simple_thread.hh revision 8541
1/* 2 * Copyright (c) 2001-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Steve Reinhardt 29 * Nathan Binkert 30 */ 31 32#ifndef __CPU_SIMPLE_THREAD_HH__ 33#define __CPU_SIMPLE_THREAD_HH__ 34 35#include "arch/isa.hh" 36#include "arch/isa_traits.hh" 37#include "arch/registers.hh" 38#include "arch/tlb.hh" 39#include "arch/types.hh" 40#include "base/types.hh" 41#include "config/full_system.hh" 42#include "config/the_isa.hh" 43#include "cpu/decode.hh" 44#include "cpu/thread_context.hh" 45#include "cpu/thread_state.hh" 46#include "debug/FloatRegs.hh" 47#include "debug/IntRegs.hh" 48#include "mem/request.hh" 49#include "sim/byteswap.hh" 50#include "sim/eventq.hh" 51#include "sim/serialize.hh" 52 53class BaseCPU; 54 55#if FULL_SYSTEM 56 57#include "sim/system.hh" 58 59class FunctionProfile; 60class ProfileNode; 61class FunctionalPort; 62class PhysicalPort; 63 64namespace TheISA { 65 namespace Kernel { 66 class Statistics; 67 }; 68}; 69 70#else // !FULL_SYSTEM 71 72#include "mem/page_table.hh" 73#include "sim/process.hh" 74class TranslatingPort; 75 76#endif // FULL_SYSTEM 77 78/** 79 * The SimpleThread object provides a combination of the ThreadState 80 * object and the ThreadContext interface. It implements the 81 * ThreadContext interface so that a ProxyThreadContext class can be 82 * made using SimpleThread as the template parameter (see 83 * thread_context.hh). It adds to the ThreadState object by adding all 84 * the objects needed for simple functional execution, including a 85 * simple architectural register file, and pointers to the ITB and DTB 86 * in full system mode. For CPU models that do not need more advanced 87 * ways to hold state (i.e. a separate physical register file, or 88 * separate fetch and commit PC's), this SimpleThread class provides 89 * all the necessary state for full architecture-level functional 90 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for 91 * examples. 92 */ 93 94class SimpleThread : public ThreadState 95{ 96 protected: 97 typedef TheISA::MachInst MachInst; 98 typedef TheISA::MiscReg MiscReg; 99 typedef TheISA::FloatReg FloatReg; 100 typedef TheISA::FloatRegBits FloatRegBits; 101 public: 102 typedef ThreadContext::Status Status; 103 104 protected: 105 union { 106 FloatReg f[TheISA::NumFloatRegs]; 107 FloatRegBits i[TheISA::NumFloatRegs]; 108 } floatRegs; 109 TheISA::IntReg intRegs[TheISA::NumIntRegs]; 110 TheISA::ISA isa; // one "instance" of the current ISA. 111 112 TheISA::PCState _pcState; 113 114 /** Did this instruction execute or is it predicated false */ 115 bool predicate; 116 117 public: 118 std::string name() const 119 { 120 return csprintf("%s.[tid:%i]", cpu->name(), tc->threadId()); 121 } 122 123 // pointer to CPU associated with this SimpleThread 124 BaseCPU *cpu; 125 126 ProxyThreadContext<SimpleThread> *tc; 127 128 System *system; 129 130 TheISA::TLB *itb; 131 TheISA::TLB *dtb; 132 133 Decoder decoder; 134 135 // constructor: initialize SimpleThread from given process structure 136#if FULL_SYSTEM 137 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, 138 TheISA::TLB *_itb, TheISA::TLB *_dtb, 139 bool use_kernel_stats = true); 140#else 141 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, 142 TheISA::TLB *_itb, TheISA::TLB *_dtb); 143#endif 144 145 SimpleThread(); 146 147 virtual ~SimpleThread(); 148 149 virtual void takeOverFrom(ThreadContext *oldContext); 150 151 void regStats(const std::string &name); 152 153 void copyTC(ThreadContext *context); 154 155 void copyState(ThreadContext *oldContext); 156 157 void serialize(std::ostream &os); 158 void unserialize(Checkpoint *cp, const std::string §ion); 159 160 /*************************************************************** 161 * SimpleThread functions to provide CPU with access to various 162 * state. 163 **************************************************************/ 164 165 /** Returns the pointer to this SimpleThread's ThreadContext. Used 166 * when a ThreadContext must be passed to objects outside of the 167 * CPU. 168 */ 169 ThreadContext *getTC() { return tc; } 170 171 void demapPage(Addr vaddr, uint64_t asn) 172 { 173 itb->demapPage(vaddr, asn); 174 dtb->demapPage(vaddr, asn); 175 } 176 177 void demapInstPage(Addr vaddr, uint64_t asn) 178 { 179 itb->demapPage(vaddr, asn); 180 } 181 182 void demapDataPage(Addr vaddr, uint64_t asn) 183 { 184 dtb->demapPage(vaddr, asn); 185 } 186 187#if FULL_SYSTEM 188 void dumpFuncProfile(); 189 190 Fault hwrei(); 191 192 bool simPalCheck(int palFunc); 193 194#endif 195 196 /******************************************* 197 * ThreadContext interface functions. 198 ******************************************/ 199 200 BaseCPU *getCpuPtr() { return cpu; } 201 202 TheISA::TLB *getITBPtr() { return itb; } 203 204 TheISA::TLB *getDTBPtr() { return dtb; } 205 206 Decoder *getDecoderPtr() { return &decoder; } 207 208 System *getSystemPtr() { return system; } 209 210#if FULL_SYSTEM 211 FunctionalPort *getPhysPort() { return physPort; } 212 213 /** Return a virtual port. This port cannot be cached locally in an object. 214 * After a CPU switch it may point to the wrong memory object which could 215 * mean stale data. 216 */ 217 VirtualPort *getVirtPort() { return virtPort; } 218#endif 219 220 Status status() const { return _status; } 221 222 void setStatus(Status newStatus) { _status = newStatus; } 223 224 /// Set the status to Active. Optional delay indicates number of 225 /// cycles to wait before beginning execution. 226 void activate(int delay = 1); 227 228 /// Set the status to Suspended. 229 void suspend(); 230 231 /// Set the status to Halted. 232 void halt(); 233 234 virtual bool misspeculating(); 235 236 void copyArchRegs(ThreadContext *tc); 237 238 void clearArchRegs() 239 { 240 _pcState = 0; 241 memset(intRegs, 0, sizeof(intRegs)); 242 memset(floatRegs.i, 0, sizeof(floatRegs.i)); 243 isa.clear(); 244 } 245 246 // 247 // New accessors for new decoder. 248 // 249 uint64_t readIntReg(int reg_idx) 250 { 251 int flatIndex = isa.flattenIntIndex(reg_idx); 252 assert(flatIndex < TheISA::NumIntRegs); 253 uint64_t regVal = intRegs[flatIndex]; 254 DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n", 255 reg_idx, flatIndex, regVal); 256 return regVal; 257 } 258 259 FloatReg readFloatReg(int reg_idx) 260 { 261 int flatIndex = isa.flattenFloatIndex(reg_idx); 262 assert(flatIndex < TheISA::NumFloatRegs); 263 FloatReg regVal = floatRegs.f[flatIndex]; 264 DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n", 265 reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]); 266 return regVal; 267 } 268 269 FloatRegBits readFloatRegBits(int reg_idx) 270 { 271 int flatIndex = isa.flattenFloatIndex(reg_idx); 272 assert(flatIndex < TheISA::NumFloatRegs); 273 FloatRegBits regVal = floatRegs.i[flatIndex]; 274 DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n", 275 reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]); 276 return regVal; 277 } 278 279 void setIntReg(int reg_idx, uint64_t val) 280 { 281 int flatIndex = isa.flattenIntIndex(reg_idx); 282 assert(flatIndex < TheISA::NumIntRegs); 283 DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n", 284 reg_idx, flatIndex, val); 285 intRegs[flatIndex] = val; 286 } 287 288 void setFloatReg(int reg_idx, FloatReg val) 289 { 290 int flatIndex = isa.flattenFloatIndex(reg_idx); 291 assert(flatIndex < TheISA::NumFloatRegs); 292 floatRegs.f[flatIndex] = val; 293 DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n", 294 reg_idx, flatIndex, val, floatRegs.i[flatIndex]); 295 } 296 297 void setFloatRegBits(int reg_idx, FloatRegBits val) 298 { 299 int flatIndex = isa.flattenFloatIndex(reg_idx); 300 assert(flatIndex < TheISA::NumFloatRegs); 301 floatRegs.i[flatIndex] = val; 302 DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n", 303 reg_idx, flatIndex, val, floatRegs.f[flatIndex]); 304 } 305 306 TheISA::PCState 307 pcState() 308 { 309 return _pcState; 310 } 311 312 void 313 pcState(const TheISA::PCState &val) 314 { 315 _pcState = val; 316 } 317 318 Addr 319 instAddr() 320 { 321 return _pcState.instAddr(); 322 } 323 324 Addr 325 nextInstAddr() 326 { 327 return _pcState.nextInstAddr(); 328 } 329 330 MicroPC 331 microPC() 332 { 333 return _pcState.microPC(); 334 } 335 336 bool readPredicate() 337 { 338 return predicate; 339 } 340 341 void setPredicate(bool val) 342 { 343 predicate = val; 344 } 345 346 MiscReg 347 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) 348 { 349 return isa.readMiscRegNoEffect(misc_reg); 350 } 351 352 MiscReg 353 readMiscReg(int misc_reg, ThreadID tid = 0) 354 { 355 return isa.readMiscReg(misc_reg, tc); 356 } 357 358 void 359 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0) 360 { 361 return isa.setMiscRegNoEffect(misc_reg, val); 362 } 363 364 void 365 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0) 366 { 367 return isa.setMiscReg(misc_reg, val, tc); 368 } 369 370 int 371 flattenIntIndex(int reg) 372 { 373 return isa.flattenIntIndex(reg); 374 } 375 376 int 377 flattenFloatIndex(int reg) 378 { 379 return isa.flattenFloatIndex(reg); 380 } 381 382 unsigned readStCondFailures() { return storeCondFailures; } 383 384 void setStCondFailures(unsigned sc_failures) 385 { storeCondFailures = sc_failures; } 386 387#if !FULL_SYSTEM 388 void syscall(int64_t callnum) 389 { 390 process->syscall(callnum, tc); 391 } 392#endif 393}; 394 395 396// for non-speculative execution context, spec_mode is always false 397inline bool 398SimpleThread::misspeculating() 399{ 400 return false; 401} 402 403#endif // __CPU_CPU_EXEC_CONTEXT_HH__ 404