simple_thread.hh revision 5702:bf84e2fa05f7
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa_traits.hh"
36#include "arch/regfile.hh"
37#include "arch/syscallreturn.hh"
38#include "arch/tlb.hh"
39#include "config/full_system.hh"
40#include "cpu/thread_context.hh"
41#include "cpu/thread_state.hh"
42#include "mem/request.hh"
43#include "sim/byteswap.hh"
44#include "sim/eventq.hh"
45#include "sim/host.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53
54class FunctionProfile;
55class ProfileNode;
56class FunctionalPort;
57class PhysicalPort;
58
59namespace TheISA {
60    namespace Kernel {
61        class Statistics;
62    };
63};
64
65#else // !FULL_SYSTEM
66
67#include "sim/process.hh"
68#include "mem/page_table.hh"
69class TranslatingPort;
70
71#endif // FULL_SYSTEM
72
73/**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89class SimpleThread : public ThreadState
90{
91  protected:
92    typedef TheISA::RegFile RegFile;
93    typedef TheISA::MachInst MachInst;
94    typedef TheISA::MiscRegFile MiscRegFile;
95    typedef TheISA::MiscReg MiscReg;
96    typedef TheISA::FloatReg FloatReg;
97    typedef TheISA::FloatRegBits FloatRegBits;
98  public:
99    typedef ThreadContext::Status Status;
100
101  protected:
102    RegFile regs;       // correct-path register context
103
104  public:
105    // pointer to CPU associated with this SimpleThread
106    BaseCPU *cpu;
107
108    ProxyThreadContext<SimpleThread> *tc;
109
110    System *system;
111
112    TheISA::ITB *itb;
113    TheISA::DTB *dtb;
114
115    // constructor: initialize SimpleThread from given process structure
116#if FULL_SYSTEM
117    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118                 TheISA::ITB *_itb, TheISA::DTB *_dtb,
119                 bool use_kernel_stats = true);
120#else
121    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122                 TheISA::ITB *_itb, TheISA::DTB *_dtb, int _asid);
123#endif
124
125    SimpleThread();
126
127    virtual ~SimpleThread();
128
129    virtual void takeOverFrom(ThreadContext *oldContext);
130
131    void regStats(const std::string &name);
132
133    void copyTC(ThreadContext *context);
134
135    void copyState(ThreadContext *oldContext);
136
137    void serialize(std::ostream &os);
138    void unserialize(Checkpoint *cp, const std::string &section);
139
140    /***************************************************************
141     *  SimpleThread functions to provide CPU with access to various
142     *  state, and to provide address translation methods.
143     **************************************************************/
144
145    /** Returns the pointer to this SimpleThread's ThreadContext. Used
146     *  when a ThreadContext must be passed to objects outside of the
147     *  CPU.
148     */
149    ThreadContext *getTC() { return tc; }
150
151    Fault translateInstReq(RequestPtr &req)
152    {
153        return itb->translate(req, tc);
154    }
155
156    Fault translateDataReadReq(RequestPtr &req)
157    {
158        return dtb->translate(req, tc, false);
159    }
160
161    Fault translateDataWriteReq(RequestPtr &req)
162    {
163        return dtb->translate(req, tc, true);
164    }
165
166    void demapPage(Addr vaddr, uint64_t asn)
167    {
168        itb->demapPage(vaddr, asn);
169        dtb->demapPage(vaddr, asn);
170    }
171
172    void demapInstPage(Addr vaddr, uint64_t asn)
173    {
174        itb->demapPage(vaddr, asn);
175    }
176
177    void demapDataPage(Addr vaddr, uint64_t asn)
178    {
179        dtb->demapPage(vaddr, asn);
180    }
181
182#if FULL_SYSTEM
183    int getInstAsid() { return regs.instAsid(); }
184    int getDataAsid() { return regs.dataAsid(); }
185
186    void dumpFuncProfile();
187
188    Fault hwrei();
189
190    bool simPalCheck(int palFunc);
191
192#endif
193
194    /*******************************************
195     * ThreadContext interface functions.
196     ******************************************/
197
198    BaseCPU *getCpuPtr() { return cpu; }
199
200    int getThreadNum() { return tid; }
201
202    TheISA::ITB *getITBPtr() { return itb; }
203
204    TheISA::DTB *getDTBPtr() { return dtb; }
205
206#if FULL_SYSTEM
207    System *getSystemPtr() { return system; }
208
209    FunctionalPort *getPhysPort() { return physPort; }
210
211    /** Return a virtual port. This port cannot be cached locally in an object.
212     * After a CPU switch it may point to the wrong memory object which could
213     * mean stale data.
214     */
215    VirtualPort *getVirtPort() { return virtPort; }
216#endif
217
218    Status status() const { return _status; }
219
220    void setStatus(Status newStatus) { _status = newStatus; }
221
222    /// Set the status to Active.  Optional delay indicates number of
223    /// cycles to wait before beginning execution.
224    void activate(int delay = 1);
225
226    /// Set the status to Suspended.
227    void suspend();
228
229    /// Set the status to Unallocated.
230    void deallocate();
231
232    /// Set the status to Halted.
233    void halt();
234
235    virtual bool misspeculating();
236
237    Fault instRead(RequestPtr &req)
238    {
239        panic("instRead not implemented");
240        // return funcPhysMem->read(req, inst);
241        return NoFault;
242    }
243
244    void copyArchRegs(ThreadContext *tc);
245
246    void clearArchRegs() { regs.clear(); }
247
248    //
249    // New accessors for new decoder.
250    //
251    uint64_t readIntReg(int reg_idx)
252    {
253        int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
254        return regs.readIntReg(flatIndex);
255    }
256
257    FloatReg readFloatReg(int reg_idx, int width)
258    {
259        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
260        return regs.readFloatReg(flatIndex, width);
261    }
262
263    FloatReg readFloatReg(int reg_idx)
264    {
265        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
266        return regs.readFloatReg(flatIndex);
267    }
268
269    FloatRegBits readFloatRegBits(int reg_idx, int width)
270    {
271        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
272        return regs.readFloatRegBits(flatIndex, width);
273    }
274
275    FloatRegBits readFloatRegBits(int reg_idx)
276    {
277        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
278        return regs.readFloatRegBits(flatIndex);
279    }
280
281    void setIntReg(int reg_idx, uint64_t val)
282    {
283        int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
284        regs.setIntReg(flatIndex, val);
285    }
286
287    void setFloatReg(int reg_idx, FloatReg val, int width)
288    {
289        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
290        regs.setFloatReg(flatIndex, val, width);
291    }
292
293    void setFloatReg(int reg_idx, FloatReg val)
294    {
295        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
296        regs.setFloatReg(flatIndex, val);
297    }
298
299    void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
300    {
301        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
302        regs.setFloatRegBits(flatIndex, val, width);
303    }
304
305    void setFloatRegBits(int reg_idx, FloatRegBits val)
306    {
307        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
308        regs.setFloatRegBits(flatIndex, val);
309    }
310
311    uint64_t readPC()
312    {
313        return regs.readPC();
314    }
315
316    void setPC(uint64_t val)
317    {
318        regs.setPC(val);
319    }
320
321    uint64_t readMicroPC()
322    {
323        return microPC;
324    }
325
326    void setMicroPC(uint64_t val)
327    {
328        microPC = val;
329    }
330
331    uint64_t readNextPC()
332    {
333        return regs.readNextPC();
334    }
335
336    void setNextPC(uint64_t val)
337    {
338        regs.setNextPC(val);
339    }
340
341    uint64_t readNextMicroPC()
342    {
343        return nextMicroPC;
344    }
345
346    void setNextMicroPC(uint64_t val)
347    {
348        nextMicroPC = val;
349    }
350
351    uint64_t readNextNPC()
352    {
353        return regs.readNextNPC();
354    }
355
356    void setNextNPC(uint64_t val)
357    {
358        regs.setNextNPC(val);
359    }
360
361    MiscReg readMiscRegNoEffect(int misc_reg, unsigned tid = 0)
362    {
363        return regs.readMiscRegNoEffect(misc_reg);
364    }
365
366    MiscReg readMiscReg(int misc_reg, unsigned tid = 0)
367    {
368        return regs.readMiscReg(misc_reg, tc);
369    }
370
371    void setMiscRegNoEffect(int misc_reg, const MiscReg &val, unsigned tid = 0)
372    {
373        return regs.setMiscRegNoEffect(misc_reg, val);
374    }
375
376    void setMiscReg(int misc_reg, const MiscReg &val, unsigned tid = 0)
377    {
378        return regs.setMiscReg(misc_reg, val, tc);
379    }
380
381    unsigned readStCondFailures() { return storeCondFailures; }
382
383    void setStCondFailures(unsigned sc_failures)
384    { storeCondFailures = sc_failures; }
385
386#if !FULL_SYSTEM
387    TheISA::IntReg getSyscallArg(int i)
388    {
389        assert(i < TheISA::NumArgumentRegs);
390        return regs.readIntReg(TheISA::flattenIntIndex(getTC(),
391                    TheISA::ArgumentReg[i]));
392    }
393
394    // used to shift args for indirect syscall
395    void setSyscallArg(int i, TheISA::IntReg val)
396    {
397        assert(i < TheISA::NumArgumentRegs);
398        regs.setIntReg(TheISA::flattenIntIndex(getTC(),
399                    TheISA::ArgumentReg[i]), val);
400    }
401
402    void setSyscallReturn(SyscallReturn return_value)
403    {
404        TheISA::setSyscallReturn(return_value, getTC());
405    }
406
407    void syscall(int64_t callnum)
408    {
409        process->syscall(callnum, tc);
410    }
411#endif
412};
413
414
415// for non-speculative execution context, spec_mode is always false
416inline bool
417SimpleThread::misspeculating()
418{
419    return false;
420}
421
422#endif // __CPU_CPU_EXEC_CONTEXT_HH__
423