timing.cc revision 9442
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "params/TimingSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/full_system.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64void
65TimingSimpleCPU::init()
66{
67    BaseCPU::init();
68
69    if (!params()->switched_out &&
70        system->getMemoryMode() != Enums::timing) {
71        fatal("The timing CPU requires the memory system to be in "
72              "'timing' mode.\n");
73    }
74
75    // Initialise the ThreadContext's memory proxies
76    tcBase()->initMemProxies(tcBase());
77
78    if (FullSystem && !params()->switched_out) {
79        for (int i = 0; i < threadContexts.size(); ++i) {
80            ThreadContext *tc = threadContexts[i];
81            // initialize CPU, including PC
82            TheISA::initCPU(tc, _cpuId);
83        }
84    }
85}
86
87void
88TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
89{
90    pkt = _pkt;
91    cpu->schedule(this, t);
92}
93
94TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
95    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
96      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
97      fetchEvent(this), drainManager(NULL)
98{
99    _status = Idle;
100
101    system->totalNumInsts = 0;
102}
103
104
105TimingSimpleCPU::~TimingSimpleCPU()
106{
107}
108
109unsigned int
110TimingSimpleCPU::drain(DrainManager *drain_manager)
111{
112    if (_status == Idle ||
113        (_status == BaseSimpleCPU::Running && isDrained()) ||
114        _status == SwitchedOut) {
115        assert(!fetchEvent.scheduled());
116        DPRINTF(Drain, "No need to drain.\n");
117        return 0;
118    } else {
119        drainManager = drain_manager;
120        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
121
122        // The fetch event can become descheduled if a drain didn't
123        // succeed on the first attempt. We need to reschedule it if
124        // the CPU is waiting for a microcode routine to complete.
125        if (_status == BaseSimpleCPU::Running && !isDrained() &&
126            !fetchEvent.scheduled()) {
127            schedule(fetchEvent, nextCycle());
128        }
129
130        return 1;
131    }
132}
133
134void
135TimingSimpleCPU::drainResume()
136{
137    assert(!fetchEvent.scheduled());
138
139    DPRINTF(SimpleCPU, "Resume\n");
140    if (_status != SwitchedOut && _status != Idle) {
141        if (system->getMemoryMode() != Enums::timing) {
142            fatal("The timing CPU requires the memory system to be in "
143                  "'timing' mode.\n");
144        }
145
146        schedule(fetchEvent, nextCycle());
147    }
148}
149
150bool
151TimingSimpleCPU::tryCompleteDrain()
152{
153    if (!drainManager)
154        return false;
155
156    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
157    if (!isDrained())
158        return false;
159
160    DPRINTF(Drain, "CPU done draining, processing drain event\n");
161    drainManager->signalDrainDone();
162    drainManager = NULL;
163
164    return true;
165}
166
167void
168TimingSimpleCPU::switchOut()
169{
170    BaseSimpleCPU::switchOut();
171
172    assert(!fetchEvent.scheduled());
173    assert(_status == BaseSimpleCPU::Running || _status == Idle);
174    assert(!stayAtPC);
175    assert(microPC() == 0);
176
177    _status = SwitchedOut;
178    numCycles += curCycle() - previousCycle;
179}
180
181
182void
183TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
184{
185    BaseSimpleCPU::takeOverFrom(oldCPU);
186
187    // if any of this CPU's ThreadContexts are active, mark the CPU as
188    // running and schedule its tick event.
189    for (int i = 0; i < threadContexts.size(); ++i) {
190        ThreadContext *tc = threadContexts[i];
191        if (tc->status() == ThreadContext::Active &&
192            _status != BaseSimpleCPU::Running) {
193            _status = BaseSimpleCPU::Running;
194            break;
195        }
196    }
197
198    if (_status != BaseSimpleCPU::Running) {
199        _status = Idle;
200    }
201    assert(threadContexts.size() == 1);
202    previousCycle = curCycle();
203}
204
205
206void
207TimingSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
208{
209    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
210
211    assert(thread_num == 0);
212    assert(thread);
213
214    assert(_status == Idle);
215
216    notIdleFraction++;
217    _status = BaseSimpleCPU::Running;
218
219    // kick things off by initiating the fetch of the next instruction
220    schedule(fetchEvent, clockEdge(delay));
221}
222
223
224void
225TimingSimpleCPU::suspendContext(ThreadID thread_num)
226{
227    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
228
229    assert(thread_num == 0);
230    assert(thread);
231
232    if (_status == Idle)
233        return;
234
235    assert(_status == BaseSimpleCPU::Running);
236
237    // just change status to Idle... if status != Running,
238    // completeInst() will not initiate fetch of next instruction.
239
240    notIdleFraction--;
241    _status = Idle;
242}
243
244bool
245TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
246{
247    RequestPtr req = pkt->req;
248    if (req->isMmappedIpr()) {
249        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
250        new IprEvent(pkt, this, clockEdge(delay));
251        _status = DcacheWaitResponse;
252        dcache_pkt = NULL;
253    } else if (!dcachePort.sendTimingReq(pkt)) {
254        _status = DcacheRetry;
255        dcache_pkt = pkt;
256    } else {
257        _status = DcacheWaitResponse;
258        // memory system takes ownership of packet
259        dcache_pkt = NULL;
260    }
261    return dcache_pkt == NULL;
262}
263
264void
265TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
266                          bool read)
267{
268    PacketPtr pkt;
269    buildPacket(pkt, req, read);
270    pkt->dataDynamicArray<uint8_t>(data);
271    if (req->getFlags().isSet(Request::NO_ACCESS)) {
272        assert(!dcache_pkt);
273        pkt->makeResponse();
274        completeDataAccess(pkt);
275    } else if (read) {
276        handleReadPacket(pkt);
277    } else {
278        bool do_access = true;  // flag to suppress cache access
279
280        if (req->isLLSC()) {
281            do_access = TheISA::handleLockedWrite(thread, req);
282        } else if (req->isCondSwap()) {
283            assert(res);
284            req->setExtraData(*res);
285        }
286
287        if (do_access) {
288            dcache_pkt = pkt;
289            handleWritePacket();
290        } else {
291            _status = DcacheWaitResponse;
292            completeDataAccess(pkt);
293        }
294    }
295}
296
297void
298TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
299                               RequestPtr req, uint8_t *data, bool read)
300{
301    PacketPtr pkt1, pkt2;
302    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
303    if (req->getFlags().isSet(Request::NO_ACCESS)) {
304        assert(!dcache_pkt);
305        pkt1->makeResponse();
306        completeDataAccess(pkt1);
307    } else if (read) {
308        SplitFragmentSenderState * send_state =
309            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
310        if (handleReadPacket(pkt1)) {
311            send_state->clearFromParent();
312            send_state = dynamic_cast<SplitFragmentSenderState *>(
313                    pkt2->senderState);
314            if (handleReadPacket(pkt2)) {
315                send_state->clearFromParent();
316            }
317        }
318    } else {
319        dcache_pkt = pkt1;
320        SplitFragmentSenderState * send_state =
321            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
322        if (handleWritePacket()) {
323            send_state->clearFromParent();
324            dcache_pkt = pkt2;
325            send_state = dynamic_cast<SplitFragmentSenderState *>(
326                    pkt2->senderState);
327            if (handleWritePacket()) {
328                send_state->clearFromParent();
329            }
330        }
331    }
332}
333
334void
335TimingSimpleCPU::translationFault(Fault fault)
336{
337    // fault may be NoFault in cases where a fault is suppressed,
338    // for instance prefetches.
339    numCycles += curCycle() - previousCycle;
340    previousCycle = curCycle();
341
342    if (traceData) {
343        // Since there was a fault, we shouldn't trace this instruction.
344        delete traceData;
345        traceData = NULL;
346    }
347
348    postExecute();
349
350    advanceInst(fault);
351}
352
353void
354TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
355{
356    MemCmd cmd;
357    if (read) {
358        cmd = MemCmd::ReadReq;
359        if (req->isLLSC())
360            cmd = MemCmd::LoadLockedReq;
361    } else {
362        cmd = MemCmd::WriteReq;
363        if (req->isLLSC()) {
364            cmd = MemCmd::StoreCondReq;
365        } else if (req->isSwap()) {
366            cmd = MemCmd::SwapReq;
367        }
368    }
369    pkt = new Packet(req, cmd);
370}
371
372void
373TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
374        RequestPtr req1, RequestPtr req2, RequestPtr req,
375        uint8_t *data, bool read)
376{
377    pkt1 = pkt2 = NULL;
378
379    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
380
381    if (req->getFlags().isSet(Request::NO_ACCESS)) {
382        buildPacket(pkt1, req, read);
383        return;
384    }
385
386    buildPacket(pkt1, req1, read);
387    buildPacket(pkt2, req2, read);
388
389    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
390    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
391
392    pkt->dataDynamicArray<uint8_t>(data);
393    pkt1->dataStatic<uint8_t>(data);
394    pkt2->dataStatic<uint8_t>(data + req1->getSize());
395
396    SplitMainSenderState * main_send_state = new SplitMainSenderState;
397    pkt->senderState = main_send_state;
398    main_send_state->fragments[0] = pkt1;
399    main_send_state->fragments[1] = pkt2;
400    main_send_state->outstanding = 2;
401    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
402    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
403}
404
405Fault
406TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
407                         unsigned size, unsigned flags)
408{
409    Fault fault;
410    const int asid = 0;
411    const ThreadID tid = 0;
412    const Addr pc = thread->instAddr();
413    unsigned block_size = dcachePort.peerBlockSize();
414    BaseTLB::Mode mode = BaseTLB::Read;
415
416    if (traceData) {
417        traceData->setAddr(addr);
418    }
419
420    RequestPtr req  = new Request(asid, addr, size,
421                                  flags, dataMasterId(), pc, _cpuId, tid);
422
423    Addr split_addr = roundDown(addr + size - 1, block_size);
424    assert(split_addr <= addr || split_addr - addr < block_size);
425
426    _status = DTBWaitResponse;
427    if (split_addr > addr) {
428        RequestPtr req1, req2;
429        assert(!req->isLLSC() && !req->isSwap());
430        req->splitOnVaddr(split_addr, req1, req2);
431
432        WholeTranslationState *state =
433            new WholeTranslationState(req, req1, req2, new uint8_t[size],
434                                      NULL, mode);
435        DataTranslation<TimingSimpleCPU *> *trans1 =
436            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
437        DataTranslation<TimingSimpleCPU *> *trans2 =
438            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
439
440        thread->dtb->translateTiming(req1, tc, trans1, mode);
441        thread->dtb->translateTiming(req2, tc, trans2, mode);
442    } else {
443        WholeTranslationState *state =
444            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
445        DataTranslation<TimingSimpleCPU *> *translation
446            = new DataTranslation<TimingSimpleCPU *>(this, state);
447        thread->dtb->translateTiming(req, tc, translation, mode);
448    }
449
450    return NoFault;
451}
452
453bool
454TimingSimpleCPU::handleWritePacket()
455{
456    RequestPtr req = dcache_pkt->req;
457    if (req->isMmappedIpr()) {
458        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
459        new IprEvent(dcache_pkt, this, clockEdge(delay));
460        _status = DcacheWaitResponse;
461        dcache_pkt = NULL;
462    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
463        _status = DcacheRetry;
464    } else {
465        _status = DcacheWaitResponse;
466        // memory system takes ownership of packet
467        dcache_pkt = NULL;
468    }
469    return dcache_pkt == NULL;
470}
471
472Fault
473TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
474                          Addr addr, unsigned flags, uint64_t *res)
475{
476    uint8_t *newData = new uint8_t[size];
477    memcpy(newData, data, size);
478
479    const int asid = 0;
480    const ThreadID tid = 0;
481    const Addr pc = thread->instAddr();
482    unsigned block_size = dcachePort.peerBlockSize();
483    BaseTLB::Mode mode = BaseTLB::Write;
484
485    if (traceData) {
486        traceData->setAddr(addr);
487    }
488
489    RequestPtr req = new Request(asid, addr, size,
490                                 flags, dataMasterId(), pc, _cpuId, tid);
491
492    Addr split_addr = roundDown(addr + size - 1, block_size);
493    assert(split_addr <= addr || split_addr - addr < block_size);
494
495    _status = DTBWaitResponse;
496    if (split_addr > addr) {
497        RequestPtr req1, req2;
498        assert(!req->isLLSC() && !req->isSwap());
499        req->splitOnVaddr(split_addr, req1, req2);
500
501        WholeTranslationState *state =
502            new WholeTranslationState(req, req1, req2, newData, res, mode);
503        DataTranslation<TimingSimpleCPU *> *trans1 =
504            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
505        DataTranslation<TimingSimpleCPU *> *trans2 =
506            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
507
508        thread->dtb->translateTiming(req1, tc, trans1, mode);
509        thread->dtb->translateTiming(req2, tc, trans2, mode);
510    } else {
511        WholeTranslationState *state =
512            new WholeTranslationState(req, newData, res, mode);
513        DataTranslation<TimingSimpleCPU *> *translation =
514            new DataTranslation<TimingSimpleCPU *>(this, state);
515        thread->dtb->translateTiming(req, tc, translation, mode);
516    }
517
518    // Translation faults will be returned via finishTranslation()
519    return NoFault;
520}
521
522
523void
524TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
525{
526    _status = BaseSimpleCPU::Running;
527
528    if (state->getFault() != NoFault) {
529        if (state->isPrefetch()) {
530            state->setNoFault();
531        }
532        delete [] state->data;
533        state->deleteReqs();
534        translationFault(state->getFault());
535    } else {
536        if (!state->isSplit) {
537            sendData(state->mainReq, state->data, state->res,
538                     state->mode == BaseTLB::Read);
539        } else {
540            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
541                          state->data, state->mode == BaseTLB::Read);
542        }
543    }
544
545    delete state;
546}
547
548
549void
550TimingSimpleCPU::fetch()
551{
552    DPRINTF(SimpleCPU, "Fetch\n");
553
554    if (!curStaticInst || !curStaticInst->isDelayedCommit())
555        checkForInterrupts();
556
557    checkPcEventQueue();
558
559    // We must have just got suspended by a PC event
560    if (_status == Idle)
561        return;
562
563    TheISA::PCState pcState = thread->pcState();
564    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
565
566    if (needToFetch) {
567        _status = BaseSimpleCPU::Running;
568        Request *ifetch_req = new Request();
569        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
570        setupFetchRequest(ifetch_req);
571        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
572        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
573                BaseTLB::Execute);
574    } else {
575        _status = IcacheWaitResponse;
576        completeIfetch(NULL);
577
578        numCycles += curCycle() - previousCycle;
579        previousCycle = curCycle();
580    }
581}
582
583
584void
585TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
586{
587    if (fault == NoFault) {
588        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
589                req->getVaddr(), req->getPaddr());
590        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
591        ifetch_pkt->dataStatic(&inst);
592        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
593
594        if (!icachePort.sendTimingReq(ifetch_pkt)) {
595            // Need to wait for retry
596            _status = IcacheRetry;
597        } else {
598            // Need to wait for cache to respond
599            _status = IcacheWaitResponse;
600            // ownership of packet transferred to memory system
601            ifetch_pkt = NULL;
602        }
603    } else {
604        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
605        delete req;
606        // fetch fault: advance directly to next instruction (fault handler)
607        _status = BaseSimpleCPU::Running;
608        advanceInst(fault);
609    }
610
611    numCycles += curCycle() - previousCycle;
612    previousCycle = curCycle();
613}
614
615
616void
617TimingSimpleCPU::advanceInst(Fault fault)
618{
619    if (_status == Faulting)
620        return;
621
622    if (fault != NoFault) {
623        advancePC(fault);
624        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
625        reschedule(fetchEvent, nextCycle(), true);
626        _status = Faulting;
627        return;
628    }
629
630
631    if (!stayAtPC)
632        advancePC(fault);
633
634    if (tryCompleteDrain())
635            return;
636
637    if (_status == BaseSimpleCPU::Running) {
638        // kick off fetch of next instruction... callback from icache
639        // response will cause that instruction to be executed,
640        // keeping the CPU running.
641        fetch();
642    }
643}
644
645
646void
647TimingSimpleCPU::completeIfetch(PacketPtr pkt)
648{
649    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
650            pkt->getAddr() : 0);
651
652    // received a response from the icache: execute the received
653    // instruction
654
655    assert(!pkt || !pkt->isError());
656    assert(_status == IcacheWaitResponse);
657
658    _status = BaseSimpleCPU::Running;
659
660    numCycles += curCycle() - previousCycle;
661    previousCycle = curCycle();
662
663    preExecute();
664    if (curStaticInst && curStaticInst->isMemRef()) {
665        // load or store: just send to dcache
666        Fault fault = curStaticInst->initiateAcc(this, traceData);
667
668        // If we're not running now the instruction will complete in a dcache
669        // response callback or the instruction faulted and has started an
670        // ifetch
671        if (_status == BaseSimpleCPU::Running) {
672            if (fault != NoFault && traceData) {
673                // If there was a fault, we shouldn't trace this instruction.
674                delete traceData;
675                traceData = NULL;
676            }
677
678            postExecute();
679            // @todo remove me after debugging with legion done
680            if (curStaticInst && (!curStaticInst->isMicroop() ||
681                        curStaticInst->isFirstMicroop()))
682                instCnt++;
683            advanceInst(fault);
684        }
685    } else if (curStaticInst) {
686        // non-memory instruction: execute completely now
687        Fault fault = curStaticInst->execute(this, traceData);
688
689        // keep an instruction count
690        if (fault == NoFault)
691            countInst();
692        else if (traceData && !DTRACE(ExecFaulting)) {
693            delete traceData;
694            traceData = NULL;
695        }
696
697        postExecute();
698        // @todo remove me after debugging with legion done
699        if (curStaticInst && (!curStaticInst->isMicroop() ||
700                    curStaticInst->isFirstMicroop()))
701            instCnt++;
702        advanceInst(fault);
703    } else {
704        advanceInst(NoFault);
705    }
706
707    if (pkt) {
708        delete pkt->req;
709        delete pkt;
710    }
711}
712
713void
714TimingSimpleCPU::IcachePort::ITickEvent::process()
715{
716    cpu->completeIfetch(pkt);
717}
718
719bool
720TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
721{
722    DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
723    // delay processing of returned data until next CPU clock edge
724    Tick next_tick = cpu->nextCycle();
725
726    if (next_tick == curTick())
727        cpu->completeIfetch(pkt);
728    else
729        tickEvent.schedule(pkt, next_tick);
730
731    return true;
732}
733
734void
735TimingSimpleCPU::IcachePort::recvRetry()
736{
737    // we shouldn't get a retry unless we have a packet that we're
738    // waiting to transmit
739    assert(cpu->ifetch_pkt != NULL);
740    assert(cpu->_status == IcacheRetry);
741    PacketPtr tmp = cpu->ifetch_pkt;
742    if (sendTimingReq(tmp)) {
743        cpu->_status = IcacheWaitResponse;
744        cpu->ifetch_pkt = NULL;
745    }
746}
747
748void
749TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
750{
751    // received a response from the dcache: complete the load or store
752    // instruction
753    assert(!pkt->isError());
754    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
755           pkt->req->getFlags().isSet(Request::NO_ACCESS));
756
757    numCycles += curCycle() - previousCycle;
758    previousCycle = curCycle();
759
760    if (pkt->senderState) {
761        SplitFragmentSenderState * send_state =
762            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
763        assert(send_state);
764        delete pkt->req;
765        delete pkt;
766        PacketPtr big_pkt = send_state->bigPkt;
767        delete send_state;
768
769        SplitMainSenderState * main_send_state =
770            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
771        assert(main_send_state);
772        // Record the fact that this packet is no longer outstanding.
773        assert(main_send_state->outstanding != 0);
774        main_send_state->outstanding--;
775
776        if (main_send_state->outstanding) {
777            return;
778        } else {
779            delete main_send_state;
780            big_pkt->senderState = NULL;
781            pkt = big_pkt;
782        }
783    }
784
785    _status = BaseSimpleCPU::Running;
786
787    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
788
789    // keep an instruction count
790    if (fault == NoFault)
791        countInst();
792    else if (traceData) {
793        // If there was a fault, we shouldn't trace this instruction.
794        delete traceData;
795        traceData = NULL;
796    }
797
798    // the locked flag may be cleared on the response packet, so check
799    // pkt->req and not pkt to see if it was a load-locked
800    if (pkt->isRead() && pkt->req->isLLSC()) {
801        TheISA::handleLockedRead(thread, pkt->req);
802    }
803
804    delete pkt->req;
805    delete pkt;
806
807    postExecute();
808
809    advanceInst(fault);
810}
811
812bool
813TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
814{
815    // delay processing of returned data until next CPU clock edge
816    Tick next_tick = cpu->nextCycle();
817
818    if (next_tick == curTick()) {
819        cpu->completeDataAccess(pkt);
820    } else {
821        if (!tickEvent.scheduled()) {
822            tickEvent.schedule(pkt, next_tick);
823        } else {
824            // In the case of a split transaction and a cache that is
825            // faster than a CPU we could get two responses before
826            // next_tick expires
827            if (!retryEvent.scheduled())
828                cpu->schedule(retryEvent, next_tick);
829            return false;
830        }
831    }
832
833    return true;
834}
835
836void
837TimingSimpleCPU::DcachePort::DTickEvent::process()
838{
839    cpu->completeDataAccess(pkt);
840}
841
842void
843TimingSimpleCPU::DcachePort::recvRetry()
844{
845    // we shouldn't get a retry unless we have a packet that we're
846    // waiting to transmit
847    assert(cpu->dcache_pkt != NULL);
848    assert(cpu->_status == DcacheRetry);
849    PacketPtr tmp = cpu->dcache_pkt;
850    if (tmp->senderState) {
851        // This is a packet from a split access.
852        SplitFragmentSenderState * send_state =
853            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
854        assert(send_state);
855        PacketPtr big_pkt = send_state->bigPkt;
856
857        SplitMainSenderState * main_send_state =
858            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
859        assert(main_send_state);
860
861        if (sendTimingReq(tmp)) {
862            // If we were able to send without retrying, record that fact
863            // and try sending the other fragment.
864            send_state->clearFromParent();
865            int other_index = main_send_state->getPendingFragment();
866            if (other_index > 0) {
867                tmp = main_send_state->fragments[other_index];
868                cpu->dcache_pkt = tmp;
869                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
870                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
871                    main_send_state->fragments[other_index] = NULL;
872                }
873            } else {
874                cpu->_status = DcacheWaitResponse;
875                // memory system takes ownership of packet
876                cpu->dcache_pkt = NULL;
877            }
878        }
879    } else if (sendTimingReq(tmp)) {
880        cpu->_status = DcacheWaitResponse;
881        // memory system takes ownership of packet
882        cpu->dcache_pkt = NULL;
883    }
884}
885
886TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
887    Tick t)
888    : pkt(_pkt), cpu(_cpu)
889{
890    cpu->schedule(this, t);
891}
892
893void
894TimingSimpleCPU::IprEvent::process()
895{
896    cpu->completeDataAccess(pkt);
897}
898
899const char *
900TimingSimpleCPU::IprEvent::description() const
901{
902    return "Timing Simple CPU Delay IPR event";
903}
904
905
906void
907TimingSimpleCPU::printAddr(Addr a)
908{
909    dcachePort.printAddr(a);
910}
911
912
913////////////////////////////////////////////////////////////////////////
914//
915//  TimingSimpleCPU Simulation Object
916//
917TimingSimpleCPU *
918TimingSimpleCPUParams::create()
919{
920    numThreads = 1;
921    if (!FullSystem && workload.size() != 1)
922        panic("only one workload allowed");
923    return new TimingSimpleCPU(this);
924}
925