simple_thread.hh revision 5958:2d9737bf3c2f
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa_traits.hh"
36#include "arch/regfile.hh"
37#include "arch/tlb.hh"
38#include "config/full_system.hh"
39#include "cpu/thread_context.hh"
40#include "cpu/thread_state.hh"
41#include "mem/request.hh"
42#include "sim/byteswap.hh"
43#include "sim/eventq.hh"
44#include "sim/host.hh"
45#include "sim/serialize.hh"
46
47class BaseCPU;
48
49#if FULL_SYSTEM
50
51#include "sim/system.hh"
52
53class FunctionProfile;
54class ProfileNode;
55class FunctionalPort;
56class PhysicalPort;
57
58namespace TheISA {
59    namespace Kernel {
60        class Statistics;
61    };
62};
63
64#else // !FULL_SYSTEM
65
66#include "sim/process.hh"
67#include "mem/page_table.hh"
68class TranslatingPort;
69
70#endif // FULL_SYSTEM
71
72/**
73 * The SimpleThread object provides a combination of the ThreadState
74 * object and the ThreadContext interface. It implements the
75 * ThreadContext interface so that a ProxyThreadContext class can be
76 * made using SimpleThread as the template parameter (see
77 * thread_context.hh). It adds to the ThreadState object by adding all
78 * the objects needed for simple functional execution, including a
79 * simple architectural register file, and pointers to the ITB and DTB
80 * in full system mode. For CPU models that do not need more advanced
81 * ways to hold state (i.e. a separate physical register file, or
82 * separate fetch and commit PC's), this SimpleThread class provides
83 * all the necessary state for full architecture-level functional
84 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
85 * examples.
86 */
87
88class SimpleThread : public ThreadState
89{
90  protected:
91    typedef TheISA::RegFile RegFile;
92    typedef TheISA::MachInst MachInst;
93    typedef TheISA::MiscRegFile MiscRegFile;
94    typedef TheISA::MiscReg MiscReg;
95    typedef TheISA::FloatReg FloatReg;
96    typedef TheISA::FloatRegBits FloatRegBits;
97  public:
98    typedef ThreadContext::Status Status;
99
100  protected:
101    RegFile regs;       // correct-path register context
102
103  public:
104    // pointer to CPU associated with this SimpleThread
105    BaseCPU *cpu;
106
107    ProxyThreadContext<SimpleThread> *tc;
108
109    System *system;
110
111    TheISA::ITB *itb;
112    TheISA::DTB *dtb;
113
114    // constructor: initialize SimpleThread from given process structure
115#if FULL_SYSTEM
116    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
117                 TheISA::ITB *_itb, TheISA::DTB *_dtb,
118                 bool use_kernel_stats = true);
119#else
120    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
121                 TheISA::ITB *_itb, TheISA::DTB *_dtb, int _asid);
122#endif
123
124    SimpleThread();
125
126    virtual ~SimpleThread();
127
128    virtual void takeOverFrom(ThreadContext *oldContext);
129
130    void regStats(const std::string &name);
131
132    void copyTC(ThreadContext *context);
133
134    void copyState(ThreadContext *oldContext);
135
136    void serialize(std::ostream &os);
137    void unserialize(Checkpoint *cp, const std::string &section);
138
139    /***************************************************************
140     *  SimpleThread functions to provide CPU with access to various
141     *  state.
142     **************************************************************/
143
144    /** Returns the pointer to this SimpleThread's ThreadContext. Used
145     *  when a ThreadContext must be passed to objects outside of the
146     *  CPU.
147     */
148    ThreadContext *getTC() { return tc; }
149
150    void demapPage(Addr vaddr, uint64_t asn)
151    {
152        itb->demapPage(vaddr, asn);
153        dtb->demapPage(vaddr, asn);
154    }
155
156    void demapInstPage(Addr vaddr, uint64_t asn)
157    {
158        itb->demapPage(vaddr, asn);
159    }
160
161    void demapDataPage(Addr vaddr, uint64_t asn)
162    {
163        dtb->demapPage(vaddr, asn);
164    }
165
166#if FULL_SYSTEM
167    int getInstAsid() { return regs.instAsid(); }
168    int getDataAsid() { return regs.dataAsid(); }
169
170    void dumpFuncProfile();
171
172    Fault hwrei();
173
174    bool simPalCheck(int palFunc);
175
176#endif
177
178    /*******************************************
179     * ThreadContext interface functions.
180     ******************************************/
181
182    BaseCPU *getCpuPtr() { return cpu; }
183
184    TheISA::ITB *getITBPtr() { return itb; }
185
186    TheISA::DTB *getDTBPtr() { return dtb; }
187
188    System *getSystemPtr() { return system; }
189
190#if FULL_SYSTEM
191    FunctionalPort *getPhysPort() { return physPort; }
192
193    /** Return a virtual port. This port cannot be cached locally in an object.
194     * After a CPU switch it may point to the wrong memory object which could
195     * mean stale data.
196     */
197    VirtualPort *getVirtPort() { return virtPort; }
198#endif
199
200    Status status() const { return _status; }
201
202    void setStatus(Status newStatus) { _status = newStatus; }
203
204    /// Set the status to Active.  Optional delay indicates number of
205    /// cycles to wait before beginning execution.
206    void activate(int delay = 1);
207
208    /// Set the status to Suspended.
209    void suspend();
210
211    /// Set the status to Unallocated.
212    void deallocate();
213
214    /// Set the status to Halted.
215    void halt();
216
217    virtual bool misspeculating();
218
219    Fault instRead(RequestPtr &req)
220    {
221        panic("instRead not implemented");
222        // return funcPhysMem->read(req, inst);
223        return NoFault;
224    }
225
226    void copyArchRegs(ThreadContext *tc);
227
228    void clearArchRegs() { regs.clear(); }
229
230    //
231    // New accessors for new decoder.
232    //
233    uint64_t readIntReg(int reg_idx)
234    {
235        int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
236        return regs.readIntReg(flatIndex);
237    }
238
239    FloatReg readFloatReg(int reg_idx, int width)
240    {
241        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
242        return regs.readFloatReg(flatIndex, width);
243    }
244
245    FloatReg readFloatReg(int reg_idx)
246    {
247        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
248        return regs.readFloatReg(flatIndex);
249    }
250
251    FloatRegBits readFloatRegBits(int reg_idx, int width)
252    {
253        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
254        return regs.readFloatRegBits(flatIndex, width);
255    }
256
257    FloatRegBits readFloatRegBits(int reg_idx)
258    {
259        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
260        return regs.readFloatRegBits(flatIndex);
261    }
262
263    void setIntReg(int reg_idx, uint64_t val)
264    {
265        int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
266        regs.setIntReg(flatIndex, val);
267    }
268
269    void setFloatReg(int reg_idx, FloatReg val, int width)
270    {
271        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
272        regs.setFloatReg(flatIndex, val, width);
273    }
274
275    void setFloatReg(int reg_idx, FloatReg val)
276    {
277        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
278        regs.setFloatReg(flatIndex, val);
279    }
280
281    void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
282    {
283        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
284        regs.setFloatRegBits(flatIndex, val, width);
285    }
286
287    void setFloatRegBits(int reg_idx, FloatRegBits val)
288    {
289        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
290        regs.setFloatRegBits(flatIndex, val);
291    }
292
293    uint64_t readPC()
294    {
295        return regs.readPC();
296    }
297
298    void setPC(uint64_t val)
299    {
300        regs.setPC(val);
301    }
302
303    uint64_t readMicroPC()
304    {
305        return microPC;
306    }
307
308    void setMicroPC(uint64_t val)
309    {
310        microPC = val;
311    }
312
313    uint64_t readNextPC()
314    {
315        return regs.readNextPC();
316    }
317
318    void setNextPC(uint64_t val)
319    {
320        regs.setNextPC(val);
321    }
322
323    uint64_t readNextMicroPC()
324    {
325        return nextMicroPC;
326    }
327
328    void setNextMicroPC(uint64_t val)
329    {
330        nextMicroPC = val;
331    }
332
333    uint64_t readNextNPC()
334    {
335        return regs.readNextNPC();
336    }
337
338    void setNextNPC(uint64_t val)
339    {
340        regs.setNextNPC(val);
341    }
342
343    MiscReg readMiscRegNoEffect(int misc_reg, unsigned tid = 0)
344    {
345        return regs.readMiscRegNoEffect(misc_reg);
346    }
347
348    MiscReg readMiscReg(int misc_reg, unsigned tid = 0)
349    {
350        return regs.readMiscReg(misc_reg, tc);
351    }
352
353    void setMiscRegNoEffect(int misc_reg, const MiscReg &val, unsigned tid = 0)
354    {
355        return regs.setMiscRegNoEffect(misc_reg, val);
356    }
357
358    void setMiscReg(int misc_reg, const MiscReg &val, unsigned tid = 0)
359    {
360        return regs.setMiscReg(misc_reg, val, tc);
361    }
362
363    unsigned readStCondFailures() { return storeCondFailures; }
364
365    void setStCondFailures(unsigned sc_failures)
366    { storeCondFailures = sc_failures; }
367
368#if !FULL_SYSTEM
369    void syscall(int64_t callnum)
370    {
371        process->syscall(callnum, tc);
372    }
373#endif
374};
375
376
377// for non-speculative execution context, spec_mode is always false
378inline bool
379SimpleThread::misspeculating()
380{
381    return false;
382}
383
384#endif // __CPU_CPU_EXEC_CONTEXT_HH__
385