timing.cc revision 9830:5995f4d33a11
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "params/TimingSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/full_system.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64void
65TimingSimpleCPU::init()
66{
67    BaseCPU::init();
68
69    // Initialise the ThreadContext's memory proxies
70    tcBase()->initMemProxies(tcBase());
71
72    if (FullSystem && !params()->switched_out) {
73        for (int i = 0; i < threadContexts.size(); ++i) {
74            ThreadContext *tc = threadContexts[i];
75            // initialize CPU, including PC
76            TheISA::initCPU(tc, _cpuId);
77        }
78    }
79}
80
81void
82TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
83{
84    pkt = _pkt;
85    cpu->schedule(this, t);
86}
87
88TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
89    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
90      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
91      fetchEvent(this), drainManager(NULL)
92{
93    _status = Idle;
94
95    system->totalNumInsts = 0;
96}
97
98
99TimingSimpleCPU::~TimingSimpleCPU()
100{
101}
102
103unsigned int
104TimingSimpleCPU::drain(DrainManager *drain_manager)
105{
106    assert(!drainManager);
107    if (switchedOut())
108        return 0;
109
110    if (_status == Idle ||
111        (_status == BaseSimpleCPU::Running && isDrained())) {
112        DPRINTF(Drain, "No need to drain.\n");
113        return 0;
114    } else {
115        drainManager = drain_manager;
116        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
117
118        // The fetch event can become descheduled if a drain didn't
119        // succeed on the first attempt. We need to reschedule it if
120        // the CPU is waiting for a microcode routine to complete.
121        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
122            schedule(fetchEvent, clockEdge());
123
124        return 1;
125    }
126}
127
128void
129TimingSimpleCPU::drainResume()
130{
131    assert(!fetchEvent.scheduled());
132    assert(!drainManager);
133    if (switchedOut())
134        return;
135
136    DPRINTF(SimpleCPU, "Resume\n");
137    verifyMemoryMode();
138
139    assert(!threadContexts.empty());
140    if (threadContexts.size() > 1)
141        fatal("The timing CPU only supports one thread.\n");
142
143    if (thread->status() == ThreadContext::Active) {
144        schedule(fetchEvent, nextCycle());
145        _status = BaseSimpleCPU::Running;
146    } else {
147        _status = BaseSimpleCPU::Idle;
148    }
149}
150
151bool
152TimingSimpleCPU::tryCompleteDrain()
153{
154    if (!drainManager)
155        return false;
156
157    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
158    if (!isDrained())
159        return false;
160
161    DPRINTF(Drain, "CPU done draining, processing drain event\n");
162    drainManager->signalDrainDone();
163    drainManager = NULL;
164
165    return true;
166}
167
168void
169TimingSimpleCPU::switchOut()
170{
171    BaseSimpleCPU::switchOut();
172
173    assert(!fetchEvent.scheduled());
174    assert(_status == BaseSimpleCPU::Running || _status == Idle);
175    assert(!stayAtPC);
176    assert(microPC() == 0);
177
178    numCycles += curCycle() - previousCycle;
179}
180
181
182void
183TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
184{
185    BaseSimpleCPU::takeOverFrom(oldCPU);
186
187    previousCycle = curCycle();
188}
189
190void
191TimingSimpleCPU::verifyMemoryMode() const
192{
193    if (!system->isTimingMode()) {
194        fatal("The timing CPU requires the memory system to be in "
195              "'timing' mode.\n");
196    }
197}
198
199void
200TimingSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
201{
202    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
203
204    assert(thread_num == 0);
205    assert(thread);
206
207    assert(_status == Idle);
208
209    notIdleFraction++;
210    _status = BaseSimpleCPU::Running;
211
212    // kick things off by initiating the fetch of the next instruction
213    schedule(fetchEvent, clockEdge(delay));
214}
215
216
217void
218TimingSimpleCPU::suspendContext(ThreadID thread_num)
219{
220    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
221
222    assert(thread_num == 0);
223    assert(thread);
224
225    if (_status == Idle)
226        return;
227
228    assert(_status == BaseSimpleCPU::Running);
229
230    // just change status to Idle... if status != Running,
231    // completeInst() will not initiate fetch of next instruction.
232
233    notIdleFraction--;
234    _status = Idle;
235}
236
237bool
238TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
239{
240    RequestPtr req = pkt->req;
241    if (req->isMmappedIpr()) {
242        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
243        new IprEvent(pkt, this, clockEdge(delay));
244        _status = DcacheWaitResponse;
245        dcache_pkt = NULL;
246    } else if (!dcachePort.sendTimingReq(pkt)) {
247        _status = DcacheRetry;
248        dcache_pkt = pkt;
249    } else {
250        _status = DcacheWaitResponse;
251        // memory system takes ownership of packet
252        dcache_pkt = NULL;
253    }
254    return dcache_pkt == NULL;
255}
256
257void
258TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
259                          bool read)
260{
261    PacketPtr pkt;
262    buildPacket(pkt, req, read);
263    pkt->dataDynamicArray<uint8_t>(data);
264    if (req->getFlags().isSet(Request::NO_ACCESS)) {
265        assert(!dcache_pkt);
266        pkt->makeResponse();
267        completeDataAccess(pkt);
268    } else if (read) {
269        handleReadPacket(pkt);
270    } else {
271        bool do_access = true;  // flag to suppress cache access
272
273        if (req->isLLSC()) {
274            do_access = TheISA::handleLockedWrite(thread, req);
275        } else if (req->isCondSwap()) {
276            assert(res);
277            req->setExtraData(*res);
278        }
279
280        if (do_access) {
281            dcache_pkt = pkt;
282            handleWritePacket();
283        } else {
284            _status = DcacheWaitResponse;
285            completeDataAccess(pkt);
286        }
287    }
288}
289
290void
291TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
292                               RequestPtr req, uint8_t *data, bool read)
293{
294    PacketPtr pkt1, pkt2;
295    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
296    if (req->getFlags().isSet(Request::NO_ACCESS)) {
297        assert(!dcache_pkt);
298        pkt1->makeResponse();
299        completeDataAccess(pkt1);
300    } else if (read) {
301        SplitFragmentSenderState * send_state =
302            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
303        if (handleReadPacket(pkt1)) {
304            send_state->clearFromParent();
305            send_state = dynamic_cast<SplitFragmentSenderState *>(
306                    pkt2->senderState);
307            if (handleReadPacket(pkt2)) {
308                send_state->clearFromParent();
309            }
310        }
311    } else {
312        dcache_pkt = pkt1;
313        SplitFragmentSenderState * send_state =
314            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
315        if (handleWritePacket()) {
316            send_state->clearFromParent();
317            dcache_pkt = pkt2;
318            send_state = dynamic_cast<SplitFragmentSenderState *>(
319                    pkt2->senderState);
320            if (handleWritePacket()) {
321                send_state->clearFromParent();
322            }
323        }
324    }
325}
326
327void
328TimingSimpleCPU::translationFault(Fault fault)
329{
330    // fault may be NoFault in cases where a fault is suppressed,
331    // for instance prefetches.
332    numCycles += curCycle() - previousCycle;
333    previousCycle = curCycle();
334
335    if (traceData) {
336        // Since there was a fault, we shouldn't trace this instruction.
337        delete traceData;
338        traceData = NULL;
339    }
340
341    postExecute();
342
343    advanceInst(fault);
344}
345
346void
347TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
348{
349    MemCmd cmd;
350    if (read) {
351        cmd = MemCmd::ReadReq;
352        if (req->isLLSC())
353            cmd = MemCmd::LoadLockedReq;
354    } else {
355        cmd = MemCmd::WriteReq;
356        if (req->isLLSC()) {
357            cmd = MemCmd::StoreCondReq;
358        } else if (req->isSwap()) {
359            cmd = MemCmd::SwapReq;
360        }
361    }
362    pkt = new Packet(req, cmd);
363}
364
365void
366TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
367        RequestPtr req1, RequestPtr req2, RequestPtr req,
368        uint8_t *data, bool read)
369{
370    pkt1 = pkt2 = NULL;
371
372    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
373
374    if (req->getFlags().isSet(Request::NO_ACCESS)) {
375        buildPacket(pkt1, req, read);
376        return;
377    }
378
379    buildPacket(pkt1, req1, read);
380    buildPacket(pkt2, req2, read);
381
382    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
383    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
384
385    pkt->dataDynamicArray<uint8_t>(data);
386    pkt1->dataStatic<uint8_t>(data);
387    pkt2->dataStatic<uint8_t>(data + req1->getSize());
388
389    SplitMainSenderState * main_send_state = new SplitMainSenderState;
390    pkt->senderState = main_send_state;
391    main_send_state->fragments[0] = pkt1;
392    main_send_state->fragments[1] = pkt2;
393    main_send_state->outstanding = 2;
394    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
395    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
396}
397
398Fault
399TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
400                         unsigned size, unsigned flags)
401{
402    Fault fault;
403    const int asid = 0;
404    const ThreadID tid = 0;
405    const Addr pc = thread->instAddr();
406    unsigned block_size = cacheLineSize();
407    BaseTLB::Mode mode = BaseTLB::Read;
408
409    if (traceData) {
410        traceData->setAddr(addr);
411    }
412
413    RequestPtr req  = new Request(asid, addr, size,
414                                  flags, dataMasterId(), pc, _cpuId, tid);
415
416    Addr split_addr = roundDown(addr + size - 1, block_size);
417    assert(split_addr <= addr || split_addr - addr < block_size);
418
419    _status = DTBWaitResponse;
420    if (split_addr > addr) {
421        RequestPtr req1, req2;
422        assert(!req->isLLSC() && !req->isSwap());
423        req->splitOnVaddr(split_addr, req1, req2);
424
425        WholeTranslationState *state =
426            new WholeTranslationState(req, req1, req2, new uint8_t[size],
427                                      NULL, mode);
428        DataTranslation<TimingSimpleCPU *> *trans1 =
429            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
430        DataTranslation<TimingSimpleCPU *> *trans2 =
431            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
432
433        thread->dtb->translateTiming(req1, tc, trans1, mode);
434        thread->dtb->translateTiming(req2, tc, trans2, mode);
435    } else {
436        WholeTranslationState *state =
437            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
438        DataTranslation<TimingSimpleCPU *> *translation
439            = new DataTranslation<TimingSimpleCPU *>(this, state);
440        thread->dtb->translateTiming(req, tc, translation, mode);
441    }
442
443    return NoFault;
444}
445
446bool
447TimingSimpleCPU::handleWritePacket()
448{
449    RequestPtr req = dcache_pkt->req;
450    if (req->isMmappedIpr()) {
451        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
452        new IprEvent(dcache_pkt, this, clockEdge(delay));
453        _status = DcacheWaitResponse;
454        dcache_pkt = NULL;
455    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
456        _status = DcacheRetry;
457    } else {
458        _status = DcacheWaitResponse;
459        // memory system takes ownership of packet
460        dcache_pkt = NULL;
461    }
462    return dcache_pkt == NULL;
463}
464
465Fault
466TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
467                          Addr addr, unsigned flags, uint64_t *res)
468{
469    uint8_t *newData = new uint8_t[size];
470    memcpy(newData, data, size);
471
472    const int asid = 0;
473    const ThreadID tid = 0;
474    const Addr pc = thread->instAddr();
475    unsigned block_size = cacheLineSize();
476    BaseTLB::Mode mode = BaseTLB::Write;
477
478    if (traceData) {
479        traceData->setAddr(addr);
480    }
481
482    RequestPtr req = new Request(asid, addr, size,
483                                 flags, dataMasterId(), pc, _cpuId, tid);
484
485    Addr split_addr = roundDown(addr + size - 1, block_size);
486    assert(split_addr <= addr || split_addr - addr < block_size);
487
488    _status = DTBWaitResponse;
489    if (split_addr > addr) {
490        RequestPtr req1, req2;
491        assert(!req->isLLSC() && !req->isSwap());
492        req->splitOnVaddr(split_addr, req1, req2);
493
494        WholeTranslationState *state =
495            new WholeTranslationState(req, req1, req2, newData, res, mode);
496        DataTranslation<TimingSimpleCPU *> *trans1 =
497            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
498        DataTranslation<TimingSimpleCPU *> *trans2 =
499            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
500
501        thread->dtb->translateTiming(req1, tc, trans1, mode);
502        thread->dtb->translateTiming(req2, tc, trans2, mode);
503    } else {
504        WholeTranslationState *state =
505            new WholeTranslationState(req, newData, res, mode);
506        DataTranslation<TimingSimpleCPU *> *translation =
507            new DataTranslation<TimingSimpleCPU *>(this, state);
508        thread->dtb->translateTiming(req, tc, translation, mode);
509    }
510
511    // Translation faults will be returned via finishTranslation()
512    return NoFault;
513}
514
515
516void
517TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
518{
519    _status = BaseSimpleCPU::Running;
520
521    if (state->getFault() != NoFault) {
522        if (state->isPrefetch()) {
523            state->setNoFault();
524        }
525        delete [] state->data;
526        state->deleteReqs();
527        translationFault(state->getFault());
528    } else {
529        if (!state->isSplit) {
530            sendData(state->mainReq, state->data, state->res,
531                     state->mode == BaseTLB::Read);
532        } else {
533            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
534                          state->data, state->mode == BaseTLB::Read);
535        }
536    }
537
538    delete state;
539}
540
541
542void
543TimingSimpleCPU::fetch()
544{
545    DPRINTF(SimpleCPU, "Fetch\n");
546
547    if (!curStaticInst || !curStaticInst->isDelayedCommit())
548        checkForInterrupts();
549
550    checkPcEventQueue();
551
552    // We must have just got suspended by a PC event
553    if (_status == Idle)
554        return;
555
556    TheISA::PCState pcState = thread->pcState();
557    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
558
559    if (needToFetch) {
560        _status = BaseSimpleCPU::Running;
561        Request *ifetch_req = new Request();
562        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
563        setupFetchRequest(ifetch_req);
564        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
565        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
566                BaseTLB::Execute);
567    } else {
568        _status = IcacheWaitResponse;
569        completeIfetch(NULL);
570
571        numCycles += curCycle() - previousCycle;
572        previousCycle = curCycle();
573    }
574}
575
576
577void
578TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
579{
580    if (fault == NoFault) {
581        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
582                req->getVaddr(), req->getPaddr());
583        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
584        ifetch_pkt->dataStatic(&inst);
585        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
586
587        if (!icachePort.sendTimingReq(ifetch_pkt)) {
588            // Need to wait for retry
589            _status = IcacheRetry;
590        } else {
591            // Need to wait for cache to respond
592            _status = IcacheWaitResponse;
593            // ownership of packet transferred to memory system
594            ifetch_pkt = NULL;
595        }
596    } else {
597        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
598        delete req;
599        // fetch fault: advance directly to next instruction (fault handler)
600        _status = BaseSimpleCPU::Running;
601        advanceInst(fault);
602    }
603
604    numCycles += curCycle() - previousCycle;
605    previousCycle = curCycle();
606}
607
608
609void
610TimingSimpleCPU::advanceInst(Fault fault)
611{
612    if (_status == Faulting)
613        return;
614
615    if (fault != NoFault) {
616        advancePC(fault);
617        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
618        reschedule(fetchEvent, clockEdge(), true);
619        _status = Faulting;
620        return;
621    }
622
623
624    if (!stayAtPC)
625        advancePC(fault);
626
627    if (tryCompleteDrain())
628            return;
629
630    if (_status == BaseSimpleCPU::Running) {
631        // kick off fetch of next instruction... callback from icache
632        // response will cause that instruction to be executed,
633        // keeping the CPU running.
634        fetch();
635    }
636}
637
638
639void
640TimingSimpleCPU::completeIfetch(PacketPtr pkt)
641{
642    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
643            pkt->getAddr() : 0);
644
645    // received a response from the icache: execute the received
646    // instruction
647
648    assert(!pkt || !pkt->isError());
649    assert(_status == IcacheWaitResponse);
650
651    _status = BaseSimpleCPU::Running;
652
653    numCycles += curCycle() - previousCycle;
654    previousCycle = curCycle();
655
656    preExecute();
657    if (curStaticInst && curStaticInst->isMemRef()) {
658        // load or store: just send to dcache
659        Fault fault = curStaticInst->initiateAcc(this, traceData);
660
661        // If we're not running now the instruction will complete in a dcache
662        // response callback or the instruction faulted and has started an
663        // ifetch
664        if (_status == BaseSimpleCPU::Running) {
665            if (fault != NoFault && traceData) {
666                // If there was a fault, we shouldn't trace this instruction.
667                delete traceData;
668                traceData = NULL;
669            }
670
671            postExecute();
672            // @todo remove me after debugging with legion done
673            if (curStaticInst && (!curStaticInst->isMicroop() ||
674                        curStaticInst->isFirstMicroop()))
675                instCnt++;
676            advanceInst(fault);
677        }
678    } else if (curStaticInst) {
679        // non-memory instruction: execute completely now
680        Fault fault = curStaticInst->execute(this, traceData);
681
682        // keep an instruction count
683        if (fault == NoFault)
684            countInst();
685        else if (traceData && !DTRACE(ExecFaulting)) {
686            delete traceData;
687            traceData = NULL;
688        }
689
690        postExecute();
691        // @todo remove me after debugging with legion done
692        if (curStaticInst && (!curStaticInst->isMicroop() ||
693                    curStaticInst->isFirstMicroop()))
694            instCnt++;
695        advanceInst(fault);
696    } else {
697        advanceInst(NoFault);
698    }
699
700    if (pkt) {
701        delete pkt->req;
702        delete pkt;
703    }
704}
705
706void
707TimingSimpleCPU::IcachePort::ITickEvent::process()
708{
709    cpu->completeIfetch(pkt);
710}
711
712bool
713TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
714{
715    DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
716    // delay processing of returned data until next CPU clock edge
717    Tick next_tick = cpu->clockEdge();
718
719    if (next_tick == curTick())
720        cpu->completeIfetch(pkt);
721    else
722        tickEvent.schedule(pkt, next_tick);
723
724    return true;
725}
726
727void
728TimingSimpleCPU::IcachePort::recvRetry()
729{
730    // we shouldn't get a retry unless we have a packet that we're
731    // waiting to transmit
732    assert(cpu->ifetch_pkt != NULL);
733    assert(cpu->_status == IcacheRetry);
734    PacketPtr tmp = cpu->ifetch_pkt;
735    if (sendTimingReq(tmp)) {
736        cpu->_status = IcacheWaitResponse;
737        cpu->ifetch_pkt = NULL;
738    }
739}
740
741void
742TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
743{
744    // received a response from the dcache: complete the load or store
745    // instruction
746    assert(!pkt->isError());
747    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
748           pkt->req->getFlags().isSet(Request::NO_ACCESS));
749
750    numCycles += curCycle() - previousCycle;
751    previousCycle = curCycle();
752
753    if (pkt->senderState) {
754        SplitFragmentSenderState * send_state =
755            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
756        assert(send_state);
757        delete pkt->req;
758        delete pkt;
759        PacketPtr big_pkt = send_state->bigPkt;
760        delete send_state;
761
762        SplitMainSenderState * main_send_state =
763            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
764        assert(main_send_state);
765        // Record the fact that this packet is no longer outstanding.
766        assert(main_send_state->outstanding != 0);
767        main_send_state->outstanding--;
768
769        if (main_send_state->outstanding) {
770            return;
771        } else {
772            delete main_send_state;
773            big_pkt->senderState = NULL;
774            pkt = big_pkt;
775        }
776    }
777
778    _status = BaseSimpleCPU::Running;
779
780    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
781
782    // keep an instruction count
783    if (fault == NoFault)
784        countInst();
785    else if (traceData) {
786        // If there was a fault, we shouldn't trace this instruction.
787        delete traceData;
788        traceData = NULL;
789    }
790
791    // the locked flag may be cleared on the response packet, so check
792    // pkt->req and not pkt to see if it was a load-locked
793    if (pkt->isRead() && pkt->req->isLLSC()) {
794        TheISA::handleLockedRead(thread, pkt->req);
795    }
796
797    delete pkt->req;
798    delete pkt;
799
800    postExecute();
801
802    advanceInst(fault);
803}
804
805bool
806TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
807{
808    // delay processing of returned data until next CPU clock edge
809    Tick next_tick = cpu->clockEdge();
810
811    if (next_tick == curTick()) {
812        cpu->completeDataAccess(pkt);
813    } else {
814        if (!tickEvent.scheduled()) {
815            tickEvent.schedule(pkt, next_tick);
816        } else {
817            // In the case of a split transaction and a cache that is
818            // faster than a CPU we could get two responses before
819            // next_tick expires
820            if (!retryEvent.scheduled())
821                cpu->schedule(retryEvent, next_tick);
822            return false;
823        }
824    }
825
826    return true;
827}
828
829void
830TimingSimpleCPU::DcachePort::DTickEvent::process()
831{
832    cpu->completeDataAccess(pkt);
833}
834
835void
836TimingSimpleCPU::DcachePort::recvRetry()
837{
838    // we shouldn't get a retry unless we have a packet that we're
839    // waiting to transmit
840    assert(cpu->dcache_pkt != NULL);
841    assert(cpu->_status == DcacheRetry);
842    PacketPtr tmp = cpu->dcache_pkt;
843    if (tmp->senderState) {
844        // This is a packet from a split access.
845        SplitFragmentSenderState * send_state =
846            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
847        assert(send_state);
848        PacketPtr big_pkt = send_state->bigPkt;
849
850        SplitMainSenderState * main_send_state =
851            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
852        assert(main_send_state);
853
854        if (sendTimingReq(tmp)) {
855            // If we were able to send without retrying, record that fact
856            // and try sending the other fragment.
857            send_state->clearFromParent();
858            int other_index = main_send_state->getPendingFragment();
859            if (other_index > 0) {
860                tmp = main_send_state->fragments[other_index];
861                cpu->dcache_pkt = tmp;
862                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
863                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
864                    main_send_state->fragments[other_index] = NULL;
865                }
866            } else {
867                cpu->_status = DcacheWaitResponse;
868                // memory system takes ownership of packet
869                cpu->dcache_pkt = NULL;
870            }
871        }
872    } else if (sendTimingReq(tmp)) {
873        cpu->_status = DcacheWaitResponse;
874        // memory system takes ownership of packet
875        cpu->dcache_pkt = NULL;
876    }
877}
878
879TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
880    Tick t)
881    : pkt(_pkt), cpu(_cpu)
882{
883    cpu->schedule(this, t);
884}
885
886void
887TimingSimpleCPU::IprEvent::process()
888{
889    cpu->completeDataAccess(pkt);
890}
891
892const char *
893TimingSimpleCPU::IprEvent::description() const
894{
895    return "Timing Simple CPU Delay IPR event";
896}
897
898
899void
900TimingSimpleCPU::printAddr(Addr a)
901{
902    dcachePort.printAddr(a);
903}
904
905
906////////////////////////////////////////////////////////////////////////
907//
908//  TimingSimpleCPU Simulation Object
909//
910TimingSimpleCPU *
911TimingSimpleCPUParams::create()
912{
913    numThreads = 1;
914    if (!FullSystem && workload.size() != 1)
915        panic("only one workload allowed");
916    return new TimingSimpleCPU(this);
917}
918