simple_thread.hh revision 8541
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/registers.hh"
38#include "arch/tlb.hh"
39#include "arch/types.hh"
40#include "base/types.hh"
41#include "config/full_system.hh"
42#include "config/the_isa.hh"
43#include "cpu/decode.hh"
44#include "cpu/thread_context.hh"
45#include "cpu/thread_state.hh"
46#include "debug/FloatRegs.hh"
47#include "debug/IntRegs.hh"
48#include "mem/request.hh"
49#include "sim/byteswap.hh"
50#include "sim/eventq.hh"
51#include "sim/serialize.hh"
52
53class BaseCPU;
54
55#if FULL_SYSTEM
56
57#include "sim/system.hh"
58
59class FunctionProfile;
60class ProfileNode;
61class FunctionalPort;
62class PhysicalPort;
63
64namespace TheISA {
65    namespace Kernel {
66        class Statistics;
67    };
68};
69
70#else // !FULL_SYSTEM
71
72#include "mem/page_table.hh"
73#include "sim/process.hh"
74class TranslatingPort;
75
76#endif // FULL_SYSTEM
77
78/**
79 * The SimpleThread object provides a combination of the ThreadState
80 * object and the ThreadContext interface. It implements the
81 * ThreadContext interface so that a ProxyThreadContext class can be
82 * made using SimpleThread as the template parameter (see
83 * thread_context.hh). It adds to the ThreadState object by adding all
84 * the objects needed for simple functional execution, including a
85 * simple architectural register file, and pointers to the ITB and DTB
86 * in full system mode. For CPU models that do not need more advanced
87 * ways to hold state (i.e. a separate physical register file, or
88 * separate fetch and commit PC's), this SimpleThread class provides
89 * all the necessary state for full architecture-level functional
90 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
91 * examples.
92 */
93
94class SimpleThread : public ThreadState
95{
96  protected:
97    typedef TheISA::MachInst MachInst;
98    typedef TheISA::MiscReg MiscReg;
99    typedef TheISA::FloatReg FloatReg;
100    typedef TheISA::FloatRegBits FloatRegBits;
101  public:
102    typedef ThreadContext::Status Status;
103
104  protected:
105    union {
106        FloatReg f[TheISA::NumFloatRegs];
107        FloatRegBits i[TheISA::NumFloatRegs];
108    } floatRegs;
109    TheISA::IntReg intRegs[TheISA::NumIntRegs];
110    TheISA::ISA isa;    // one "instance" of the current ISA.
111
112    TheISA::PCState _pcState;
113
114    /** Did this instruction execute or is it predicated false */
115    bool predicate;
116
117  public:
118    std::string name() const
119    {
120        return csprintf("%s.[tid:%i]", cpu->name(), tc->threadId());
121    }
122
123    // pointer to CPU associated with this SimpleThread
124    BaseCPU *cpu;
125
126    ProxyThreadContext<SimpleThread> *tc;
127
128    System *system;
129
130    TheISA::TLB *itb;
131    TheISA::TLB *dtb;
132
133    Decoder decoder;
134
135    // constructor: initialize SimpleThread from given process structure
136#if FULL_SYSTEM
137    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
138                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
139                 bool use_kernel_stats = true);
140#else
141    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
142                 TheISA::TLB *_itb, TheISA::TLB *_dtb);
143#endif
144
145    SimpleThread();
146
147    virtual ~SimpleThread();
148
149    virtual void takeOverFrom(ThreadContext *oldContext);
150
151    void regStats(const std::string &name);
152
153    void copyTC(ThreadContext *context);
154
155    void copyState(ThreadContext *oldContext);
156
157    void serialize(std::ostream &os);
158    void unserialize(Checkpoint *cp, const std::string &section);
159
160    /***************************************************************
161     *  SimpleThread functions to provide CPU with access to various
162     *  state.
163     **************************************************************/
164
165    /** Returns the pointer to this SimpleThread's ThreadContext. Used
166     *  when a ThreadContext must be passed to objects outside of the
167     *  CPU.
168     */
169    ThreadContext *getTC() { return tc; }
170
171    void demapPage(Addr vaddr, uint64_t asn)
172    {
173        itb->demapPage(vaddr, asn);
174        dtb->demapPage(vaddr, asn);
175    }
176
177    void demapInstPage(Addr vaddr, uint64_t asn)
178    {
179        itb->demapPage(vaddr, asn);
180    }
181
182    void demapDataPage(Addr vaddr, uint64_t asn)
183    {
184        dtb->demapPage(vaddr, asn);
185    }
186
187#if FULL_SYSTEM
188    void dumpFuncProfile();
189
190    Fault hwrei();
191
192    bool simPalCheck(int palFunc);
193
194#endif
195
196    /*******************************************
197     * ThreadContext interface functions.
198     ******************************************/
199
200    BaseCPU *getCpuPtr() { return cpu; }
201
202    TheISA::TLB *getITBPtr() { return itb; }
203
204    TheISA::TLB *getDTBPtr() { return dtb; }
205
206    Decoder *getDecoderPtr() { return &decoder; }
207
208    System *getSystemPtr() { return system; }
209
210#if FULL_SYSTEM
211    FunctionalPort *getPhysPort() { return physPort; }
212
213    /** Return a virtual port. This port cannot be cached locally in an object.
214     * After a CPU switch it may point to the wrong memory object which could
215     * mean stale data.
216     */
217    VirtualPort *getVirtPort() { return virtPort; }
218#endif
219
220    Status status() const { return _status; }
221
222    void setStatus(Status newStatus) { _status = newStatus; }
223
224    /// Set the status to Active.  Optional delay indicates number of
225    /// cycles to wait before beginning execution.
226    void activate(int delay = 1);
227
228    /// Set the status to Suspended.
229    void suspend();
230
231    /// Set the status to Halted.
232    void halt();
233
234    virtual bool misspeculating();
235
236    void copyArchRegs(ThreadContext *tc);
237
238    void clearArchRegs()
239    {
240        _pcState = 0;
241        memset(intRegs, 0, sizeof(intRegs));
242        memset(floatRegs.i, 0, sizeof(floatRegs.i));
243        isa.clear();
244    }
245
246    //
247    // New accessors for new decoder.
248    //
249    uint64_t readIntReg(int reg_idx)
250    {
251        int flatIndex = isa.flattenIntIndex(reg_idx);
252        assert(flatIndex < TheISA::NumIntRegs);
253        uint64_t regVal = intRegs[flatIndex];
254        DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
255                reg_idx, flatIndex, regVal);
256        return regVal;
257    }
258
259    FloatReg readFloatReg(int reg_idx)
260    {
261        int flatIndex = isa.flattenFloatIndex(reg_idx);
262        assert(flatIndex < TheISA::NumFloatRegs);
263        FloatReg regVal = floatRegs.f[flatIndex];
264        DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n",
265                reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]);
266        return regVal;
267    }
268
269    FloatRegBits readFloatRegBits(int reg_idx)
270    {
271        int flatIndex = isa.flattenFloatIndex(reg_idx);
272        assert(flatIndex < TheISA::NumFloatRegs);
273        FloatRegBits regVal = floatRegs.i[flatIndex];
274        DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
275                reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
276        return regVal;
277    }
278
279    void setIntReg(int reg_idx, uint64_t val)
280    {
281        int flatIndex = isa.flattenIntIndex(reg_idx);
282        assert(flatIndex < TheISA::NumIntRegs);
283        DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
284                reg_idx, flatIndex, val);
285        intRegs[flatIndex] = val;
286    }
287
288    void setFloatReg(int reg_idx, FloatReg val)
289    {
290        int flatIndex = isa.flattenFloatIndex(reg_idx);
291        assert(flatIndex < TheISA::NumFloatRegs);
292        floatRegs.f[flatIndex] = val;
293        DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n",
294                reg_idx, flatIndex, val, floatRegs.i[flatIndex]);
295    }
296
297    void setFloatRegBits(int reg_idx, FloatRegBits val)
298    {
299        int flatIndex = isa.flattenFloatIndex(reg_idx);
300        assert(flatIndex < TheISA::NumFloatRegs);
301        floatRegs.i[flatIndex] = val;
302        DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
303                reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
304    }
305
306    TheISA::PCState
307    pcState()
308    {
309        return _pcState;
310    }
311
312    void
313    pcState(const TheISA::PCState &val)
314    {
315        _pcState = val;
316    }
317
318    Addr
319    instAddr()
320    {
321        return _pcState.instAddr();
322    }
323
324    Addr
325    nextInstAddr()
326    {
327        return _pcState.nextInstAddr();
328    }
329
330    MicroPC
331    microPC()
332    {
333        return _pcState.microPC();
334    }
335
336    bool readPredicate()
337    {
338        return predicate;
339    }
340
341    void setPredicate(bool val)
342    {
343        predicate = val;
344    }
345
346    MiscReg
347    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
348    {
349        return isa.readMiscRegNoEffect(misc_reg);
350    }
351
352    MiscReg
353    readMiscReg(int misc_reg, ThreadID tid = 0)
354    {
355        return isa.readMiscReg(misc_reg, tc);
356    }
357
358    void
359    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
360    {
361        return isa.setMiscRegNoEffect(misc_reg, val);
362    }
363
364    void
365    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
366    {
367        return isa.setMiscReg(misc_reg, val, tc);
368    }
369
370    int
371    flattenIntIndex(int reg)
372    {
373        return isa.flattenIntIndex(reg);
374    }
375
376    int
377    flattenFloatIndex(int reg)
378    {
379        return isa.flattenFloatIndex(reg);
380    }
381
382    unsigned readStCondFailures() { return storeCondFailures; }
383
384    void setStCondFailures(unsigned sc_failures)
385    { storeCondFailures = sc_failures; }
386
387#if !FULL_SYSTEM
388    void syscall(int64_t callnum)
389    {
390        process->syscall(callnum, tc);
391    }
392#endif
393};
394
395
396// for non-speculative execution context, spec_mode is always false
397inline bool
398SimpleThread::misspeculating()
399{
400    return false;
401}
402
403#endif // __CPU_CPU_EXEC_CONTEXT_HH__
404