TheISA::TLB *itb;
123    TheISA::TLB *dtb;
124
125    Decoder decoder;
126
127    // constructor: initialize SimpleThread from given process structure
128    // FS
129    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
130                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
131                 bool use_kernel_stats = true);
132    // SE
133    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
134                 TheISA::TLB *_itb, TheISA::TLB *_dtb);
135
136    SimpleThread();
137
138    virtual ~SimpleThread();
139
140    virtual void takeOverFrom(ThreadContext *oldContext);
141
142    void regStats(const std::string &name);
143
144    void copyTC(ThreadContext *context);
145
146    void copyState(ThreadContext *oldContext);
147
148    void serialize(std::ostream &os);
149    void unserialize(Checkpoint *cp, const std::string &section);
150
151    /***************************************************************
152     *  SimpleThread functions to provide CPU with access to various
153     *  state.
154     **************************************************************/
155
156    /** Returns the pointer to this SimpleThread's ThreadContext. Used
157     *  when a ThreadContext must be passed to objects outside of the
158     *  CPU.
159     */
160    ThreadContext *getTC() { return tc; }
161
162    void demapPage(Addr vaddr, uint64_t asn)
163    {
164        itb->demapPage(vaddr, asn);
165        dtb->demapPage(vaddr, asn);
166    }
167
168    void demapInstPage(Addr vaddr, uint64_t asn)
169    {
170        itb->demapPage(vaddr, asn);
171    }
172
173    void demapDataPage(Addr vaddr, uint64_t asn)
174    {
175        dtb->demapPage(vaddr, asn);
176    }
177
178    void dumpFuncProfile();
179
180    Fault hwrei();
181
182    bool simPalCheck(int palFunc);
183
184    /*******************************************
185     * ThreadContext interface functions.
186     ******************************************/
187
188    BaseCPU *getCpuPtr() { return cpu; }
189
190    TheISA::TLB *getITBPtr() { return itb; }
191
192    TheISA::TLB *getDTBPtr() { return dtb; }
193
194    Decoder *getDecoderPtr() { return &decoder; }
195
196    System *getSystemPtr() { return system; }
197
198    FunctionalPort *getPhysPort() { return physPort; }
199
200    /** Return a virtual port. This port cannot be cached locally in an object.
201     * After a CPU switch it may point to the wrong memory object which could
202     * mean stale data.
203     */
204    VirtualPort *getVirtPort() { return virtPort; }
205
206    Status status() const { return _status; }
207
208    void setStatus(Status newStatus) { _status = newStatus; }
209
210    /// Set the status to Active.  Optional delay indicates number of
211    /// cycles to wait before beginning execution.
212    void activate(int delay = 1);
213
214    /// Set the status to Suspended.
215    void suspend();
216
217    /// Set the status to Halted.
218    void halt();
219
220    virtual bool misspeculating();
221
222    void copyArchRegs(ThreadContext *tc);
223
224    void clearArchRegs()
225    {
226        _pcState = 0;
227        memset(intRegs, 0, sizeof(intRegs));
228        memset(floatRegs.i, 0, sizeof(floatRegs.i));
229        isa.clear();
230    }
231
232    //
233    // New accessors for new decoder.
234    //
235    uint64_t readIntReg(int reg_idx)
236    {
237        int flatIndex = isa.flattenIntIndex(reg_idx);
238        assert(flatIndex < TheISA::NumIntRegs);
239        uint64_t regVal = intRegs[flatIndex];
240        DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
241                reg_idx, flatIndex, regVal);
242        return regVal;
243    }
244
245    FloatReg readFloatReg(int reg_idx)
246    {
247        int flatIndex = isa.flattenFloatIndex(reg_idx);
248        assert(flatIndex < TheISA::NumFloatRegs);
249        FloatReg regVal = floatRegs.f[flatIndex];
250        DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n",
251                reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]);
252        return regVal;
253    }
254
255    FloatRegBits readFloatRegBits(int reg_idx)
256    {
257        int flatIndex = isa.flattenFloatIndex(reg_idx);
258        assert(flatIndex < TheISA::NumFloatRegs);
259        FloatRegBits regVal = floatRegs.i[flatIndex];
260        DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
261                reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
262        return regVal;
263    }
264
265    void setIntReg(int reg_idx, uint64_t val)
266    {
267        int flatIndex = isa.flattenIntIndex(reg_idx);
268        assert(flatIndex < TheISA::NumIntRegs);
269        DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
270                reg_idx, flatIndex, val);
271        intRegs[flatIndex] = val;
272    }
273
274    void setFloatReg(int reg_idx, FloatReg val)
275    {
276        int flatIndex = isa.flattenFloatIndex(reg_idx);
277        assert(flatIndex < TheISA::NumFloatRegs);
278        floatRegs.f[flatIndex] = val;
279        DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n",
280                reg_idx, flatIndex, val, floatRegs.i[flatIndex]);
281    }
282
283    void setFloatRegBits(int reg_idx, FloatRegBits val)
284    {
285        int flatIndex = isa.flattenFloatIndex(reg_idx);
286        assert(flatIndex < TheISA::NumFloatRegs);
287        floatRegs.i[flatIndex] = val;
288        DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
289                reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
290    }
291
292    TheISA::PCState
293    pcState()
294    {
295        return _pcState;
296    }
297
298    void
299    pcState(const TheISA::PCState &val)
300    {
301        _pcState = val;
302    }
303
304    Addr
305    instAddr()
306    {
307        return _pcState.instAddr();
308    }
309
310    Addr
311    nextInstAddr()
312    {
313        return _pcState.nextInstAddr();
314    }
315
316    MicroPC
317    microPC()
318    {
319        return _pcState.microPC();
320    }
321
322    bool readPredicate()
323    {
324        return predicate;
325    }
326
327    void setPredicate(bool val)
328    {
329        predicate = val;
330    }
331
332    MiscReg
333    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
334    {
335        return isa.readMiscRegNoEffect(misc_reg);
336    }
337
338    MiscReg
339    readMiscReg(int misc_reg, ThreadID tid = 0)
340    {
341        return isa.readMiscReg(misc_reg, tc);
342    }
343
344    void
345    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
346    {
347        return isa.setMiscRegNoEffect(misc_reg, val);
348    }
349
350    void
351    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
352    {
353        return isa.setMiscReg(misc_reg, val, tc);
354    }
355
356    int
357    flattenIntIndex(int reg)
358    {
359        return isa.flattenIntIndex(reg);
360    }
361
362    int
363    flattenFloatIndex(int reg)
364    {
365        return isa.flattenFloatIndex(reg);
366    }
367
368    unsigned readStCondFailures() { return storeCondFailures; }
369
370    void setStCondFailures(unsigned sc_failures)
371    { storeCondFailures = sc_failures; }
372
373    void syscall(int64_t callnum)
374    {
375        process->syscall(callnum, tc);
376    }
377};
378
379
380// for non-speculative execution context, spec_mode is always false
381inline bool
382SimpleThread::misspeculating()
383{
384    return false;
385}
386
387#endif // __CPU_CPU_EXEC_CONTEXT_HH__
388