simple_thread.hh revision 6313:95f69a436c82
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/regfile.hh"
38#include "arch/tlb.hh"
39#include "base/types.hh"
40#include "config/full_system.hh"
41#include "cpu/thread_context.hh"
42#include "cpu/thread_state.hh"
43#include "mem/request.hh"
44#include "sim/byteswap.hh"
45#include "sim/eventq.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53
54class FunctionProfile;
55class ProfileNode;
56class FunctionalPort;
57class PhysicalPort;
58
59namespace TheISA {
60    namespace Kernel {
61        class Statistics;
62    };
63};
64
65#else // !FULL_SYSTEM
66
67#include "sim/process.hh"
68#include "mem/page_table.hh"
69class TranslatingPort;
70
71#endif // FULL_SYSTEM
72
73/**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89class SimpleThread : public ThreadState
90{
91  protected:
92    typedef TheISA::RegFile RegFile;
93    typedef TheISA::MachInst MachInst;
94    typedef TheISA::MiscReg MiscReg;
95    typedef TheISA::FloatReg FloatReg;
96    typedef TheISA::FloatRegBits FloatRegBits;
97  public:
98    typedef ThreadContext::Status Status;
99
100  protected:
101    RegFile regs;       // correct-path register context
102    TheISA::ISA isa;    // one "instance" of the current ISA.
103
104  public:
105    // pointer to CPU associated with this SimpleThread
106    BaseCPU *cpu;
107
108    ProxyThreadContext<SimpleThread> *tc;
109
110    System *system;
111
112    TheISA::TLB *itb;
113    TheISA::TLB *dtb;
114
115    // constructor: initialize SimpleThread from given process structure
116#if FULL_SYSTEM
117    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
119                 bool use_kernel_stats = true);
120#else
121    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122                 TheISA::TLB *_itb, TheISA::TLB *_dtb, int _asid);
123#endif
124
125    SimpleThread();
126
127    virtual ~SimpleThread();
128
129    virtual void takeOverFrom(ThreadContext *oldContext);
130
131    void regStats(const std::string &name);
132
133    void copyTC(ThreadContext *context);
134
135    void copyState(ThreadContext *oldContext);
136
137    void serialize(std::ostream &os);
138    void unserialize(Checkpoint *cp, const std::string &section);
139
140    /***************************************************************
141     *  SimpleThread functions to provide CPU with access to various
142     *  state.
143     **************************************************************/
144
145    /** Returns the pointer to this SimpleThread's ThreadContext. Used
146     *  when a ThreadContext must be passed to objects outside of the
147     *  CPU.
148     */
149    ThreadContext *getTC() { return tc; }
150
151    void demapPage(Addr vaddr, uint64_t asn)
152    {
153        itb->demapPage(vaddr, asn);
154        dtb->demapPage(vaddr, asn);
155    }
156
157    void demapInstPage(Addr vaddr, uint64_t asn)
158    {
159        itb->demapPage(vaddr, asn);
160    }
161
162    void demapDataPage(Addr vaddr, uint64_t asn)
163    {
164        dtb->demapPage(vaddr, asn);
165    }
166
167#if FULL_SYSTEM
168    int getInstAsid() { return isa.instAsid(); }
169    int getDataAsid() { return isa.dataAsid(); }
170
171    void dumpFuncProfile();
172
173    Fault hwrei();
174
175    bool simPalCheck(int palFunc);
176
177#endif
178
179    /*******************************************
180     * ThreadContext interface functions.
181     ******************************************/
182
183    BaseCPU *getCpuPtr() { return cpu; }
184
185    TheISA::TLB *getITBPtr() { return itb; }
186
187    TheISA::TLB *getDTBPtr() { return dtb; }
188
189    System *getSystemPtr() { return system; }
190
191#if FULL_SYSTEM
192    FunctionalPort *getPhysPort() { return physPort; }
193
194    /** Return a virtual port. This port cannot be cached locally in an object.
195     * After a CPU switch it may point to the wrong memory object which could
196     * mean stale data.
197     */
198    VirtualPort *getVirtPort() { return virtPort; }
199#endif
200
201    Status status() const { return _status; }
202
203    void setStatus(Status newStatus) { _status = newStatus; }
204
205    /// Set the status to Active.  Optional delay indicates number of
206    /// cycles to wait before beginning execution.
207    void activate(int delay = 1);
208
209    /// Set the status to Suspended.
210    void suspend();
211
212    /// Set the status to Halted.
213    void halt();
214
215    virtual bool misspeculating();
216
217    Fault instRead(RequestPtr &req)
218    {
219        panic("instRead not implemented");
220        // return funcPhysMem->read(req, inst);
221        return NoFault;
222    }
223
224    void copyArchRegs(ThreadContext *tc);
225
226    void clearArchRegs() { regs.clear(); }
227
228    //
229    // New accessors for new decoder.
230    //
231    uint64_t readIntReg(int reg_idx)
232    {
233        int flatIndex = isa.flattenIntIndex(reg_idx);
234        return regs.readIntReg(flatIndex);
235    }
236
237    FloatReg readFloatReg(int reg_idx, int width)
238    {
239        int flatIndex = isa.flattenFloatIndex(reg_idx);
240        return regs.readFloatReg(flatIndex, width);
241    }
242
243    FloatReg readFloatReg(int reg_idx)
244    {
245        int flatIndex = isa.flattenFloatIndex(reg_idx);
246        return regs.readFloatReg(flatIndex);
247    }
248
249    FloatRegBits readFloatRegBits(int reg_idx, int width)
250    {
251        int flatIndex = isa.flattenFloatIndex(reg_idx);
252        return regs.readFloatRegBits(flatIndex, width);
253    }
254
255    FloatRegBits readFloatRegBits(int reg_idx)
256    {
257        int flatIndex = isa.flattenFloatIndex(reg_idx);
258        return regs.readFloatRegBits(flatIndex);
259    }
260
261    void setIntReg(int reg_idx, uint64_t val)
262    {
263        int flatIndex = isa.flattenIntIndex(reg_idx);
264        regs.setIntReg(flatIndex, val);
265    }
266
267    void setFloatReg(int reg_idx, FloatReg val, int width)
268    {
269        int flatIndex = isa.flattenFloatIndex(reg_idx);
270        regs.setFloatReg(flatIndex, val, width);
271    }
272
273    void setFloatReg(int reg_idx, FloatReg val)
274    {
275        int flatIndex = isa.flattenFloatIndex(reg_idx);
276        regs.setFloatReg(flatIndex, val);
277    }
278
279    void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
280    {
281        int flatIndex = isa.flattenFloatIndex(reg_idx);
282        regs.setFloatRegBits(flatIndex, val, width);
283    }
284
285    void setFloatRegBits(int reg_idx, FloatRegBits val)
286    {
287        int flatIndex = isa.flattenFloatIndex(reg_idx);
288        regs.setFloatRegBits(flatIndex, val);
289    }
290
291    uint64_t readPC()
292    {
293        return regs.readPC();
294    }
295
296    void setPC(uint64_t val)
297    {
298        regs.setPC(val);
299    }
300
301    uint64_t readMicroPC()
302    {
303        return microPC;
304    }
305
306    void setMicroPC(uint64_t val)
307    {
308        microPC = val;
309    }
310
311    uint64_t readNextPC()
312    {
313        return regs.readNextPC();
314    }
315
316    void setNextPC(uint64_t val)
317    {
318        regs.setNextPC(val);
319    }
320
321    uint64_t readNextMicroPC()
322    {
323        return nextMicroPC;
324    }
325
326    void setNextMicroPC(uint64_t val)
327    {
328        nextMicroPC = val;
329    }
330
331    uint64_t readNextNPC()
332    {
333        return regs.readNextNPC();
334    }
335
336    void setNextNPC(uint64_t val)
337    {
338        regs.setNextNPC(val);
339    }
340
341    MiscReg
342    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
343    {
344        return isa.readMiscRegNoEffect(misc_reg);
345    }
346
347    MiscReg
348    readMiscReg(int misc_reg, ThreadID tid = 0)
349    {
350        return isa.readMiscReg(misc_reg, tc);
351    }
352
353    void
354    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
355    {
356        return isa.setMiscRegNoEffect(misc_reg, val);
357    }
358
359    void
360    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
361    {
362        return isa.setMiscReg(misc_reg, val, tc);
363    }
364
365    int
366    flattenIntIndex(int reg)
367    {
368        return isa.flattenIntIndex(reg);
369    }
370
371    int
372    flattenFloatIndex(int reg)
373    {
374        return isa.flattenFloatIndex(reg);
375    }
376
377    unsigned readStCondFailures() { return storeCondFailures; }
378
379    void setStCondFailures(unsigned sc_failures)
380    { storeCondFailures = sc_failures; }
381
382#if !FULL_SYSTEM
383    void syscall(int64_t callnum)
384    {
385        process->syscall(callnum, tc);
386    }
387#endif
388};
389
390
391// for non-speculative execution context, spec_mode is always false
392inline bool
393SimpleThread::misspeculating()
394{
395    return false;
396}
397
398#endif // __CPU_CPU_EXEC_CONTEXT_HH__
399