simple_thread.hh revision 5668:5b5a9f4203d1
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa_traits.hh"
36#include "arch/regfile.hh"
37#include "arch/syscallreturn.hh"
38#include "arch/tlb.hh"
39#include "config/full_system.hh"
40#include "cpu/thread_context.hh"
41#include "cpu/thread_state.hh"
42#include "mem/request.hh"
43#include "sim/byteswap.hh"
44#include "sim/eventq.hh"
45#include "sim/host.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53
54class FunctionProfile;
55class ProfileNode;
56class FunctionalPort;
57class PhysicalPort;
58
59namespace TheISA {
60    namespace Kernel {
61        class Statistics;
62    };
63};
64
65#else // !FULL_SYSTEM
66
67#include "sim/process.hh"
68#include "mem/page_table.hh"
69class TranslatingPort;
70
71#endif // FULL_SYSTEM
72
73/**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89class SimpleThread : public ThreadState
90{
91  protected:
92    typedef TheISA::RegFile RegFile;
93    typedef TheISA::MachInst MachInst;
94    typedef TheISA::MiscRegFile MiscRegFile;
95    typedef TheISA::MiscReg MiscReg;
96    typedef TheISA::FloatReg FloatReg;
97    typedef TheISA::FloatRegBits FloatRegBits;
98  public:
99    typedef ThreadContext::Status Status;
100
101  protected:
102    RegFile regs;       // correct-path register context
103
104  public:
105    // pointer to CPU associated with this SimpleThread
106    BaseCPU *cpu;
107
108    ProxyThreadContext<SimpleThread> *tc;
109
110    System *system;
111
112    TheISA::ITB *itb;
113    TheISA::DTB *dtb;
114
115    // constructor: initialize SimpleThread from given process structure
116#if FULL_SYSTEM
117    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118                 TheISA::ITB *_itb, TheISA::DTB *_dtb,
119                 bool use_kernel_stats = true);
120#else
121    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122                 TheISA::ITB *_itb, TheISA::DTB *_dtb, int _asid);
123#endif
124
125    SimpleThread();
126
127    virtual ~SimpleThread();
128
129    virtual void takeOverFrom(ThreadContext *oldContext);
130
131    void regStats(const std::string &name);
132
133    void copyTC(ThreadContext *context);
134
135    void copyState(ThreadContext *oldContext);
136
137    void serialize(std::ostream &os);
138    void unserialize(Checkpoint *cp, const std::string &section);
139
140    /***************************************************************
141     *  SimpleThread functions to provide CPU with access to various
142     *  state, and to provide address translation methods.
143     **************************************************************/
144
145    /** Returns the pointer to this SimpleThread's ThreadContext. Used
146     *  when a ThreadContext must be passed to objects outside of the
147     *  CPU.
148     */
149    ThreadContext *getTC() { return tc; }
150
151    Fault translateInstReq(RequestPtr &req)
152    {
153        return itb->translate(req, tc);
154    }
155
156    Fault translateDataReadReq(RequestPtr &req)
157    {
158        return dtb->translate(req, tc, false);
159    }
160
161    Fault translateDataWriteReq(RequestPtr &req)
162    {
163        return dtb->translate(req, tc, true);
164    }
165
166    void demapPage(Addr vaddr, uint64_t asn)
167    {
168        itb->demapPage(vaddr, asn);
169        dtb->demapPage(vaddr, asn);
170    }
171
172    void demapInstPage(Addr vaddr, uint64_t asn)
173    {
174        itb->demapPage(vaddr, asn);
175    }
176
177    void demapDataPage(Addr vaddr, uint64_t asn)
178    {
179        dtb->demapPage(vaddr, asn);
180    }
181
182#if FULL_SYSTEM
183    int getInstAsid() { return regs.instAsid(); }
184    int getDataAsid() { return regs.dataAsid(); }
185
186    void dumpFuncProfile();
187
188#endif
189
190    /*******************************************
191     * ThreadContext interface functions.
192     ******************************************/
193
194    BaseCPU *getCpuPtr() { return cpu; }
195
196    int getThreadNum() { return tid; }
197
198    TheISA::ITB *getITBPtr() { return itb; }
199
200    TheISA::DTB *getDTBPtr() { return dtb; }
201
202#if FULL_SYSTEM
203    System *getSystemPtr() { return system; }
204
205    FunctionalPort *getPhysPort() { return physPort; }
206
207    /** Return a virtual port. This port cannot be cached locally in an object.
208     * After a CPU switch it may point to the wrong memory object which could
209     * mean stale data.
210     */
211    VirtualPort *getVirtPort() { return virtPort; }
212#endif
213
214    Status status() const { return _status; }
215
216    void setStatus(Status newStatus) { _status = newStatus; }
217
218    /// Set the status to Active.  Optional delay indicates number of
219    /// cycles to wait before beginning execution.
220    void activate(int delay = 1);
221
222    /// Set the status to Suspended.
223    void suspend();
224
225    /// Set the status to Unallocated.
226    void deallocate();
227
228    /// Set the status to Halted.
229    void halt();
230
231    virtual bool misspeculating();
232
233    Fault instRead(RequestPtr &req)
234    {
235        panic("instRead not implemented");
236        // return funcPhysMem->read(req, inst);
237        return NoFault;
238    }
239
240    void copyArchRegs(ThreadContext *tc);
241
242    void clearArchRegs() { regs.clear(); }
243
244    //
245    // New accessors for new decoder.
246    //
247    uint64_t readIntReg(int reg_idx)
248    {
249        int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
250        return regs.readIntReg(flatIndex);
251    }
252
253    FloatReg readFloatReg(int reg_idx, int width)
254    {
255        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
256        return regs.readFloatReg(flatIndex, width);
257    }
258
259    FloatReg readFloatReg(int reg_idx)
260    {
261        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
262        return regs.readFloatReg(flatIndex);
263    }
264
265    FloatRegBits readFloatRegBits(int reg_idx, int width)
266    {
267        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
268        return regs.readFloatRegBits(flatIndex, width);
269    }
270
271    FloatRegBits readFloatRegBits(int reg_idx)
272    {
273        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
274        return regs.readFloatRegBits(flatIndex);
275    }
276
277    void setIntReg(int reg_idx, uint64_t val)
278    {
279        int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
280        regs.setIntReg(flatIndex, val);
281    }
282
283    void setFloatReg(int reg_idx, FloatReg val, int width)
284    {
285        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
286        regs.setFloatReg(flatIndex, val, width);
287    }
288
289    void setFloatReg(int reg_idx, FloatReg val)
290    {
291        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
292        regs.setFloatReg(flatIndex, val);
293    }
294
295    void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
296    {
297        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
298        regs.setFloatRegBits(flatIndex, val, width);
299    }
300
301    void setFloatRegBits(int reg_idx, FloatRegBits val)
302    {
303        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
304        regs.setFloatRegBits(flatIndex, val);
305    }
306
307    uint64_t readPC()
308    {
309        return regs.readPC();
310    }
311
312    void setPC(uint64_t val)
313    {
314        regs.setPC(val);
315    }
316
317    uint64_t readMicroPC()
318    {
319        return microPC;
320    }
321
322    void setMicroPC(uint64_t val)
323    {
324        microPC = val;
325    }
326
327    uint64_t readNextPC()
328    {
329        return regs.readNextPC();
330    }
331
332    void setNextPC(uint64_t val)
333    {
334        regs.setNextPC(val);
335    }
336
337    uint64_t readNextMicroPC()
338    {
339        return nextMicroPC;
340    }
341
342    void setNextMicroPC(uint64_t val)
343    {
344        nextMicroPC = val;
345    }
346
347    uint64_t readNextNPC()
348    {
349        return regs.readNextNPC();
350    }
351
352    void setNextNPC(uint64_t val)
353    {
354        regs.setNextNPC(val);
355    }
356
357    MiscReg readMiscRegNoEffect(int misc_reg, unsigned tid = 0)
358    {
359        return regs.readMiscRegNoEffect(misc_reg);
360    }
361
362    MiscReg readMiscReg(int misc_reg, unsigned tid = 0)
363    {
364        return regs.readMiscReg(misc_reg, tc);
365    }
366
367    void setMiscRegNoEffect(int misc_reg, const MiscReg &val, unsigned tid = 0)
368    {
369        return regs.setMiscRegNoEffect(misc_reg, val);
370    }
371
372    void setMiscReg(int misc_reg, const MiscReg &val, unsigned tid = 0)
373    {
374        return regs.setMiscReg(misc_reg, val, tc);
375    }
376
377    unsigned readStCondFailures() { return storeCondFailures; }
378
379    void setStCondFailures(unsigned sc_failures)
380    { storeCondFailures = sc_failures; }
381
382#if !FULL_SYSTEM
383    TheISA::IntReg getSyscallArg(int i)
384    {
385        assert(i < TheISA::NumArgumentRegs);
386        return regs.readIntReg(TheISA::flattenIntIndex(getTC(),
387                    TheISA::ArgumentReg[i]));
388    }
389
390    // used to shift args for indirect syscall
391    void setSyscallArg(int i, TheISA::IntReg val)
392    {
393        assert(i < TheISA::NumArgumentRegs);
394        regs.setIntReg(TheISA::flattenIntIndex(getTC(),
395                    TheISA::ArgumentReg[i]), val);
396    }
397
398    void setSyscallReturn(SyscallReturn return_value)
399    {
400        TheISA::setSyscallReturn(return_value, getTC());
401    }
402
403    void syscall(int64_t callnum)
404    {
405        process->syscall(callnum, tc);
406    }
407#endif
408};
409
410
411// for non-speculative execution context, spec_mode is always false
412inline bool
413SimpleThread::misspeculating()
414{
415    return false;
416}
417
418#endif // __CPU_CPU_EXEC_CONTEXT_HH__
419