timing.hh revision 9342
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_SIMPLE_TIMING_HH__
32#define __CPU_SIMPLE_TIMING_HH__
33
34#include "cpu/simple/base.hh"
35#include "cpu/translation.hh"
36#include "params/TimingSimpleCPU.hh"
37
38class TimingSimpleCPU : public BaseSimpleCPU
39{
40  public:
41
42    TimingSimpleCPU(TimingSimpleCPUParams * params);
43    virtual ~TimingSimpleCPU();
44
45    virtual void init();
46
47  public:
48    DrainManager *drainManager;
49
50  private:
51
52    /*
53     * If an access needs to be broken into fragments, currently at most two,
54     * the the following two classes are used as the sender state of the
55     * packets so the CPU can keep track of everything. In the main packet
56     * sender state, there's an array with a spot for each fragment. If a
57     * fragment has already been accepted by the CPU, aka isn't waiting for
58     * a retry, it's pointer is NULL. After each fragment has successfully
59     * been processed, the "outstanding" counter is decremented. Once the
60     * count is zero, the entire larger access is complete.
61     */
62    class SplitMainSenderState : public Packet::SenderState
63    {
64      public:
65        int outstanding;
66        PacketPtr fragments[2];
67
68        int
69        getPendingFragment()
70        {
71            if (fragments[0]) {
72                return 0;
73            } else if (fragments[1]) {
74                return 1;
75            } else {
76                return -1;
77            }
78        }
79    };
80
81    class SplitFragmentSenderState : public Packet::SenderState
82    {
83      public:
84        SplitFragmentSenderState(PacketPtr _bigPkt, int _index) :
85            bigPkt(_bigPkt), index(_index)
86        {}
87        PacketPtr bigPkt;
88        int index;
89
90        void
91        clearFromParent()
92        {
93            SplitMainSenderState * main_send_state =
94                dynamic_cast<SplitMainSenderState *>(bigPkt->senderState);
95            main_send_state->fragments[index] = NULL;
96        }
97    };
98
99    class FetchTranslation : public BaseTLB::Translation
100    {
101      protected:
102        TimingSimpleCPU *cpu;
103
104      public:
105        FetchTranslation(TimingSimpleCPU *_cpu)
106            : cpu(_cpu)
107        {}
108
109        void
110        markDelayed()
111        {
112            assert(cpu->_status == BaseSimpleCPU::Running);
113            cpu->_status = ITBWaitResponse;
114        }
115
116        void
117        finish(Fault fault, RequestPtr req, ThreadContext *tc,
118               BaseTLB::Mode mode)
119        {
120            cpu->sendFetch(fault, req, tc);
121        }
122    };
123    FetchTranslation fetchTranslation;
124
125    void sendData(RequestPtr req, uint8_t *data, uint64_t *res, bool read);
126    void sendSplitData(RequestPtr req1, RequestPtr req2, RequestPtr req,
127                       uint8_t *data, bool read);
128
129    void translationFault(Fault fault);
130
131    void buildPacket(PacketPtr &pkt, RequestPtr req, bool read);
132    void buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
133            RequestPtr req1, RequestPtr req2, RequestPtr req,
134            uint8_t *data, bool read);
135
136    bool handleReadPacket(PacketPtr pkt);
137    // This function always implicitly uses dcache_pkt.
138    bool handleWritePacket();
139
140    /**
141     * A TimingCPUPort overrides the default behaviour of the
142     * recvTiming and recvRetry and implements events for the
143     * scheduling of handling of incoming packets in the following
144     * cycle.
145     */
146    class TimingCPUPort : public CpuPort
147    {
148      public:
149
150        TimingCPUPort(const std::string& _name, TimingSimpleCPU* _cpu)
151            : CpuPort(_name, _cpu), cpu(_cpu), retryEvent(this)
152        { }
153
154      protected:
155
156        /**
157         * Snooping a coherence request, do nothing.
158         */
159        virtual void recvTimingSnoopReq(PacketPtr pkt) { }
160
161        TimingSimpleCPU* cpu;
162
163        struct TickEvent : public Event
164        {
165            PacketPtr pkt;
166            TimingSimpleCPU *cpu;
167
168            TickEvent(TimingSimpleCPU *_cpu) : pkt(NULL), cpu(_cpu) {}
169            const char *description() const { return "Timing CPU tick"; }
170            void schedule(PacketPtr _pkt, Tick t);
171        };
172
173        EventWrapper<MasterPort, &MasterPort::sendRetry> retryEvent;
174    };
175
176    class IcachePort : public TimingCPUPort
177    {
178      public:
179
180        IcachePort(TimingSimpleCPU *_cpu)
181            : TimingCPUPort(_cpu->name() + ".icache_port", _cpu),
182              tickEvent(_cpu)
183        { }
184
185      protected:
186
187        virtual bool recvTimingResp(PacketPtr pkt);
188
189        virtual void recvRetry();
190
191        struct ITickEvent : public TickEvent
192        {
193
194            ITickEvent(TimingSimpleCPU *_cpu)
195                : TickEvent(_cpu) {}
196            void process();
197            const char *description() const { return "Timing CPU icache tick"; }
198        };
199
200        ITickEvent tickEvent;
201
202    };
203
204    class DcachePort : public TimingCPUPort
205    {
206      public:
207
208        DcachePort(TimingSimpleCPU *_cpu)
209            : TimingCPUPort(_cpu->name() + ".dcache_port", _cpu),
210              tickEvent(_cpu)
211        { }
212
213      protected:
214
215        virtual bool recvTimingResp(PacketPtr pkt);
216
217        virtual void recvRetry();
218
219        struct DTickEvent : public TickEvent
220        {
221            DTickEvent(TimingSimpleCPU *_cpu)
222                : TickEvent(_cpu) {}
223            void process();
224            const char *description() const { return "Timing CPU dcache tick"; }
225        };
226
227        DTickEvent tickEvent;
228
229    };
230
231    IcachePort icachePort;
232    DcachePort dcachePort;
233
234    PacketPtr ifetch_pkt;
235    PacketPtr dcache_pkt;
236
237    Tick previousCycle;
238
239  protected:
240
241     /** Return a reference to the data port. */
242    virtual CpuPort &getDataPort() { return dcachePort; }
243
244    /** Return a reference to the instruction port. */
245    virtual CpuPort &getInstPort() { return icachePort; }
246
247  public:
248
249    virtual void serialize(std::ostream &os);
250    virtual void unserialize(Checkpoint *cp, const std::string &section);
251
252    unsigned int drain(DrainManager *drain_manager);
253    void drainResume();
254
255    void switchOut();
256    void takeOverFrom(BaseCPU *oldCPU);
257
258    virtual void activateContext(ThreadID thread_num, Cycles delay);
259    virtual void suspendContext(ThreadID thread_num);
260
261    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
262
263    Fault writeMem(uint8_t *data, unsigned size,
264                   Addr addr, unsigned flags, uint64_t *res);
265
266    void fetch();
267    void sendFetch(Fault fault, RequestPtr req, ThreadContext *tc);
268    void completeIfetch(PacketPtr );
269    void completeDataAccess(PacketPtr pkt);
270    void advanceInst(Fault fault);
271
272    /** This function is used by the page table walker to determine if it could
273     * translate the a pending request or if the underlying request has been
274     * squashed. This always returns false for the simple timing CPU as it never
275     * executes any instructions speculatively.
276     * @ return Is the current instruction squashed?
277     */
278    bool isSquashed() const { return false; }
279
280    /**
281     * Print state of address in memory system via PrintReq (for
282     * debugging).
283     */
284    void printAddr(Addr a);
285
286    /**
287     * Finish a DTB translation.
288     * @param state The DTB translation state.
289     */
290    void finishTranslation(WholeTranslationState *state);
291
292  private:
293
294    typedef EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch> FetchEvent;
295    FetchEvent fetchEvent;
296
297    struct IprEvent : Event {
298        Packet *pkt;
299        TimingSimpleCPU *cpu;
300        IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t);
301        virtual void process();
302        virtual const char *description() const;
303    };
304
305    void completeDrain();
306};
307
308#endif // __CPU_SIMPLE_TIMING_HH__
309