simple_thread.hh revision 3791:f1783bae1afe
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa_traits.hh"
36#include "arch/regfile.hh"
37#include "arch/syscallreturn.hh"
38#include "config/full_system.hh"
39#include "cpu/thread_context.hh"
40#include "cpu/thread_state.hh"
41#include "mem/physical.hh"
42#include "mem/request.hh"
43#include "sim/byteswap.hh"
44#include "sim/eventq.hh"
45#include "sim/host.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53#include "arch/tlb.hh"
54
55class FunctionProfile;
56class ProfileNode;
57class FunctionalPort;
58class PhysicalPort;
59
60namespace TheISA {
61    namespace Kernel {
62        class Statistics;
63    };
64};
65
66#else // !FULL_SYSTEM
67
68#include "sim/process.hh"
69#include "mem/page_table.hh"
70class TranslatingPort;
71
72#endif // FULL_SYSTEM
73
74/**
75 * The SimpleThread object provides a combination of the ThreadState
76 * object and the ThreadContext interface. It implements the
77 * ThreadContext interface so that a ProxyThreadContext class can be
78 * made using SimpleThread as the template parameter (see
79 * thread_context.hh). It adds to the ThreadState object by adding all
80 * the objects needed for simple functional execution, including a
81 * simple architectural register file, and pointers to the ITB and DTB
82 * in full system mode. For CPU models that do not need more advanced
83 * ways to hold state (i.e. a separate physical register file, or
84 * separate fetch and commit PC's), this SimpleThread class provides
85 * all the necessary state for full architecture-level functional
86 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
87 * examples.
88 */
89
90class SimpleThread : public ThreadState
91{
92  protected:
93    typedef TheISA::RegFile RegFile;
94    typedef TheISA::MachInst MachInst;
95    typedef TheISA::MiscRegFile MiscRegFile;
96    typedef TheISA::MiscReg MiscReg;
97    typedef TheISA::FloatReg FloatReg;
98    typedef TheISA::FloatRegBits FloatRegBits;
99  public:
100    typedef ThreadContext::Status Status;
101
102  protected:
103    RegFile regs;	// correct-path register context
104
105  public:
106    // pointer to CPU associated with this SimpleThread
107    BaseCPU *cpu;
108
109    ProxyThreadContext<SimpleThread> *tc;
110
111    System *system;
112
113#if FULL_SYSTEM
114    TheISA::ITB *itb;
115    TheISA::DTB *dtb;
116#endif
117
118    // constructor: initialize SimpleThread from given process structure
119#if FULL_SYSTEM
120    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
121                 TheISA::ITB *_itb, TheISA::DTB *_dtb,
122                 bool use_kernel_stats = true);
123#else
124    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
125#endif
126
127    SimpleThread();
128
129    virtual ~SimpleThread();
130
131    virtual void takeOverFrom(ThreadContext *oldContext);
132
133    void regStats(const std::string &name);
134
135    void copyTC(ThreadContext *context);
136
137    void copyState(ThreadContext *oldContext);
138
139    void serialize(std::ostream &os);
140    void unserialize(Checkpoint *cp, const std::string &section);
141
142    /***************************************************************
143     *  SimpleThread functions to provide CPU with access to various
144     *  state, and to provide address translation methods.
145     **************************************************************/
146
147    /** Returns the pointer to this SimpleThread's ThreadContext. Used
148     *  when a ThreadContext must be passed to objects outside of the
149     *  CPU.
150     */
151    ThreadContext *getTC() { return tc; }
152
153#if FULL_SYSTEM
154    int getInstAsid() { return regs.instAsid(); }
155    int getDataAsid() { return regs.dataAsid(); }
156
157    Fault translateInstReq(RequestPtr &req)
158    {
159        return itb->translate(req, tc);
160    }
161
162    Fault translateDataReadReq(RequestPtr &req)
163    {
164        return dtb->translate(req, tc, false);
165    }
166
167    Fault translateDataWriteReq(RequestPtr &req)
168    {
169        return dtb->translate(req, tc, true);
170    }
171
172    void dumpFuncProfile();
173
174    Fault hwrei();
175
176    bool simPalCheck(int palFunc);
177#else
178
179    Fault translateInstReq(RequestPtr &req)
180    {
181        return process->pTable->translate(req);
182    }
183
184    Fault translateDataReadReq(RequestPtr &req)
185    {
186        return process->pTable->translate(req);
187    }
188
189    Fault translateDataWriteReq(RequestPtr &req)
190    {
191        return process->pTable->translate(req);
192    }
193#endif
194
195    /*******************************************
196     * ThreadContext interface functions.
197     ******************************************/
198
199    BaseCPU *getCpuPtr() { return cpu; }
200
201    int getThreadNum() { return tid; }
202
203#if FULL_SYSTEM
204    System *getSystemPtr() { return system; }
205
206    TheISA::ITB *getITBPtr() { return itb; }
207
208    TheISA::DTB *getDTBPtr() { return dtb; }
209
210    FunctionalPort *getPhysPort() { return physPort; }
211
212    /** Return a virtual port. If no thread context is specified then a static
213     * port is returned. Otherwise a port is created and returned. It must be
214     * deleted by deleteVirtPort(). */
215    VirtualPort *getVirtPort(ThreadContext *tc);
216
217    void delVirtPort(VirtualPort *vp);
218#endif
219
220    Status status() const { return _status; }
221
222    void setStatus(Status newStatus) { _status = newStatus; }
223
224    /// Set the status to Active.  Optional delay indicates number of
225    /// cycles to wait before beginning execution.
226    void activate(int delay = 1);
227
228    /// Set the status to Suspended.
229    void suspend();
230
231    /// Set the status to Unallocated.
232    void deallocate();
233
234    /// Set the status to Halted.
235    void halt();
236
237    virtual bool misspeculating();
238
239    Fault instRead(RequestPtr &req)
240    {
241        panic("instRead not implemented");
242        // return funcPhysMem->read(req, inst);
243        return NoFault;
244    }
245
246    void copyArchRegs(ThreadContext *tc);
247
248    void clearArchRegs() { regs.clear(); }
249
250    //
251    // New accessors for new decoder.
252    //
253    uint64_t readIntReg(int reg_idx)
254    {
255        return regs.readIntReg(TheISA::flattenIntIndex(getTC(), reg_idx));
256    }
257
258    FloatReg readFloatReg(int reg_idx, int width)
259    {
260        return regs.readFloatReg(reg_idx, width);
261    }
262
263    FloatReg readFloatReg(int reg_idx)
264    {
265        return regs.readFloatReg(reg_idx);
266    }
267
268    FloatRegBits readFloatRegBits(int reg_idx, int width)
269    {
270        return regs.readFloatRegBits(reg_idx, width);
271    }
272
273    FloatRegBits readFloatRegBits(int reg_idx)
274    {
275        return regs.readFloatRegBits(reg_idx);
276    }
277
278    void setIntReg(int reg_idx, uint64_t val)
279    {
280        regs.setIntReg(TheISA::flattenIntIndex(getTC(), reg_idx), val);
281    }
282
283    void setFloatReg(int reg_idx, FloatReg val, int width)
284    {
285        regs.setFloatReg(reg_idx, val, width);
286    }
287
288    void setFloatReg(int reg_idx, FloatReg val)
289    {
290        regs.setFloatReg(reg_idx, val);
291    }
292
293    void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
294    {
295        regs.setFloatRegBits(reg_idx, val, width);
296    }
297
298    void setFloatRegBits(int reg_idx, FloatRegBits val)
299    {
300        regs.setFloatRegBits(reg_idx, val);
301    }
302
303    uint64_t readPC()
304    {
305        return regs.readPC();
306    }
307
308    void setPC(uint64_t val)
309    {
310        regs.setPC(val);
311    }
312
313    uint64_t readMicroPC()
314    {
315        return microPC;
316    }
317
318    void setMicroPC(uint64_t val)
319    {
320        microPC = val;
321    }
322
323    uint64_t readNextPC()
324    {
325        return regs.readNextPC();
326    }
327
328    void setNextPC(uint64_t val)
329    {
330        regs.setNextPC(val);
331    }
332
333    uint64_t readNextMicroPC()
334    {
335        return nextMicroPC;
336    }
337
338    void setNextMicroPC(uint64_t val)
339    {
340        nextMicroPC = val;
341    }
342
343    uint64_t readNextNPC()
344    {
345        return regs.readNextNPC();
346    }
347
348    void setNextNPC(uint64_t val)
349    {
350        regs.setNextNPC(val);
351    }
352
353    MiscReg readMiscReg(int misc_reg)
354    {
355        return regs.readMiscReg(misc_reg);
356    }
357
358    MiscReg readMiscRegWithEffect(int misc_reg)
359    {
360        return regs.readMiscRegWithEffect(misc_reg, tc);
361    }
362
363    void setMiscReg(int misc_reg, const MiscReg &val)
364    {
365        return regs.setMiscReg(misc_reg, val);
366    }
367
368    void setMiscRegWithEffect(int misc_reg, const MiscReg &val)
369    {
370        return regs.setMiscRegWithEffect(misc_reg, val, tc);
371    }
372
373    unsigned readStCondFailures() { return storeCondFailures; }
374
375    void setStCondFailures(unsigned sc_failures)
376    { storeCondFailures = sc_failures; }
377
378#if !FULL_SYSTEM
379    TheISA::IntReg getSyscallArg(int i)
380    {
381        return regs.readIntReg(TheISA::flattenIntIndex(getTC(),
382                    TheISA::ArgumentReg0 + i));
383    }
384
385    // used to shift args for indirect syscall
386    void setSyscallArg(int i, TheISA::IntReg val)
387    {
388        regs.setIntReg(TheISA::flattenIntIndex(getTC(),
389                    TheISA::ArgumentReg0 + i), val);
390    }
391
392    void setSyscallReturn(SyscallReturn return_value)
393    {
394        TheISA::setSyscallReturn(return_value, getTC());
395    }
396
397    void syscall(int64_t callnum)
398    {
399        process->syscall(callnum, tc);
400    }
401#endif
402
403    void changeRegFileContext(TheISA::RegContextParam param,
404            TheISA::RegContextVal val)
405    {
406        regs.changeContext(param, val);
407    }
408};
409
410
411// for non-speculative execution context, spec_mode is always false
412inline bool
413SimpleThread::misspeculating()
414{
415    return false;
416}
417
418#endif // __CPU_CPU_EXEC_CONTEXT_HH__
419