simple_thread.hh revision 6315:c7295a4826d5
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/regfile.hh"
38#include "arch/tlb.hh"
39#include "base/types.hh"
40#include "config/full_system.hh"
41#include "cpu/thread_context.hh"
42#include "cpu/thread_state.hh"
43#include "mem/request.hh"
44#include "sim/byteswap.hh"
45#include "sim/eventq.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53
54class FunctionProfile;
55class ProfileNode;
56class FunctionalPort;
57class PhysicalPort;
58
59namespace TheISA {
60    namespace Kernel {
61        class Statistics;
62    };
63};
64
65#else // !FULL_SYSTEM
66
67#include "sim/process.hh"
68#include "mem/page_table.hh"
69class TranslatingPort;
70
71#endif // FULL_SYSTEM
72
73/**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89class SimpleThread : public ThreadState
90{
91  protected:
92    typedef TheISA::RegFile RegFile;
93    typedef TheISA::MachInst MachInst;
94    typedef TheISA::MiscReg MiscReg;
95    typedef TheISA::FloatReg FloatReg;
96    typedef TheISA::FloatRegBits FloatRegBits;
97  public:
98    typedef ThreadContext::Status Status;
99
100  protected:
101    RegFile regs;       // correct-path register context
102    union {
103        FloatReg f[TheISA::NumFloatRegs];
104        FloatRegBits i[TheISA::NumFloatRegs];
105    } floatRegs;
106    TheISA::ISA isa;    // one "instance" of the current ISA.
107
108  public:
109    // pointer to CPU associated with this SimpleThread
110    BaseCPU *cpu;
111
112    ProxyThreadContext<SimpleThread> *tc;
113
114    System *system;
115
116    TheISA::TLB *itb;
117    TheISA::TLB *dtb;
118
119    // constructor: initialize SimpleThread from given process structure
120#if FULL_SYSTEM
121    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
122                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
123                 bool use_kernel_stats = true);
124#else
125    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
126                 TheISA::TLB *_itb, TheISA::TLB *_dtb, int _asid);
127#endif
128
129    SimpleThread();
130
131    virtual ~SimpleThread();
132
133    virtual void takeOverFrom(ThreadContext *oldContext);
134
135    void regStats(const std::string &name);
136
137    void copyTC(ThreadContext *context);
138
139    void copyState(ThreadContext *oldContext);
140
141    void serialize(std::ostream &os);
142    void unserialize(Checkpoint *cp, const std::string &section);
143
144    /***************************************************************
145     *  SimpleThread functions to provide CPU with access to various
146     *  state.
147     **************************************************************/
148
149    /** Returns the pointer to this SimpleThread's ThreadContext. Used
150     *  when a ThreadContext must be passed to objects outside of the
151     *  CPU.
152     */
153    ThreadContext *getTC() { return tc; }
154
155    void demapPage(Addr vaddr, uint64_t asn)
156    {
157        itb->demapPage(vaddr, asn);
158        dtb->demapPage(vaddr, asn);
159    }
160
161    void demapInstPage(Addr vaddr, uint64_t asn)
162    {
163        itb->demapPage(vaddr, asn);
164    }
165
166    void demapDataPage(Addr vaddr, uint64_t asn)
167    {
168        dtb->demapPage(vaddr, asn);
169    }
170
171#if FULL_SYSTEM
172    int getInstAsid() { return isa.instAsid(); }
173    int getDataAsid() { return isa.dataAsid(); }
174
175    void dumpFuncProfile();
176
177    Fault hwrei();
178
179    bool simPalCheck(int palFunc);
180
181#endif
182
183    /*******************************************
184     * ThreadContext interface functions.
185     ******************************************/
186
187    BaseCPU *getCpuPtr() { return cpu; }
188
189    TheISA::TLB *getITBPtr() { return itb; }
190
191    TheISA::TLB *getDTBPtr() { return dtb; }
192
193    System *getSystemPtr() { return system; }
194
195#if FULL_SYSTEM
196    FunctionalPort *getPhysPort() { return physPort; }
197
198    /** Return a virtual port. This port cannot be cached locally in an object.
199     * After a CPU switch it may point to the wrong memory object which could
200     * mean stale data.
201     */
202    VirtualPort *getVirtPort() { return virtPort; }
203#endif
204
205    Status status() const { return _status; }
206
207    void setStatus(Status newStatus) { _status = newStatus; }
208
209    /// Set the status to Active.  Optional delay indicates number of
210    /// cycles to wait before beginning execution.
211    void activate(int delay = 1);
212
213    /// Set the status to Suspended.
214    void suspend();
215
216    /// Set the status to Halted.
217    void halt();
218
219    virtual bool misspeculating();
220
221    Fault instRead(RequestPtr &req)
222    {
223        panic("instRead not implemented");
224        // return funcPhysMem->read(req, inst);
225        return NoFault;
226    }
227
228    void copyArchRegs(ThreadContext *tc);
229
230    void clearArchRegs()
231    {
232        regs.clear();
233        memset(floatRegs.i, 0, sizeof(floatRegs.i));
234    }
235
236    //
237    // New accessors for new decoder.
238    //
239    uint64_t readIntReg(int reg_idx)
240    {
241        int flatIndex = isa.flattenIntIndex(reg_idx);
242        return regs.readIntReg(flatIndex);
243    }
244
245    FloatReg readFloatReg(int reg_idx)
246    {
247        int flatIndex = isa.flattenFloatIndex(reg_idx);
248        return floatRegs.f[flatIndex];
249    }
250
251    FloatRegBits readFloatRegBits(int reg_idx)
252    {
253        int flatIndex = isa.flattenFloatIndex(reg_idx);
254        return floatRegs.i[flatIndex];
255    }
256
257    void setIntReg(int reg_idx, uint64_t val)
258    {
259        int flatIndex = isa.flattenIntIndex(reg_idx);
260        regs.setIntReg(flatIndex, val);
261    }
262
263    void setFloatReg(int reg_idx, FloatReg val)
264    {
265        int flatIndex = isa.flattenFloatIndex(reg_idx);
266        floatRegs.f[flatIndex] = val;
267    }
268
269    void setFloatRegBits(int reg_idx, FloatRegBits val)
270    {
271        int flatIndex = isa.flattenFloatIndex(reg_idx);
272        floatRegs.i[flatIndex] = val;
273    }
274
275    uint64_t readPC()
276    {
277        return regs.readPC();
278    }
279
280    void setPC(uint64_t val)
281    {
282        regs.setPC(val);
283    }
284
285    uint64_t readMicroPC()
286    {
287        return microPC;
288    }
289
290    void setMicroPC(uint64_t val)
291    {
292        microPC = val;
293    }
294
295    uint64_t readNextPC()
296    {
297        return regs.readNextPC();
298    }
299
300    void setNextPC(uint64_t val)
301    {
302        regs.setNextPC(val);
303    }
304
305    uint64_t readNextMicroPC()
306    {
307        return nextMicroPC;
308    }
309
310    void setNextMicroPC(uint64_t val)
311    {
312        nextMicroPC = val;
313    }
314
315    uint64_t readNextNPC()
316    {
317        return regs.readNextNPC();
318    }
319
320    void setNextNPC(uint64_t val)
321    {
322        regs.setNextNPC(val);
323    }
324
325    MiscReg
326    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
327    {
328        return isa.readMiscRegNoEffect(misc_reg);
329    }
330
331    MiscReg
332    readMiscReg(int misc_reg, ThreadID tid = 0)
333    {
334        return isa.readMiscReg(misc_reg, tc);
335    }
336
337    void
338    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
339    {
340        return isa.setMiscRegNoEffect(misc_reg, val);
341    }
342
343    void
344    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
345    {
346        return isa.setMiscReg(misc_reg, val, tc);
347    }
348
349    int
350    flattenIntIndex(int reg)
351    {
352        return isa.flattenIntIndex(reg);
353    }
354
355    int
356    flattenFloatIndex(int reg)
357    {
358        return isa.flattenFloatIndex(reg);
359    }
360
361    unsigned readStCondFailures() { return storeCondFailures; }
362
363    void setStCondFailures(unsigned sc_failures)
364    { storeCondFailures = sc_failures; }
365
366#if !FULL_SYSTEM
367    void syscall(int64_t callnum)
368    {
369        process->syscall(callnum, tc);
370    }
371#endif
372};
373
374
375// for non-speculative execution context, spec_mode is always false
376inline bool
377SimpleThread::misspeculating()
378{
379    return false;
380}
381
382#endif // __CPU_CPU_EXEC_CONTEXT_HH__
383