simple_thread.hh revision 8357:2fcd223a253b
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/registers.hh"
38#include "arch/tlb.hh"
39#include "arch/types.hh"
40#include "base/types.hh"
41#include "config/full_system.hh"
42#include "config/the_isa.hh"
43#include "cpu/thread_context.hh"
44#include "cpu/thread_state.hh"
45#include "debug/FloatRegs.hh"
46#include "debug/IntRegs.hh"
47#include "mem/request.hh"
48#include "sim/byteswap.hh"
49#include "sim/eventq.hh"
50#include "sim/serialize.hh"
51
52class BaseCPU;
53
54#if FULL_SYSTEM
55
56#include "sim/system.hh"
57
58class FunctionProfile;
59class ProfileNode;
60class FunctionalPort;
61class PhysicalPort;
62
63namespace TheISA {
64    namespace Kernel {
65        class Statistics;
66    };
67};
68
69#else // !FULL_SYSTEM
70
71#include "mem/page_table.hh"
72#include "sim/process.hh"
73class TranslatingPort;
74
75#endif // FULL_SYSTEM
76
77/**
78 * The SimpleThread object provides a combination of the ThreadState
79 * object and the ThreadContext interface. It implements the
80 * ThreadContext interface so that a ProxyThreadContext class can be
81 * made using SimpleThread as the template parameter (see
82 * thread_context.hh). It adds to the ThreadState object by adding all
83 * the objects needed for simple functional execution, including a
84 * simple architectural register file, and pointers to the ITB and DTB
85 * in full system mode. For CPU models that do not need more advanced
86 * ways to hold state (i.e. a separate physical register file, or
87 * separate fetch and commit PC's), this SimpleThread class provides
88 * all the necessary state for full architecture-level functional
89 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
90 * examples.
91 */
92
93class SimpleThread : public ThreadState
94{
95  protected:
96    typedef TheISA::MachInst MachInst;
97    typedef TheISA::MiscReg MiscReg;
98    typedef TheISA::FloatReg FloatReg;
99    typedef TheISA::FloatRegBits FloatRegBits;
100  public:
101    typedef ThreadContext::Status Status;
102
103  protected:
104    union {
105        FloatReg f[TheISA::NumFloatRegs];
106        FloatRegBits i[TheISA::NumFloatRegs];
107    } floatRegs;
108    TheISA::IntReg intRegs[TheISA::NumIntRegs];
109    TheISA::ISA isa;    // one "instance" of the current ISA.
110
111    TheISA::PCState _pcState;
112
113    /** Did this instruction execute or is it predicated false */
114    bool predicate;
115
116  public:
117    std::string name() const
118    {
119        return csprintf("%s.[tid:%i]", cpu->name(), tc->threadId());
120    }
121
122    // pointer to CPU associated with this SimpleThread
123    BaseCPU *cpu;
124
125    ProxyThreadContext<SimpleThread> *tc;
126
127    System *system;
128
129    TheISA::TLB *itb;
130    TheISA::TLB *dtb;
131
132    // constructor: initialize SimpleThread from given process structure
133#if FULL_SYSTEM
134    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
135                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
136                 bool use_kernel_stats = true);
137#else
138    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
139                 TheISA::TLB *_itb, TheISA::TLB *_dtb);
140#endif
141
142    SimpleThread();
143
144    virtual ~SimpleThread();
145
146    virtual void takeOverFrom(ThreadContext *oldContext);
147
148    void regStats(const std::string &name);
149
150    void copyTC(ThreadContext *context);
151
152    void copyState(ThreadContext *oldContext);
153
154    void serialize(std::ostream &os);
155    void unserialize(Checkpoint *cp, const std::string &section);
156
157    /***************************************************************
158     *  SimpleThread functions to provide CPU with access to various
159     *  state.
160     **************************************************************/
161
162    /** Returns the pointer to this SimpleThread's ThreadContext. Used
163     *  when a ThreadContext must be passed to objects outside of the
164     *  CPU.
165     */
166    ThreadContext *getTC() { return tc; }
167
168    void demapPage(Addr vaddr, uint64_t asn)
169    {
170        itb->demapPage(vaddr, asn);
171        dtb->demapPage(vaddr, asn);
172    }
173
174    void demapInstPage(Addr vaddr, uint64_t asn)
175    {
176        itb->demapPage(vaddr, asn);
177    }
178
179    void demapDataPage(Addr vaddr, uint64_t asn)
180    {
181        dtb->demapPage(vaddr, asn);
182    }
183
184#if FULL_SYSTEM
185    void dumpFuncProfile();
186
187    Fault hwrei();
188
189    bool simPalCheck(int palFunc);
190
191#endif
192
193    /*******************************************
194     * ThreadContext interface functions.
195     ******************************************/
196
197    BaseCPU *getCpuPtr() { return cpu; }
198
199    TheISA::TLB *getITBPtr() { return itb; }
200
201    TheISA::TLB *getDTBPtr() { return dtb; }
202
203    System *getSystemPtr() { return system; }
204
205#if FULL_SYSTEM
206    FunctionalPort *getPhysPort() { return physPort; }
207
208    /** Return a virtual port. This port cannot be cached locally in an object.
209     * After a CPU switch it may point to the wrong memory object which could
210     * mean stale data.
211     */
212    VirtualPort *getVirtPort() { return virtPort; }
213#endif
214
215    Status status() const { return _status; }
216
217    void setStatus(Status newStatus) { _status = newStatus; }
218
219    /// Set the status to Active.  Optional delay indicates number of
220    /// cycles to wait before beginning execution.
221    void activate(int delay = 1);
222
223    /// Set the status to Suspended.
224    void suspend();
225
226    /// Set the status to Halted.
227    void halt();
228
229    virtual bool misspeculating();
230
231    void copyArchRegs(ThreadContext *tc);
232
233    void clearArchRegs()
234    {
235        _pcState = 0;
236        memset(intRegs, 0, sizeof(intRegs));
237        memset(floatRegs.i, 0, sizeof(floatRegs.i));
238        isa.clear();
239    }
240
241    //
242    // New accessors for new decoder.
243    //
244    uint64_t readIntReg(int reg_idx)
245    {
246        int flatIndex = isa.flattenIntIndex(reg_idx);
247        assert(flatIndex < TheISA::NumIntRegs);
248        uint64_t regVal = intRegs[flatIndex];
249        DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
250                reg_idx, flatIndex, regVal);
251        return regVal;
252    }
253
254    FloatReg readFloatReg(int reg_idx)
255    {
256        int flatIndex = isa.flattenFloatIndex(reg_idx);
257        assert(flatIndex < TheISA::NumFloatRegs);
258        FloatReg regVal = floatRegs.f[flatIndex];
259        DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n",
260                reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]);
261        return regVal;
262    }
263
264    FloatRegBits readFloatRegBits(int reg_idx)
265    {
266        int flatIndex = isa.flattenFloatIndex(reg_idx);
267        assert(flatIndex < TheISA::NumFloatRegs);
268        FloatRegBits regVal = floatRegs.i[flatIndex];
269        DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
270                reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
271        return regVal;
272    }
273
274    void setIntReg(int reg_idx, uint64_t val)
275    {
276        int flatIndex = isa.flattenIntIndex(reg_idx);
277        assert(flatIndex < TheISA::NumIntRegs);
278        DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
279                reg_idx, flatIndex, val);
280        intRegs[flatIndex] = val;
281    }
282
283    void setFloatReg(int reg_idx, FloatReg val)
284    {
285        int flatIndex = isa.flattenFloatIndex(reg_idx);
286        assert(flatIndex < TheISA::NumFloatRegs);
287        floatRegs.f[flatIndex] = val;
288        DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n",
289                reg_idx, flatIndex, val, floatRegs.i[flatIndex]);
290    }
291
292    void setFloatRegBits(int reg_idx, FloatRegBits val)
293    {
294        int flatIndex = isa.flattenFloatIndex(reg_idx);
295        assert(flatIndex < TheISA::NumFloatRegs);
296        floatRegs.i[flatIndex] = val;
297        DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
298                reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
299    }
300
301    TheISA::PCState
302    pcState()
303    {
304        return _pcState;
305    }
306
307    void
308    pcState(const TheISA::PCState &val)
309    {
310        _pcState = val;
311    }
312
313    Addr
314    instAddr()
315    {
316        return _pcState.instAddr();
317    }
318
319    Addr
320    nextInstAddr()
321    {
322        return _pcState.nextInstAddr();
323    }
324
325    MicroPC
326    microPC()
327    {
328        return _pcState.microPC();
329    }
330
331    bool readPredicate()
332    {
333        return predicate;
334    }
335
336    void setPredicate(bool val)
337    {
338        predicate = val;
339    }
340
341    MiscReg
342    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
343    {
344        return isa.readMiscRegNoEffect(misc_reg);
345    }
346
347    MiscReg
348    readMiscReg(int misc_reg, ThreadID tid = 0)
349    {
350        return isa.readMiscReg(misc_reg, tc);
351    }
352
353    void
354    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
355    {
356        return isa.setMiscRegNoEffect(misc_reg, val);
357    }
358
359    void
360    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
361    {
362        return isa.setMiscReg(misc_reg, val, tc);
363    }
364
365    int
366    flattenIntIndex(int reg)
367    {
368        return isa.flattenIntIndex(reg);
369    }
370
371    int
372    flattenFloatIndex(int reg)
373    {
374        return isa.flattenFloatIndex(reg);
375    }
376
377    unsigned readStCondFailures() { return storeCondFailures; }
378
379    void setStCondFailures(unsigned sc_failures)
380    { storeCondFailures = sc_failures; }
381
382#if !FULL_SYSTEM
383    void syscall(int64_t callnum)
384    {
385        process->syscall(callnum, tc);
386    }
387#endif
388};
389
390
391// for non-speculative execution context, spec_mode is always false
392inline bool
393SimpleThread::misspeculating()
394{
395    return false;
396}
397
398#endif // __CPU_CPU_EXEC_CONTEXT_HH__
399