simple_thread.hh revision 6658:f4de76601762
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/registers.hh"
38#include "arch/tlb.hh"
39#include "arch/types.hh"
40#include "base/types.hh"
41#include "config/full_system.hh"
42#include "config/the_isa.hh"
43#include "cpu/thread_context.hh"
44#include "cpu/thread_state.hh"
45#include "mem/request.hh"
46#include "sim/byteswap.hh"
47#include "sim/eventq.hh"
48#include "sim/serialize.hh"
49
50class BaseCPU;
51
52#if FULL_SYSTEM
53
54#include "sim/system.hh"
55
56class FunctionProfile;
57class ProfileNode;
58class FunctionalPort;
59class PhysicalPort;
60
61namespace TheISA {
62    namespace Kernel {
63        class Statistics;
64    };
65};
66
67#else // !FULL_SYSTEM
68
69#include "sim/process.hh"
70#include "mem/page_table.hh"
71class TranslatingPort;
72
73#endif // FULL_SYSTEM
74
75/**
76 * The SimpleThread object provides a combination of the ThreadState
77 * object and the ThreadContext interface. It implements the
78 * ThreadContext interface so that a ProxyThreadContext class can be
79 * made using SimpleThread as the template parameter (see
80 * thread_context.hh). It adds to the ThreadState object by adding all
81 * the objects needed for simple functional execution, including a
82 * simple architectural register file, and pointers to the ITB and DTB
83 * in full system mode. For CPU models that do not need more advanced
84 * ways to hold state (i.e. a separate physical register file, or
85 * separate fetch and commit PC's), this SimpleThread class provides
86 * all the necessary state for full architecture-level functional
87 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
88 * examples.
89 */
90
91class SimpleThread : public ThreadState
92{
93  protected:
94    typedef TheISA::MachInst MachInst;
95    typedef TheISA::MiscReg MiscReg;
96    typedef TheISA::FloatReg FloatReg;
97    typedef TheISA::FloatRegBits FloatRegBits;
98  public:
99    typedef ThreadContext::Status Status;
100
101  protected:
102    union {
103        FloatReg f[TheISA::NumFloatRegs];
104        FloatRegBits i[TheISA::NumFloatRegs];
105    } floatRegs;
106    TheISA::IntReg intRegs[TheISA::NumIntRegs];
107    TheISA::ISA isa;    // one "instance" of the current ISA.
108
109    /** The current microcode pc for the currently executing macro
110     * operation.
111     */
112    MicroPC microPC;
113
114    /** The next microcode pc for the currently executing macro
115     * operation.
116     */
117    MicroPC nextMicroPC;
118
119    /** The current pc.
120     */
121    Addr PC;
122
123    /** The next pc.
124     */
125    Addr nextPC;
126
127    /** The next next pc.
128     */
129    Addr nextNPC;
130
131  public:
132    // pointer to CPU associated with this SimpleThread
133    BaseCPU *cpu;
134
135    ProxyThreadContext<SimpleThread> *tc;
136
137    System *system;
138
139    TheISA::TLB *itb;
140    TheISA::TLB *dtb;
141
142    // constructor: initialize SimpleThread from given process structure
143#if FULL_SYSTEM
144    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
145                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
146                 bool use_kernel_stats = true);
147#else
148    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
149                 TheISA::TLB *_itb, TheISA::TLB *_dtb);
150#endif
151
152    SimpleThread();
153
154    virtual ~SimpleThread();
155
156    virtual void takeOverFrom(ThreadContext *oldContext);
157
158    void regStats(const std::string &name);
159
160    void copyTC(ThreadContext *context);
161
162    void copyState(ThreadContext *oldContext);
163
164    void serialize(std::ostream &os);
165    void unserialize(Checkpoint *cp, const std::string &section);
166
167    /***************************************************************
168     *  SimpleThread functions to provide CPU with access to various
169     *  state.
170     **************************************************************/
171
172    /** Returns the pointer to this SimpleThread's ThreadContext. Used
173     *  when a ThreadContext must be passed to objects outside of the
174     *  CPU.
175     */
176    ThreadContext *getTC() { return tc; }
177
178    void demapPage(Addr vaddr, uint64_t asn)
179    {
180        itb->demapPage(vaddr, asn);
181        dtb->demapPage(vaddr, asn);
182    }
183
184    void demapInstPage(Addr vaddr, uint64_t asn)
185    {
186        itb->demapPage(vaddr, asn);
187    }
188
189    void demapDataPage(Addr vaddr, uint64_t asn)
190    {
191        dtb->demapPage(vaddr, asn);
192    }
193
194#if FULL_SYSTEM
195    void dumpFuncProfile();
196
197    Fault hwrei();
198
199    bool simPalCheck(int palFunc);
200
201#endif
202
203    /*******************************************
204     * ThreadContext interface functions.
205     ******************************************/
206
207    BaseCPU *getCpuPtr() { return cpu; }
208
209    TheISA::TLB *getITBPtr() { return itb; }
210
211    TheISA::TLB *getDTBPtr() { return dtb; }
212
213    System *getSystemPtr() { return system; }
214
215#if FULL_SYSTEM
216    FunctionalPort *getPhysPort() { return physPort; }
217
218    /** Return a virtual port. This port cannot be cached locally in an object.
219     * After a CPU switch it may point to the wrong memory object which could
220     * mean stale data.
221     */
222    VirtualPort *getVirtPort() { return virtPort; }
223#endif
224
225    Status status() const { return _status; }
226
227    void setStatus(Status newStatus) { _status = newStatus; }
228
229    /// Set the status to Active.  Optional delay indicates number of
230    /// cycles to wait before beginning execution.
231    void activate(int delay = 1);
232
233    /// Set the status to Suspended.
234    void suspend();
235
236    /// Set the status to Halted.
237    void halt();
238
239    virtual bool misspeculating();
240
241    Fault instRead(RequestPtr &req)
242    {
243        panic("instRead not implemented");
244        // return funcPhysMem->read(req, inst);
245        return NoFault;
246    }
247
248    void copyArchRegs(ThreadContext *tc);
249
250    void clearArchRegs()
251    {
252        microPC = 0;
253        nextMicroPC = 1;
254        PC = nextPC = nextNPC = 0;
255        memset(intRegs, 0, sizeof(intRegs));
256        memset(floatRegs.i, 0, sizeof(floatRegs.i));
257    }
258
259    //
260    // New accessors for new decoder.
261    //
262    uint64_t readIntReg(int reg_idx)
263    {
264        int flatIndex = isa.flattenIntIndex(reg_idx);
265        assert(flatIndex < TheISA::NumIntRegs);
266        uint64_t regVal = intRegs[flatIndex];
267        DPRINTF(IntRegs, "Reading int reg %d as %#x.\n", reg_idx, regVal);
268        return regVal;
269    }
270
271    FloatReg readFloatReg(int reg_idx)
272    {
273        int flatIndex = isa.flattenFloatIndex(reg_idx);
274        assert(flatIndex < TheISA::NumFloatRegs);
275        return floatRegs.f[flatIndex];
276    }
277
278    FloatRegBits readFloatRegBits(int reg_idx)
279    {
280        int flatIndex = isa.flattenFloatIndex(reg_idx);
281        assert(flatIndex < TheISA::NumFloatRegs);
282        return floatRegs.i[flatIndex];
283    }
284
285    void setIntReg(int reg_idx, uint64_t val)
286    {
287        int flatIndex = isa.flattenIntIndex(reg_idx);
288        assert(flatIndex < TheISA::NumIntRegs);
289        DPRINTF(IntRegs, "Setting int reg %d to %#x.\n", reg_idx, val);
290        intRegs[flatIndex] = val;
291    }
292
293    void setFloatReg(int reg_idx, FloatReg val)
294    {
295        int flatIndex = isa.flattenFloatIndex(reg_idx);
296        assert(flatIndex < TheISA::NumFloatRegs);
297        floatRegs.f[flatIndex] = val;
298    }
299
300    void setFloatRegBits(int reg_idx, FloatRegBits val)
301    {
302        int flatIndex = isa.flattenFloatIndex(reg_idx);
303        assert(flatIndex < TheISA::NumFloatRegs);
304        floatRegs.i[flatIndex] = val;
305    }
306
307    uint64_t readPC()
308    {
309        return PC;
310    }
311
312    void setPC(uint64_t val)
313    {
314        PC = val;
315    }
316
317    uint64_t readMicroPC()
318    {
319        return microPC;
320    }
321
322    void setMicroPC(uint64_t val)
323    {
324        microPC = val;
325    }
326
327    uint64_t readNextPC()
328    {
329        return nextPC;
330    }
331
332    void setNextPC(uint64_t val)
333    {
334        nextPC = val;
335    }
336
337    uint64_t readNextMicroPC()
338    {
339        return nextMicroPC;
340    }
341
342    void setNextMicroPC(uint64_t val)
343    {
344        nextMicroPC = val;
345    }
346
347    uint64_t readNextNPC()
348    {
349#if ISA_HAS_DELAY_SLOT
350        return nextNPC;
351#else
352        return nextPC + sizeof(TheISA::MachInst);
353#endif
354    }
355
356    void setNextNPC(uint64_t val)
357    {
358#if ISA_HAS_DELAY_SLOT
359        nextNPC = val;
360#endif
361    }
362
363    MiscReg
364    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
365    {
366        return isa.readMiscRegNoEffect(misc_reg);
367    }
368
369    MiscReg
370    readMiscReg(int misc_reg, ThreadID tid = 0)
371    {
372        return isa.readMiscReg(misc_reg, tc);
373    }
374
375    void
376    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
377    {
378        return isa.setMiscRegNoEffect(misc_reg, val);
379    }
380
381    void
382    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
383    {
384        return isa.setMiscReg(misc_reg, val, tc);
385    }
386
387    int
388    flattenIntIndex(int reg)
389    {
390        return isa.flattenIntIndex(reg);
391    }
392
393    int
394    flattenFloatIndex(int reg)
395    {
396        return isa.flattenFloatIndex(reg);
397    }
398
399    unsigned readStCondFailures() { return storeCondFailures; }
400
401    void setStCondFailures(unsigned sc_failures)
402    { storeCondFailures = sc_failures; }
403
404#if !FULL_SYSTEM
405    void syscall(int64_t callnum)
406    {
407        process->syscall(callnum, tc);
408    }
409#endif
410};
411
412
413// for non-speculative execution context, spec_mode is always false
414inline bool
415SimpleThread::misspeculating()
416{
417    return false;
418}
419
420#endif // __CPU_CPU_EXEC_CONTEXT_HH__
421