timing.hh revision 11303
1/* 2 * Copyright (c) 2012-2013,2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Steve Reinhardt 41 */ 42 43#ifndef __CPU_SIMPLE_TIMING_HH__ 44#define __CPU_SIMPLE_TIMING_HH__ 45 46#include "cpu/simple/base.hh" 47#include "cpu/simple/exec_context.hh" 48#include "cpu/translation.hh" 49#include "params/TimingSimpleCPU.hh" 50 51class TimingSimpleCPU : public BaseSimpleCPU 52{ 53 public: 54 55 TimingSimpleCPU(TimingSimpleCPUParams * params); 56 virtual ~TimingSimpleCPU(); 57 58 void init() override; 59 60 private: 61 62 /* 63 * If an access needs to be broken into fragments, currently at most two, 64 * the the following two classes are used as the sender state of the 65 * packets so the CPU can keep track of everything. In the main packet 66 * sender state, there's an array with a spot for each fragment. If a 67 * fragment has already been accepted by the CPU, aka isn't waiting for 68 * a retry, it's pointer is NULL. After each fragment has successfully 69 * been processed, the "outstanding" counter is decremented. Once the 70 * count is zero, the entire larger access is complete. 71 */ 72 class SplitMainSenderState : public Packet::SenderState 73 { 74 public: 75 int outstanding; 76 PacketPtr fragments[2]; 77 78 int 79 getPendingFragment() 80 { 81 if (fragments[0]) { 82 return 0; 83 } else if (fragments[1]) { 84 return 1; 85 } else { 86 return -1; 87 } 88 } 89 }; 90 91 class SplitFragmentSenderState : public Packet::SenderState 92 { 93 public: 94 SplitFragmentSenderState(PacketPtr _bigPkt, int _index) : 95 bigPkt(_bigPkt), index(_index) 96 {} 97 PacketPtr bigPkt; 98 int index; 99 100 void 101 clearFromParent() 102 { 103 SplitMainSenderState * main_send_state = 104 dynamic_cast<SplitMainSenderState *>(bigPkt->senderState); 105 main_send_state->fragments[index] = NULL; 106 } 107 }; 108 109 class FetchTranslation : public BaseTLB::Translation 110 { 111 protected: 112 TimingSimpleCPU *cpu; 113 114 public: 115 FetchTranslation(TimingSimpleCPU *_cpu) 116 : cpu(_cpu) 117 {} 118 119 void 120 markDelayed() 121 { 122 assert(cpu->_status == BaseSimpleCPU::Running); 123 cpu->_status = ITBWaitResponse; 124 } 125 126 void 127 finish(const Fault &fault, RequestPtr req, ThreadContext *tc, 128 BaseTLB::Mode mode) 129 { 130 cpu->sendFetch(fault, req, tc); 131 } 132 }; 133 FetchTranslation fetchTranslation; 134 135 void threadSnoop(PacketPtr pkt, ThreadID sender); 136 void sendData(RequestPtr req, uint8_t *data, uint64_t *res, bool read); 137 void sendSplitData(RequestPtr req1, RequestPtr req2, RequestPtr req, 138 uint8_t *data, bool read); 139 140 void translationFault(const Fault &fault); 141 142 PacketPtr buildPacket(RequestPtr req, bool read); 143 void buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2, 144 RequestPtr req1, RequestPtr req2, RequestPtr req, 145 uint8_t *data, bool read); 146 147 bool handleReadPacket(PacketPtr pkt); 148 // This function always implicitly uses dcache_pkt. 149 bool handleWritePacket(); 150 151 /** 152 * A TimingCPUPort overrides the default behaviour of the 153 * recvTiming and recvRetry and implements events for the 154 * scheduling of handling of incoming packets in the following 155 * cycle. 156 */ 157 class TimingCPUPort : public MasterPort 158 { 159 public: 160 161 TimingCPUPort(const std::string& _name, TimingSimpleCPU* _cpu) 162 : MasterPort(_name, _cpu), cpu(_cpu), retryRespEvent(this) 163 { } 164 165 protected: 166 167 /** 168 * Snooping a coherence request, do nothing. 169 */ 170 virtual void recvTimingSnoopReq(PacketPtr pkt) {} 171 172 TimingSimpleCPU* cpu; 173 174 struct TickEvent : public Event 175 { 176 PacketPtr pkt; 177 TimingSimpleCPU *cpu; 178 179 TickEvent(TimingSimpleCPU *_cpu) : pkt(NULL), cpu(_cpu) {} 180 const char *description() const { return "Timing CPU tick"; } 181 void schedule(PacketPtr _pkt, Tick t); 182 }; 183 184 EventWrapper<MasterPort, &MasterPort::sendRetryResp> retryRespEvent; 185 }; 186 187 class IcachePort : public TimingCPUPort 188 { 189 public: 190 191 IcachePort(TimingSimpleCPU *_cpu) 192 : TimingCPUPort(_cpu->name() + ".icache_port", _cpu), 193 tickEvent(_cpu) 194 { } 195 196 protected: 197 198 virtual bool recvTimingResp(PacketPtr pkt); 199 200 virtual void recvReqRetry(); 201 202 struct ITickEvent : public TickEvent 203 { 204 205 ITickEvent(TimingSimpleCPU *_cpu) 206 : TickEvent(_cpu) {} 207 void process(); 208 const char *description() const { return "Timing CPU icache tick"; } 209 }; 210 211 ITickEvent tickEvent; 212 213 }; 214 215 class DcachePort : public TimingCPUPort 216 { 217 public: 218 219 DcachePort(TimingSimpleCPU *_cpu) 220 : TimingCPUPort(_cpu->name() + ".dcache_port", _cpu), 221 tickEvent(_cpu) 222 { 223 cacheBlockMask = ~(cpu->cacheLineSize() - 1); 224 } 225 226 Addr cacheBlockMask; 227 protected: 228 229 /** Snoop a coherence request, we need to check if this causes 230 * a wakeup event on a cpu that is monitoring an address 231 */ 232 virtual void recvTimingSnoopReq(PacketPtr pkt); 233 virtual void recvFunctionalSnoop(PacketPtr pkt); 234 235 virtual bool recvTimingResp(PacketPtr pkt); 236 237 virtual void recvReqRetry(); 238 239 virtual bool isSnooping() const { 240 return true; 241 } 242 243 struct DTickEvent : public TickEvent 244 { 245 DTickEvent(TimingSimpleCPU *_cpu) 246 : TickEvent(_cpu) {} 247 void process(); 248 const char *description() const { return "Timing CPU dcache tick"; } 249 }; 250 251 DTickEvent tickEvent; 252 253 }; 254 255 void updateCycleCounts(); 256 257 IcachePort icachePort; 258 DcachePort dcachePort; 259 260 PacketPtr ifetch_pkt; 261 PacketPtr dcache_pkt; 262 263 Cycles previousCycle; 264 265 protected: 266 267 /** Return a reference to the data port. */ 268 MasterPort &getDataPort() override { return dcachePort; } 269 270 /** Return a reference to the instruction port. */ 271 MasterPort &getInstPort() override { return icachePort; } 272 273 public: 274 275 DrainState drain() override; 276 void drainResume() override; 277 278 void switchOut() override; 279 void takeOverFrom(BaseCPU *oldCPU) override; 280 281 void verifyMemoryMode() const override; 282 283 void activateContext(ThreadID thread_num) override; 284 void suspendContext(ThreadID thread_num) override; 285 286 Fault readMem(Addr addr, uint8_t *data, unsigned size, 287 unsigned flags) override; 288 289 Fault initiateMemRead(Addr addr, unsigned size, unsigned flags) override; 290 291 Fault writeMem(uint8_t *data, unsigned size, 292 Addr addr, unsigned flags, uint64_t *res) override; 293 294 void fetch(); 295 void sendFetch(const Fault &fault, RequestPtr req, ThreadContext *tc); 296 void completeIfetch(PacketPtr ); 297 void completeDataAccess(PacketPtr pkt); 298 void advanceInst(const Fault &fault); 299 300 /** This function is used by the page table walker to determine if it could 301 * translate the a pending request or if the underlying request has been 302 * squashed. This always returns false for the simple timing CPU as it never 303 * executes any instructions speculatively. 304 * @ return Is the current instruction squashed? 305 */ 306 bool isSquashed() const { return false; } 307 308 /** 309 * Print state of address in memory system via PrintReq (for 310 * debugging). 311 */ 312 void printAddr(Addr a); 313 314 /** 315 * Finish a DTB translation. 316 * @param state The DTB translation state. 317 */ 318 void finishTranslation(WholeTranslationState *state); 319 320 private: 321 322 typedef EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch> FetchEvent; 323 FetchEvent fetchEvent; 324 325 struct IprEvent : Event { 326 Packet *pkt; 327 TimingSimpleCPU *cpu; 328 IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t); 329 virtual void process(); 330 virtual const char *description() const; 331 }; 332 333 /** 334 * Check if a system is in a drained state. 335 * 336 * We need to drain if: 337 * <ul> 338 * <li>We are in the middle of a microcode sequence as some CPUs 339 * (e.g., HW accelerated CPUs) can't be started in the middle 340 * of a gem5 microcode sequence. 341 * 342 * <li>Stay at PC is true. 343 * 344 * <li>A fetch event is scheduled. Normally this would never be the 345 * case with microPC() == 0, but right after a context is 346 * activated it can happen. 347 * </ul> 348 */ 349 bool isDrained() { 350 SimpleExecContext& t_info = *threadInfo[curThread]; 351 SimpleThread* thread = t_info.thread; 352 353 return thread->microPC() == 0 && !t_info.stayAtPC && 354 !fetchEvent.scheduled(); 355 } 356 357 /** 358 * Try to complete a drain request. 359 * 360 * @returns true if the CPU is drained, false otherwise. 361 */ 362 bool tryCompleteDrain(); 363}; 364 365#endif // __CPU_SIMPLE_TIMING_HH__ 366