simple_thread.hh revision 7601:bf0aa77f8908
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/registers.hh"
38#include "arch/tlb.hh"
39#include "arch/types.hh"
40#include "base/types.hh"
41#include "config/full_system.hh"
42#include "config/the_isa.hh"
43#include "cpu/thread_context.hh"
44#include "cpu/thread_state.hh"
45#include "mem/request.hh"
46#include "sim/byteswap.hh"
47#include "sim/eventq.hh"
48#include "sim/serialize.hh"
49
50class BaseCPU;
51
52#if FULL_SYSTEM
53
54#include "sim/system.hh"
55
56class FunctionProfile;
57class ProfileNode;
58class FunctionalPort;
59class PhysicalPort;
60
61namespace TheISA {
62    namespace Kernel {
63        class Statistics;
64    };
65};
66
67#else // !FULL_SYSTEM
68
69#include "sim/process.hh"
70#include "mem/page_table.hh"
71class TranslatingPort;
72
73#endif // FULL_SYSTEM
74
75/**
76 * The SimpleThread object provides a combination of the ThreadState
77 * object and the ThreadContext interface. It implements the
78 * ThreadContext interface so that a ProxyThreadContext class can be
79 * made using SimpleThread as the template parameter (see
80 * thread_context.hh). It adds to the ThreadState object by adding all
81 * the objects needed for simple functional execution, including a
82 * simple architectural register file, and pointers to the ITB and DTB
83 * in full system mode. For CPU models that do not need more advanced
84 * ways to hold state (i.e. a separate physical register file, or
85 * separate fetch and commit PC's), this SimpleThread class provides
86 * all the necessary state for full architecture-level functional
87 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
88 * examples.
89 */
90
91class SimpleThread : public ThreadState
92{
93  protected:
94    typedef TheISA::MachInst MachInst;
95    typedef TheISA::MiscReg MiscReg;
96    typedef TheISA::FloatReg FloatReg;
97    typedef TheISA::FloatRegBits FloatRegBits;
98  public:
99    typedef ThreadContext::Status Status;
100
101  protected:
102    union {
103        FloatReg f[TheISA::NumFloatRegs];
104        FloatRegBits i[TheISA::NumFloatRegs];
105    } floatRegs;
106    TheISA::IntReg intRegs[TheISA::NumIntRegs];
107    TheISA::ISA isa;    // one "instance" of the current ISA.
108
109    /** The current microcode pc for the currently executing macro
110     * operation.
111     */
112    MicroPC microPC;
113
114    /** The next microcode pc for the currently executing macro
115     * operation.
116     */
117    MicroPC nextMicroPC;
118
119    /** The current pc.
120     */
121    Addr PC;
122
123    /** The next pc.
124     */
125    Addr nextPC;
126
127    /** The next next pc.
128     */
129    Addr nextNPC;
130
131    /** Did this instruction execute or is it predicated false */
132    bool predicate;
133
134  public:
135    // pointer to CPU associated with this SimpleThread
136    BaseCPU *cpu;
137
138    ProxyThreadContext<SimpleThread> *tc;
139
140    System *system;
141
142    TheISA::TLB *itb;
143    TheISA::TLB *dtb;
144
145    // constructor: initialize SimpleThread from given process structure
146#if FULL_SYSTEM
147    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
148                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
149                 bool use_kernel_stats = true);
150#else
151    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
152                 TheISA::TLB *_itb, TheISA::TLB *_dtb);
153#endif
154
155    SimpleThread();
156
157    virtual ~SimpleThread();
158
159    virtual void takeOverFrom(ThreadContext *oldContext);
160
161    void regStats(const std::string &name);
162
163    void copyTC(ThreadContext *context);
164
165    void copyState(ThreadContext *oldContext);
166
167    void serialize(std::ostream &os);
168    void unserialize(Checkpoint *cp, const std::string &section);
169
170    /***************************************************************
171     *  SimpleThread functions to provide CPU with access to various
172     *  state.
173     **************************************************************/
174
175    /** Returns the pointer to this SimpleThread's ThreadContext. Used
176     *  when a ThreadContext must be passed to objects outside of the
177     *  CPU.
178     */
179    ThreadContext *getTC() { return tc; }
180
181    void demapPage(Addr vaddr, uint64_t asn)
182    {
183        itb->demapPage(vaddr, asn);
184        dtb->demapPage(vaddr, asn);
185    }
186
187    void demapInstPage(Addr vaddr, uint64_t asn)
188    {
189        itb->demapPage(vaddr, asn);
190    }
191
192    void demapDataPage(Addr vaddr, uint64_t asn)
193    {
194        dtb->demapPage(vaddr, asn);
195    }
196
197#if FULL_SYSTEM
198    void dumpFuncProfile();
199
200    Fault hwrei();
201
202    bool simPalCheck(int palFunc);
203
204#endif
205
206    /*******************************************
207     * ThreadContext interface functions.
208     ******************************************/
209
210    BaseCPU *getCpuPtr() { return cpu; }
211
212    TheISA::TLB *getITBPtr() { return itb; }
213
214    TheISA::TLB *getDTBPtr() { return dtb; }
215
216    System *getSystemPtr() { return system; }
217
218#if FULL_SYSTEM
219    FunctionalPort *getPhysPort() { return physPort; }
220
221    /** Return a virtual port. This port cannot be cached locally in an object.
222     * After a CPU switch it may point to the wrong memory object which could
223     * mean stale data.
224     */
225    VirtualPort *getVirtPort() { return virtPort; }
226#endif
227
228    Status status() const { return _status; }
229
230    void setStatus(Status newStatus) { _status = newStatus; }
231
232    /// Set the status to Active.  Optional delay indicates number of
233    /// cycles to wait before beginning execution.
234    void activate(int delay = 1);
235
236    /// Set the status to Suspended.
237    void suspend();
238
239    /// Set the status to Halted.
240    void halt();
241
242    virtual bool misspeculating();
243
244    Fault instRead(RequestPtr &req)
245    {
246        panic("instRead not implemented");
247        // return funcPhysMem->read(req, inst);
248        return NoFault;
249    }
250
251    void copyArchRegs(ThreadContext *tc);
252
253    void clearArchRegs()
254    {
255        microPC = 0;
256        nextMicroPC = 1;
257        PC = nextPC = nextNPC = 0;
258        memset(intRegs, 0, sizeof(intRegs));
259        memset(floatRegs.i, 0, sizeof(floatRegs.i));
260        isa.clear();
261    }
262
263    //
264    // New accessors for new decoder.
265    //
266    uint64_t readIntReg(int reg_idx)
267    {
268        int flatIndex = isa.flattenIntIndex(reg_idx);
269        assert(flatIndex < TheISA::NumIntRegs);
270        uint64_t regVal = intRegs[flatIndex];
271        DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
272                reg_idx, flatIndex, regVal);
273        return regVal;
274    }
275
276    FloatReg readFloatReg(int reg_idx)
277    {
278        int flatIndex = isa.flattenFloatIndex(reg_idx);
279        assert(flatIndex < TheISA::NumFloatRegs);
280        FloatReg regVal = floatRegs.f[flatIndex];
281        DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n",
282                reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]);
283        return regVal;
284    }
285
286    FloatRegBits readFloatRegBits(int reg_idx)
287    {
288        int flatIndex = isa.flattenFloatIndex(reg_idx);
289        assert(flatIndex < TheISA::NumFloatRegs);
290        FloatRegBits regVal = floatRegs.i[flatIndex];
291        DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
292                reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
293        return regVal;
294    }
295
296    void setIntReg(int reg_idx, uint64_t val)
297    {
298        int flatIndex = isa.flattenIntIndex(reg_idx);
299        assert(flatIndex < TheISA::NumIntRegs);
300        DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
301                reg_idx, flatIndex, val);
302        intRegs[flatIndex] = val;
303    }
304
305    void setFloatReg(int reg_idx, FloatReg val)
306    {
307        int flatIndex = isa.flattenFloatIndex(reg_idx);
308        assert(flatIndex < TheISA::NumFloatRegs);
309        floatRegs.f[flatIndex] = val;
310        DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n",
311                reg_idx, flatIndex, val, floatRegs.i[flatIndex]);
312    }
313
314    void setFloatRegBits(int reg_idx, FloatRegBits val)
315    {
316        int flatIndex = isa.flattenFloatIndex(reg_idx);
317        assert(flatIndex < TheISA::NumFloatRegs);
318        floatRegs.i[flatIndex] = val;
319        DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
320                reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
321    }
322
323    uint64_t readPC()
324    {
325        return PC;
326    }
327
328    void setPC(uint64_t val)
329    {
330        PC = val;
331    }
332
333    uint64_t readMicroPC()
334    {
335        return microPC;
336    }
337
338    void setMicroPC(uint64_t val)
339    {
340        microPC = val;
341    }
342
343    uint64_t readNextPC()
344    {
345        return nextPC;
346    }
347
348    void setNextPC(uint64_t val)
349    {
350        nextPC = val;
351    }
352
353    uint64_t readNextMicroPC()
354    {
355        return nextMicroPC;
356    }
357
358    void setNextMicroPC(uint64_t val)
359    {
360        nextMicroPC = val;
361    }
362
363    uint64_t readNextNPC()
364    {
365#if ISA_HAS_DELAY_SLOT
366        return nextNPC;
367#else
368        return nextPC + sizeof(TheISA::MachInst);
369#endif
370    }
371
372    void setNextNPC(uint64_t val)
373    {
374#if ISA_HAS_DELAY_SLOT
375        nextNPC = val;
376#endif
377    }
378
379    bool readPredicate()
380    {
381        return predicate;
382    }
383
384    void setPredicate(bool val)
385    {
386        predicate = val;
387    }
388
389    MiscReg
390    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
391    {
392        return isa.readMiscRegNoEffect(misc_reg);
393    }
394
395    MiscReg
396    readMiscReg(int misc_reg, ThreadID tid = 0)
397    {
398        return isa.readMiscReg(misc_reg, tc);
399    }
400
401    void
402    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
403    {
404        return isa.setMiscRegNoEffect(misc_reg, val);
405    }
406
407    void
408    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
409    {
410        return isa.setMiscReg(misc_reg, val, tc);
411    }
412
413    int
414    flattenIntIndex(int reg)
415    {
416        return isa.flattenIntIndex(reg);
417    }
418
419    int
420    flattenFloatIndex(int reg)
421    {
422        return isa.flattenFloatIndex(reg);
423    }
424
425    unsigned readStCondFailures() { return storeCondFailures; }
426
427    void setStCondFailures(unsigned sc_failures)
428    { storeCondFailures = sc_failures; }
429
430#if !FULL_SYSTEM
431    void syscall(int64_t callnum)
432    {
433        process->syscall(callnum, tc);
434    }
435#endif
436};
437
438
439// for non-speculative execution context, spec_mode is always false
440inline bool
441SimpleThread::misspeculating()
442{
443    return false;
444}
445
446#endif // __CPU_CPU_EXEC_CONTEXT_HH__
447