simple_thread.hh revision 14022:a7cdc33dab35
1/*
2 * Copyright (c) 2011-2012, 2016-2018 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2001-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Nathan Binkert
43 */
44
45#ifndef __CPU_SIMPLE_THREAD_HH__
46#define __CPU_SIMPLE_THREAD_HH__
47
48#include "arch/decoder.hh"
49#include "arch/generic/tlb.hh"
50#include "arch/isa.hh"
51#include "arch/isa_traits.hh"
52#include "arch/registers.hh"
53#include "arch/types.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/thread_context.hh"
57#include "cpu/thread_state.hh"
58#include "debug/CCRegs.hh"
59#include "debug/FloatRegs.hh"
60#include "debug/IntRegs.hh"
61#include "debug/VecPredRegs.hh"
62#include "debug/VecRegs.hh"
63#include "mem/page_table.hh"
64#include "mem/request.hh"
65#include "sim/byteswap.hh"
66#include "sim/eventq.hh"
67#include "sim/process.hh"
68#include "sim/serialize.hh"
69#include "sim/system.hh"
70
71class BaseCPU;
72class CheckerCPU;
73
74class FunctionProfile;
75class ProfileNode;
76
77namespace Kernel {
78    class Statistics;
79}
80
81/**
82 * The SimpleThread object provides a combination of the ThreadState
83 * object and the ThreadContext interface. It implements the
84 * ThreadContext interface and adds to the ThreadState object by adding all
85 * the objects needed for simple functional execution, including a
86 * simple architectural register file, and pointers to the ITB and DTB
87 * in full system mode. For CPU models that do not need more advanced
88 * ways to hold state (i.e. a separate physical register file, or
89 * separate fetch and commit PC's), this SimpleThread class provides
90 * all the necessary state for full architecture-level functional
91 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
92 * examples.
93 */
94
95class SimpleThread : public ThreadState, public ThreadContext
96{
97  protected:
98    typedef TheISA::MachInst MachInst;
99    using VecRegContainer = TheISA::VecRegContainer;
100    using VecElem = TheISA::VecElem;
101    using VecPredRegContainer = TheISA::VecPredRegContainer;
102  public:
103    typedef ThreadContext::Status Status;
104
105  protected:
106    RegVal floatRegs[TheISA::NumFloatRegs];
107    RegVal intRegs[TheISA::NumIntRegs];
108    VecRegContainer vecRegs[TheISA::NumVecRegs];
109    VecPredRegContainer vecPredRegs[TheISA::NumVecPredRegs];
110#ifdef ISA_HAS_CC_REGS
111    RegVal ccRegs[TheISA::NumCCRegs];
112#endif
113    TheISA::ISA *const isa;    // one "instance" of the current ISA.
114
115    TheISA::PCState _pcState;
116
117    /** Did this instruction execute or is it predicated false */
118    bool predicate;
119
120    /** True if the memory access should be skipped for this instruction */
121    bool memAccPredicate;
122
123  public:
124    std::string name() const
125    {
126        return csprintf("%s.[tid:%i]", baseCpu->name(), threadId());
127    }
128
129    System *system;
130
131    BaseTLB *itb;
132    BaseTLB *dtb;
133
134    TheISA::Decoder decoder;
135
136    // constructor: initialize SimpleThread from given process structure
137    // FS
138    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
139                 BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa,
140                 bool use_kernel_stats = true);
141    // SE
142    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
143                 Process *_process, BaseTLB *_itb, BaseTLB *_dtb,
144                 TheISA::ISA *_isa);
145
146    virtual ~SimpleThread() {}
147
148    void takeOverFrom(ThreadContext *oldContext) override;
149
150    void regStats(const std::string &name) override;
151
152    void copyState(ThreadContext *oldContext);
153
154    void serialize(CheckpointOut &cp) const override;
155    void unserialize(CheckpointIn &cp) override;
156    void startup();
157
158    /***************************************************************
159     *  SimpleThread functions to provide CPU with access to various
160     *  state.
161     **************************************************************/
162
163    /** Returns the pointer to this SimpleThread's ThreadContext. Used
164     *  when a ThreadContext must be passed to objects outside of the
165     *  CPU.
166     */
167    ThreadContext *getTC() { return this; }
168
169    void demapPage(Addr vaddr, uint64_t asn)
170    {
171        itb->demapPage(vaddr, asn);
172        dtb->demapPage(vaddr, asn);
173    }
174
175    void demapInstPage(Addr vaddr, uint64_t asn)
176    {
177        itb->demapPage(vaddr, asn);
178    }
179
180    void demapDataPage(Addr vaddr, uint64_t asn)
181    {
182        dtb->demapPage(vaddr, asn);
183    }
184
185    void dumpFuncProfile() override;
186
187    /*******************************************
188     * ThreadContext interface functions.
189     ******************************************/
190
191    BaseCPU *getCpuPtr() override { return baseCpu; }
192
193    int cpuId() const override { return ThreadState::cpuId(); }
194    uint32_t socketId() const override { return ThreadState::socketId(); }
195    int threadId() const override { return ThreadState::threadId(); }
196    void setThreadId(int id) override { ThreadState::setThreadId(id); }
197    ContextID contextId() const override { return ThreadState::contextId(); }
198    void setContextId(ContextID id) override { ThreadState::setContextId(id); }
199
200    BaseTLB *getITBPtr() override { return itb; }
201
202    BaseTLB *getDTBPtr() override { return dtb; }
203
204    CheckerCPU *getCheckerCpuPtr() override { return NULL; }
205
206    TheISA::ISA *getIsaPtr() override { return isa; }
207
208    TheISA::Decoder *getDecoderPtr() override { return &decoder; }
209
210    System *getSystemPtr() override { return system; }
211
212    Kernel::Statistics *
213    getKernelStats() override
214    {
215        return ThreadState::getKernelStats();
216    }
217
218    PortProxy &getPhysProxy() override { return ThreadState::getPhysProxy(); }
219    PortProxy &getVirtProxy() override { return ThreadState::getVirtProxy(); }
220
221    void initMemProxies(ThreadContext *tc) override
222    {
223        ThreadState::initMemProxies(tc);
224    }
225
226    PortProxy &
227    getMemProxy() override
228    {
229        return ThreadState::getMemProxy();
230    }
231
232    Process *getProcessPtr() override { return ThreadState::getProcessPtr(); }
233    void setProcessPtr(Process *p) override { ThreadState::setProcessPtr(p); }
234
235    Status status() const override { return _status; }
236
237    void setStatus(Status newStatus) override { _status = newStatus; }
238
239    /// Set the status to Active.
240    void activate() override;
241
242    /// Set the status to Suspended.
243    void suspend() override;
244
245    /// Set the status to Halted.
246    void halt() override;
247
248    EndQuiesceEvent *
249    getQuiesceEvent() override
250    {
251        return ThreadState::getQuiesceEvent();
252    }
253
254    Tick
255    readLastActivate() override
256    {
257        return ThreadState::readLastActivate();
258    }
259    Tick
260    readLastSuspend() override
261    {
262        return ThreadState::readLastSuspend();
263    }
264
265    void profileClear() override { ThreadState::profileClear(); }
266    void profileSample() override { ThreadState::profileSample(); }
267
268    void copyArchRegs(ThreadContext *tc) override;
269
270    void clearArchRegs() override
271    {
272        _pcState = 0;
273        memset(intRegs, 0, sizeof(intRegs));
274        memset(floatRegs, 0, sizeof(floatRegs));
275        for (int i = 0; i < TheISA::NumVecRegs; i++) {
276            vecRegs[i].zero();
277        }
278        for (int i = 0; i < TheISA::NumVecPredRegs; i++) {
279            vecPredRegs[i].reset();
280        }
281#ifdef ISA_HAS_CC_REGS
282        memset(ccRegs, 0, sizeof(ccRegs));
283#endif
284        isa->clear();
285    }
286
287    //
288    // New accessors for new decoder.
289    //
290    RegVal
291    readIntReg(RegIndex reg_idx) const override
292    {
293        int flatIndex = isa->flattenIntIndex(reg_idx);
294        assert(flatIndex < TheISA::NumIntRegs);
295        uint64_t regVal(readIntRegFlat(flatIndex));
296        DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
297                reg_idx, flatIndex, regVal);
298        return regVal;
299    }
300
301    RegVal
302    readFloatReg(RegIndex reg_idx) const override
303    {
304        int flatIndex = isa->flattenFloatIndex(reg_idx);
305        assert(flatIndex < TheISA::NumFloatRegs);
306        RegVal regVal(readFloatRegFlat(flatIndex));
307        DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x.\n",
308                reg_idx, flatIndex, regVal);
309        return regVal;
310    }
311
312    const VecRegContainer&
313    readVecReg(const RegId& reg) const override
314    {
315        int flatIndex = isa->flattenVecIndex(reg.index());
316        assert(flatIndex < TheISA::NumVecRegs);
317        const VecRegContainer& regVal = readVecRegFlat(flatIndex);
318        DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s.\n",
319                reg.index(), flatIndex, regVal.print());
320        return regVal;
321    }
322
323    VecRegContainer&
324    getWritableVecReg(const RegId& reg) override
325    {
326        int flatIndex = isa->flattenVecIndex(reg.index());
327        assert(flatIndex < TheISA::NumVecRegs);
328        VecRegContainer& regVal = getWritableVecRegFlat(flatIndex);
329        DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s for modify.\n",
330                reg.index(), flatIndex, regVal.print());
331        return regVal;
332    }
333
334    /** Vector Register Lane Interfaces. */
335    /** @{ */
336    /** Reads source vector <T> operand. */
337    template <typename T>
338    VecLaneT<T, true>
339    readVecLane(const RegId& reg) const
340    {
341        int flatIndex = isa->flattenVecIndex(reg.index());
342        assert(flatIndex < TheISA::NumVecRegs);
343        auto regVal = readVecLaneFlat<T>(flatIndex, reg.elemIndex());
344        DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] as %lx.\n",
345                reg.index(), flatIndex, reg.elemIndex(), regVal);
346        return regVal;
347    }
348
349    /** Reads source vector 8bit operand. */
350    virtual ConstVecLane8
351    readVec8BitLaneReg(const RegId &reg) const override
352    {
353        return readVecLane<uint8_t>(reg);
354    }
355
356    /** Reads source vector 16bit operand. */
357    virtual ConstVecLane16
358    readVec16BitLaneReg(const RegId &reg) const override
359    {
360        return readVecLane<uint16_t>(reg);
361    }
362
363    /** Reads source vector 32bit operand. */
364    virtual ConstVecLane32
365    readVec32BitLaneReg(const RegId &reg) const override
366    {
367        return readVecLane<uint32_t>(reg);
368    }
369
370    /** Reads source vector 64bit operand. */
371    virtual ConstVecLane64
372    readVec64BitLaneReg(const RegId &reg) const override
373    {
374        return readVecLane<uint64_t>(reg);
375    }
376
377    /** Write a lane of the destination vector register. */
378    template <typename LD>
379    void
380    setVecLaneT(const RegId &reg, const LD &val)
381    {
382        int flatIndex = isa->flattenVecIndex(reg.index());
383        assert(flatIndex < TheISA::NumVecRegs);
384        setVecLaneFlat(flatIndex, reg.elemIndex(), val);
385        DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] to %lx.\n",
386                reg.index(), flatIndex, reg.elemIndex(), val);
387    }
388    virtual void
389    setVecLane(const RegId &reg, const LaneData<LaneSize::Byte> &val) override
390    {
391        return setVecLaneT(reg, val);
392    }
393    virtual void
394    setVecLane(const RegId &reg,
395               const LaneData<LaneSize::TwoByte> &val) override
396    {
397        return setVecLaneT(reg, val);
398    }
399    virtual void
400    setVecLane(const RegId &reg,
401               const LaneData<LaneSize::FourByte> &val) override
402    {
403        return setVecLaneT(reg, val);
404    }
405    virtual void
406    setVecLane(const RegId &reg,
407               const LaneData<LaneSize::EightByte> &val) override
408    {
409        return setVecLaneT(reg, val);
410    }
411    /** @} */
412
413    const VecElem &
414    readVecElem(const RegId &reg) const override
415    {
416        int flatIndex = isa->flattenVecElemIndex(reg.index());
417        assert(flatIndex < TheISA::NumVecRegs);
418        const VecElem& regVal = readVecElemFlat(flatIndex, reg.elemIndex());
419        DPRINTF(VecRegs, "Reading element %d of vector reg %d (%d) as"
420                " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, regVal);
421        return regVal;
422    }
423
424    const VecPredRegContainer &
425    readVecPredReg(const RegId &reg) const override
426    {
427        int flatIndex = isa->flattenVecPredIndex(reg.index());
428        assert(flatIndex < TheISA::NumVecPredRegs);
429        const VecPredRegContainer& regVal = readVecPredRegFlat(flatIndex);
430        DPRINTF(VecPredRegs, "Reading predicate reg %d (%d) as %s.\n",
431                reg.index(), flatIndex, regVal.print());
432        return regVal;
433    }
434
435    VecPredRegContainer &
436    getWritableVecPredReg(const RegId &reg) override
437    {
438        int flatIndex = isa->flattenVecPredIndex(reg.index());
439        assert(flatIndex < TheISA::NumVecPredRegs);
440        VecPredRegContainer& regVal = getWritableVecPredRegFlat(flatIndex);
441        DPRINTF(VecPredRegs,
442                "Reading predicate reg %d (%d) as %s for modify.\n",
443                reg.index(), flatIndex, regVal.print());
444        return regVal;
445    }
446
447    RegVal
448    readCCReg(RegIndex reg_idx) const override
449    {
450#ifdef ISA_HAS_CC_REGS
451        int flatIndex = isa->flattenCCIndex(reg_idx);
452        assert(0 <= flatIndex);
453        assert(flatIndex < TheISA::NumCCRegs);
454        uint64_t regVal(readCCRegFlat(flatIndex));
455        DPRINTF(CCRegs, "Reading CC reg %d (%d) as %#x.\n",
456                reg_idx, flatIndex, regVal);
457        return regVal;
458#else
459        panic("Tried to read a CC register.");
460        return 0;
461#endif
462    }
463
464    void
465    setIntReg(RegIndex reg_idx, RegVal val) override
466    {
467        int flatIndex = isa->flattenIntIndex(reg_idx);
468        assert(flatIndex < TheISA::NumIntRegs);
469        DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
470                reg_idx, flatIndex, val);
471        setIntRegFlat(flatIndex, val);
472    }
473
474    void
475    setFloatReg(RegIndex reg_idx, RegVal val) override
476    {
477        int flatIndex = isa->flattenFloatIndex(reg_idx);
478        assert(flatIndex < TheISA::NumFloatRegs);
479        // XXX: Fix array out of bounds compiler error for gem5.fast
480        // when checkercpu enabled
481        if (flatIndex < TheISA::NumFloatRegs)
482            setFloatRegFlat(flatIndex, val);
483        DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x.\n",
484                reg_idx, flatIndex, val);
485    }
486
487    void
488    setVecReg(const RegId &reg, const VecRegContainer &val) override
489    {
490        int flatIndex = isa->flattenVecIndex(reg.index());
491        assert(flatIndex < TheISA::NumVecRegs);
492        setVecRegFlat(flatIndex, val);
493        DPRINTF(VecRegs, "Setting vector reg %d (%d) to %s.\n",
494                reg.index(), flatIndex, val.print());
495    }
496
497    void
498    setVecElem(const RegId &reg, const VecElem &val) override
499    {
500        int flatIndex = isa->flattenVecElemIndex(reg.index());
501        assert(flatIndex < TheISA::NumVecRegs);
502        setVecElemFlat(flatIndex, reg.elemIndex(), val);
503        DPRINTF(VecRegs, "Setting element %d of vector reg %d (%d) to"
504                " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, val);
505    }
506
507    void
508    setVecPredReg(const RegId &reg, const VecPredRegContainer &val) override
509    {
510        int flatIndex = isa->flattenVecPredIndex(reg.index());
511        assert(flatIndex < TheISA::NumVecPredRegs);
512        setVecPredRegFlat(flatIndex, val);
513        DPRINTF(VecPredRegs, "Setting predicate reg %d (%d) to %s.\n",
514                reg.index(), flatIndex, val.print());
515    }
516
517    void
518    setCCReg(RegIndex reg_idx, RegVal val) override
519    {
520#ifdef ISA_HAS_CC_REGS
521        int flatIndex = isa->flattenCCIndex(reg_idx);
522        assert(flatIndex < TheISA::NumCCRegs);
523        DPRINTF(CCRegs, "Setting CC reg %d (%d) to %#x.\n",
524                reg_idx, flatIndex, val);
525        setCCRegFlat(flatIndex, val);
526#else
527        panic("Tried to set a CC register.");
528#endif
529    }
530
531    TheISA::PCState pcState() const override { return _pcState; }
532    void pcState(const TheISA::PCState &val) override { _pcState = val; }
533
534    void
535    pcStateNoRecord(const TheISA::PCState &val) override
536    {
537        _pcState = val;
538    }
539
540    Addr instAddr() const override  { return _pcState.instAddr(); }
541    Addr nextInstAddr() const override { return _pcState.nextInstAddr(); }
542    MicroPC microPC() const override { return _pcState.microPC(); }
543    bool readPredicate() const { return predicate; }
544    void setPredicate(bool val) { predicate = val; }
545
546    RegVal
547    readMiscRegNoEffect(RegIndex misc_reg) const override
548    {
549        return isa->readMiscRegNoEffect(misc_reg);
550    }
551
552    RegVal
553    readMiscReg(RegIndex misc_reg) override
554    {
555        return isa->readMiscReg(misc_reg, this);
556    }
557
558    void
559    setMiscRegNoEffect(RegIndex misc_reg, RegVal val) override
560    {
561        return isa->setMiscRegNoEffect(misc_reg, val);
562    }
563
564    void
565    setMiscReg(RegIndex misc_reg, RegVal val) override
566    {
567        return isa->setMiscReg(misc_reg, val, this);
568    }
569
570    RegId
571    flattenRegId(const RegId& regId) const override
572    {
573        return isa->flattenRegId(regId);
574    }
575
576    unsigned readStCondFailures() const override { return storeCondFailures; }
577
578    bool
579    readMemAccPredicate()
580    {
581        return memAccPredicate;
582    }
583
584    void
585    setMemAccPredicate(bool val)
586    {
587        memAccPredicate = val;
588    }
589
590    void
591    setStCondFailures(unsigned sc_failures) override
592    {
593        storeCondFailures = sc_failures;
594    }
595
596    Counter
597    readFuncExeInst() const override
598    {
599        return ThreadState::readFuncExeInst();
600    }
601
602    void
603    syscall(int64_t callnum, Fault *fault) override
604    {
605        process->syscall(callnum, this, fault);
606    }
607
608    RegVal readIntRegFlat(RegIndex idx) const override { return intRegs[idx]; }
609    void
610    setIntRegFlat(RegIndex idx, RegVal val) override
611    {
612        intRegs[idx] = val;
613    }
614
615    RegVal
616    readFloatRegFlat(RegIndex idx) const override
617    {
618        return floatRegs[idx];
619    }
620    void
621    setFloatRegFlat(RegIndex idx, RegVal val) override
622    {
623        floatRegs[idx] = val;
624    }
625
626    const VecRegContainer &
627    readVecRegFlat(RegIndex reg) const override
628    {
629        return vecRegs[reg];
630    }
631
632    VecRegContainer &
633    getWritableVecRegFlat(RegIndex reg) override
634    {
635        return vecRegs[reg];
636    }
637
638    void
639    setVecRegFlat(RegIndex reg, const VecRegContainer &val) override
640    {
641        vecRegs[reg] = val;
642    }
643
644    template <typename T>
645    VecLaneT<T, true>
646    readVecLaneFlat(RegIndex reg, int lId) const
647    {
648        return vecRegs[reg].laneView<T>(lId);
649    }
650
651    template <typename LD>
652    void
653    setVecLaneFlat(RegIndex reg, int lId, const LD &val)
654    {
655        vecRegs[reg].laneView<typename LD::UnderlyingType>(lId) = val;
656    }
657
658    const VecElem &
659    readVecElemFlat(RegIndex reg, const ElemIndex &elemIndex) const override
660    {
661        return vecRegs[reg].as<TheISA::VecElem>()[elemIndex];
662    }
663
664    void
665    setVecElemFlat(RegIndex reg, const ElemIndex &elemIndex,
666                   const VecElem &val) override
667    {
668        vecRegs[reg].as<TheISA::VecElem>()[elemIndex] = val;
669    }
670
671    const VecPredRegContainer &
672    readVecPredRegFlat(RegIndex reg) const override
673    {
674        return vecPredRegs[reg];
675    }
676
677    VecPredRegContainer &
678    getWritableVecPredRegFlat(RegIndex reg) override
679    {
680        return vecPredRegs[reg];
681    }
682
683    void
684    setVecPredRegFlat(RegIndex reg, const VecPredRegContainer &val) override
685    {
686        vecPredRegs[reg] = val;
687    }
688
689#ifdef ISA_HAS_CC_REGS
690    RegVal readCCRegFlat(RegIndex idx) const override { return ccRegs[idx]; }
691    void setCCRegFlat(RegIndex idx, RegVal val) override { ccRegs[idx] = val; }
692#else
693    RegVal
694    readCCRegFlat(RegIndex idx) const override
695    {
696        panic("readCCRegFlat w/no CC regs!\n");
697    }
698
699    void
700    setCCRegFlat(RegIndex idx, RegVal val) override
701    {
702        panic("setCCRegFlat w/no CC regs!\n");
703    }
704#endif
705};
706
707
708#endif // __CPU_CPU_EXEC_CONTEXT_HH__
709