timing.cc revision 8232
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/ExecFaulting.hh"
52#include "debug/SimpleCPU.hh"
53#include "mem/packet.hh"
54#include "mem/packet_access.hh"
55#include "params/TimingSimpleCPU.hh"
56#include "sim/faults.hh"
57#include "sim/system.hh"
58
59using namespace std;
60using namespace TheISA;
61
62Port *
63TimingSimpleCPU::getPort(const std::string &if_name, int idx)
64{
65    if (if_name == "dcache_port")
66        return &dcachePort;
67    else if (if_name == "icache_port")
68        return &icachePort;
69    else
70        panic("No Such Port\n");
71}
72
73void
74TimingSimpleCPU::init()
75{
76    BaseCPU::init();
77#if FULL_SYSTEM
78    for (int i = 0; i < threadContexts.size(); ++i) {
79        ThreadContext *tc = threadContexts[i];
80
81        // initialize CPU, including PC
82        TheISA::initCPU(tc, _cpuId);
83    }
84#endif
85}
86
87Tick
88TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
89{
90    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
91    return curTick();
92}
93
94void
95TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
96{
97    //No internal storage to update, jusst return
98    return;
99}
100
101void
102TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
103{
104    if (status == RangeChange) {
105        if (!snoopRangeSent) {
106            snoopRangeSent = true;
107            sendStatusChange(Port::RangeChange);
108        }
109        return;
110    }
111
112    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
113}
114
115
116void
117TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
118{
119    pkt = _pkt;
120    cpu->schedule(this, t);
121}
122
123TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
124    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this, p->clock),
125    dcachePort(this, p->clock), fetchEvent(this)
126{
127    _status = Idle;
128
129    icachePort.snoopRangeSent = false;
130    dcachePort.snoopRangeSent = false;
131
132    ifetch_pkt = dcache_pkt = NULL;
133    drainEvent = NULL;
134    previousTick = 0;
135    changeState(SimObject::Running);
136    system->totalNumInsts = 0;
137}
138
139
140TimingSimpleCPU::~TimingSimpleCPU()
141{
142}
143
144void
145TimingSimpleCPU::serialize(ostream &os)
146{
147    SimObject::State so_state = SimObject::getState();
148    SERIALIZE_ENUM(so_state);
149    BaseSimpleCPU::serialize(os);
150}
151
152void
153TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
154{
155    SimObject::State so_state;
156    UNSERIALIZE_ENUM(so_state);
157    BaseSimpleCPU::unserialize(cp, section);
158}
159
160unsigned int
161TimingSimpleCPU::drain(Event *drain_event)
162{
163    // TimingSimpleCPU is ready to drain if it's not waiting for
164    // an access to complete.
165    if (_status == Idle || _status == Running || _status == SwitchedOut) {
166        changeState(SimObject::Drained);
167        return 0;
168    } else {
169        changeState(SimObject::Draining);
170        drainEvent = drain_event;
171        return 1;
172    }
173}
174
175void
176TimingSimpleCPU::resume()
177{
178    DPRINTF(SimpleCPU, "Resume\n");
179    if (_status != SwitchedOut && _status != Idle) {
180        assert(system->getMemoryMode() == Enums::timing);
181
182        if (fetchEvent.scheduled())
183           deschedule(fetchEvent);
184
185        schedule(fetchEvent, nextCycle());
186    }
187
188    changeState(SimObject::Running);
189}
190
191void
192TimingSimpleCPU::switchOut()
193{
194    assert(_status == Running || _status == Idle);
195    _status = SwitchedOut;
196    numCycles += tickToCycles(curTick() - previousTick);
197
198    // If we've been scheduled to resume but are then told to switch out,
199    // we'll need to cancel it.
200    if (fetchEvent.scheduled())
201        deschedule(fetchEvent);
202}
203
204
205void
206TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
207{
208    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
209
210    // if any of this CPU's ThreadContexts are active, mark the CPU as
211    // running and schedule its tick event.
212    for (int i = 0; i < threadContexts.size(); ++i) {
213        ThreadContext *tc = threadContexts[i];
214        if (tc->status() == ThreadContext::Active && _status != Running) {
215            _status = Running;
216            break;
217        }
218    }
219
220    if (_status != Running) {
221        _status = Idle;
222    }
223    assert(threadContexts.size() == 1);
224    previousTick = curTick();
225}
226
227
228void
229TimingSimpleCPU::activateContext(int thread_num, int delay)
230{
231    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
232
233    assert(thread_num == 0);
234    assert(thread);
235
236    assert(_status == Idle);
237
238    notIdleFraction++;
239    _status = Running;
240
241    // kick things off by initiating the fetch of the next instruction
242    schedule(fetchEvent, nextCycle(curTick() + ticks(delay)));
243}
244
245
246void
247TimingSimpleCPU::suspendContext(int thread_num)
248{
249    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
250
251    assert(thread_num == 0);
252    assert(thread);
253
254    if (_status == Idle)
255        return;
256
257    assert(_status == Running);
258
259    // just change status to Idle... if status != Running,
260    // completeInst() will not initiate fetch of next instruction.
261
262    notIdleFraction--;
263    _status = Idle;
264}
265
266bool
267TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
268{
269    RequestPtr req = pkt->req;
270    if (req->isMmappedIpr()) {
271        Tick delay;
272        delay = TheISA::handleIprRead(thread->getTC(), pkt);
273        new IprEvent(pkt, this, nextCycle(curTick() + delay));
274        _status = DcacheWaitResponse;
275        dcache_pkt = NULL;
276    } else if (!dcachePort.sendTiming(pkt)) {
277        _status = DcacheRetry;
278        dcache_pkt = pkt;
279    } else {
280        _status = DcacheWaitResponse;
281        // memory system takes ownership of packet
282        dcache_pkt = NULL;
283    }
284    return dcache_pkt == NULL;
285}
286
287void
288TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
289                          bool read)
290{
291    PacketPtr pkt;
292    buildPacket(pkt, req, read);
293    pkt->dataDynamicArray<uint8_t>(data);
294    if (req->getFlags().isSet(Request::NO_ACCESS)) {
295        assert(!dcache_pkt);
296        pkt->makeResponse();
297        completeDataAccess(pkt);
298    } else if (read) {
299        handleReadPacket(pkt);
300    } else {
301        bool do_access = true;  // flag to suppress cache access
302
303        if (req->isLLSC()) {
304            do_access = TheISA::handleLockedWrite(thread, req);
305        } else if (req->isCondSwap()) {
306            assert(res);
307            req->setExtraData(*res);
308        }
309
310        if (do_access) {
311            dcache_pkt = pkt;
312            handleWritePacket();
313        } else {
314            _status = DcacheWaitResponse;
315            completeDataAccess(pkt);
316        }
317    }
318}
319
320void
321TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
322                               RequestPtr req, uint8_t *data, bool read)
323{
324    PacketPtr pkt1, pkt2;
325    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
326    if (req->getFlags().isSet(Request::NO_ACCESS)) {
327        assert(!dcache_pkt);
328        pkt1->makeResponse();
329        completeDataAccess(pkt1);
330    } else if (read) {
331        SplitFragmentSenderState * send_state =
332            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
333        if (handleReadPacket(pkt1)) {
334            send_state->clearFromParent();
335            send_state = dynamic_cast<SplitFragmentSenderState *>(
336                    pkt2->senderState);
337            if (handleReadPacket(pkt2)) {
338                send_state->clearFromParent();
339            }
340        }
341    } else {
342        dcache_pkt = pkt1;
343        SplitFragmentSenderState * send_state =
344            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
345        if (handleWritePacket()) {
346            send_state->clearFromParent();
347            dcache_pkt = pkt2;
348            send_state = dynamic_cast<SplitFragmentSenderState *>(
349                    pkt2->senderState);
350            if (handleWritePacket()) {
351                send_state->clearFromParent();
352            }
353        }
354    }
355}
356
357void
358TimingSimpleCPU::translationFault(Fault fault)
359{
360    // fault may be NoFault in cases where a fault is suppressed,
361    // for instance prefetches.
362    numCycles += tickToCycles(curTick() - previousTick);
363    previousTick = curTick();
364
365    if (traceData) {
366        // Since there was a fault, we shouldn't trace this instruction.
367        delete traceData;
368        traceData = NULL;
369    }
370
371    postExecute();
372
373    if (getState() == SimObject::Draining) {
374        advancePC(fault);
375        completeDrain();
376    } else {
377        advanceInst(fault);
378    }
379}
380
381void
382TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
383{
384    MemCmd cmd;
385    if (read) {
386        cmd = MemCmd::ReadReq;
387        if (req->isLLSC())
388            cmd = MemCmd::LoadLockedReq;
389    } else {
390        cmd = MemCmd::WriteReq;
391        if (req->isLLSC()) {
392            cmd = MemCmd::StoreCondReq;
393        } else if (req->isSwap()) {
394            cmd = MemCmd::SwapReq;
395        }
396    }
397    pkt = new Packet(req, cmd, Packet::Broadcast);
398}
399
400void
401TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
402        RequestPtr req1, RequestPtr req2, RequestPtr req,
403        uint8_t *data, bool read)
404{
405    pkt1 = pkt2 = NULL;
406
407    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
408
409    if (req->getFlags().isSet(Request::NO_ACCESS)) {
410        buildPacket(pkt1, req, read);
411        return;
412    }
413
414    buildPacket(pkt1, req1, read);
415    buildPacket(pkt2, req2, read);
416
417    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
418    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
419                               Packet::Broadcast);
420
421    pkt->dataDynamicArray<uint8_t>(data);
422    pkt1->dataStatic<uint8_t>(data);
423    pkt2->dataStatic<uint8_t>(data + req1->getSize());
424
425    SplitMainSenderState * main_send_state = new SplitMainSenderState;
426    pkt->senderState = main_send_state;
427    main_send_state->fragments[0] = pkt1;
428    main_send_state->fragments[1] = pkt2;
429    main_send_state->outstanding = 2;
430    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
431    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
432}
433
434Fault
435TimingSimpleCPU::readBytes(Addr addr, uint8_t *data,
436                           unsigned size, unsigned flags)
437{
438    Fault fault;
439    const int asid = 0;
440    const ThreadID tid = 0;
441    const Addr pc = thread->instAddr();
442    unsigned block_size = dcachePort.peerBlockSize();
443    BaseTLB::Mode mode = BaseTLB::Read;
444
445    if (traceData) {
446        traceData->setAddr(addr);
447    }
448
449    RequestPtr req  = new Request(asid, addr, size,
450                                  flags, pc, _cpuId, tid);
451
452    Addr split_addr = roundDown(addr + size - 1, block_size);
453    assert(split_addr <= addr || split_addr - addr < block_size);
454
455    _status = DTBWaitResponse;
456    if (split_addr > addr) {
457        RequestPtr req1, req2;
458        assert(!req->isLLSC() && !req->isSwap());
459        req->splitOnVaddr(split_addr, req1, req2);
460
461        WholeTranslationState *state =
462            new WholeTranslationState(req, req1, req2, new uint8_t[size],
463                                      NULL, mode);
464        DataTranslation<TimingSimpleCPU> *trans1 =
465            new DataTranslation<TimingSimpleCPU>(this, state, 0);
466        DataTranslation<TimingSimpleCPU> *trans2 =
467            new DataTranslation<TimingSimpleCPU>(this, state, 1);
468
469        thread->dtb->translateTiming(req1, tc, trans1, mode);
470        thread->dtb->translateTiming(req2, tc, trans2, mode);
471    } else {
472        WholeTranslationState *state =
473            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
474        DataTranslation<TimingSimpleCPU> *translation
475            = new DataTranslation<TimingSimpleCPU>(this, state);
476        thread->dtb->translateTiming(req, tc, translation, mode);
477    }
478
479    return NoFault;
480}
481
482template <class T>
483Fault
484TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
485{
486    return readBytes(addr, (uint8_t *)&data, sizeof(T), flags);
487}
488
489#ifndef DOXYGEN_SHOULD_SKIP_THIS
490
491template
492Fault
493TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
494
495template
496Fault
497TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
498
499template
500Fault
501TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
502
503template
504Fault
505TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
506
507template
508Fault
509TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
510
511template
512Fault
513TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
514
515#endif //DOXYGEN_SHOULD_SKIP_THIS
516
517template<>
518Fault
519TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
520{
521    return read(addr, *(uint64_t*)&data, flags);
522}
523
524template<>
525Fault
526TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
527{
528    return read(addr, *(uint32_t*)&data, flags);
529}
530
531template<>
532Fault
533TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
534{
535    return read(addr, (uint32_t&)data, flags);
536}
537
538bool
539TimingSimpleCPU::handleWritePacket()
540{
541    RequestPtr req = dcache_pkt->req;
542    if (req->isMmappedIpr()) {
543        Tick delay;
544        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
545        new IprEvent(dcache_pkt, this, nextCycle(curTick() + delay));
546        _status = DcacheWaitResponse;
547        dcache_pkt = NULL;
548    } else if (!dcachePort.sendTiming(dcache_pkt)) {
549        _status = DcacheRetry;
550    } else {
551        _status = DcacheWaitResponse;
552        // memory system takes ownership of packet
553        dcache_pkt = NULL;
554    }
555    return dcache_pkt == NULL;
556}
557
558Fault
559TimingSimpleCPU::writeTheseBytes(uint8_t *data, unsigned size,
560                                 Addr addr, unsigned flags, uint64_t *res)
561{
562    const int asid = 0;
563    const ThreadID tid = 0;
564    const Addr pc = thread->instAddr();
565    unsigned block_size = dcachePort.peerBlockSize();
566    BaseTLB::Mode mode = BaseTLB::Write;
567
568    if (traceData) {
569        traceData->setAddr(addr);
570    }
571
572    RequestPtr req = new Request(asid, addr, size,
573                                 flags, pc, _cpuId, tid);
574
575    Addr split_addr = roundDown(addr + size - 1, block_size);
576    assert(split_addr <= addr || split_addr - addr < block_size);
577
578    _status = DTBWaitResponse;
579    if (split_addr > addr) {
580        RequestPtr req1, req2;
581        assert(!req->isLLSC() && !req->isSwap());
582        req->splitOnVaddr(split_addr, req1, req2);
583
584        WholeTranslationState *state =
585            new WholeTranslationState(req, req1, req2, data, res, mode);
586        DataTranslation<TimingSimpleCPU> *trans1 =
587            new DataTranslation<TimingSimpleCPU>(this, state, 0);
588        DataTranslation<TimingSimpleCPU> *trans2 =
589            new DataTranslation<TimingSimpleCPU>(this, state, 1);
590
591        thread->dtb->translateTiming(req1, tc, trans1, mode);
592        thread->dtb->translateTiming(req2, tc, trans2, mode);
593    } else {
594        WholeTranslationState *state =
595            new WholeTranslationState(req, data, res, mode);
596        DataTranslation<TimingSimpleCPU> *translation =
597            new DataTranslation<TimingSimpleCPU>(this, state);
598        thread->dtb->translateTiming(req, tc, translation, mode);
599    }
600
601    // Translation faults will be returned via finishTranslation()
602    return NoFault;
603}
604
605Fault
606TimingSimpleCPU::writeBytes(uint8_t *data, unsigned size,
607                            Addr addr, unsigned flags, uint64_t *res)
608{
609    uint8_t *newData = new uint8_t[size];
610    memcpy(newData, data, size);
611    return writeTheseBytes(newData, size, addr, flags, res);
612}
613
614template <class T>
615Fault
616TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
617{
618    if (traceData) {
619        traceData->setData(data);
620    }
621    T *dataP = (T*) new uint8_t[sizeof(T)];
622    *dataP = TheISA::htog(data);
623
624    return writeTheseBytes((uint8_t *)dataP, sizeof(T), addr, flags, res);
625}
626
627
628#ifndef DOXYGEN_SHOULD_SKIP_THIS
629template
630Fault
631TimingSimpleCPU::write(Twin32_t data, Addr addr,
632                       unsigned flags, uint64_t *res);
633
634template
635Fault
636TimingSimpleCPU::write(Twin64_t data, Addr addr,
637                       unsigned flags, uint64_t *res);
638
639template
640Fault
641TimingSimpleCPU::write(uint64_t data, Addr addr,
642                       unsigned flags, uint64_t *res);
643
644template
645Fault
646TimingSimpleCPU::write(uint32_t data, Addr addr,
647                       unsigned flags, uint64_t *res);
648
649template
650Fault
651TimingSimpleCPU::write(uint16_t data, Addr addr,
652                       unsigned flags, uint64_t *res);
653
654template
655Fault
656TimingSimpleCPU::write(uint8_t data, Addr addr,
657                       unsigned flags, uint64_t *res);
658
659#endif //DOXYGEN_SHOULD_SKIP_THIS
660
661template<>
662Fault
663TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
664{
665    return write(*(uint64_t*)&data, addr, flags, res);
666}
667
668template<>
669Fault
670TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
671{
672    return write(*(uint32_t*)&data, addr, flags, res);
673}
674
675
676template<>
677Fault
678TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
679{
680    return write((uint32_t)data, addr, flags, res);
681}
682
683
684void
685TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
686{
687    _status = Running;
688
689    if (state->getFault() != NoFault) {
690        if (state->isPrefetch()) {
691            state->setNoFault();
692        }
693        delete [] state->data;
694        state->deleteReqs();
695        translationFault(state->getFault());
696    } else {
697        if (!state->isSplit) {
698            sendData(state->mainReq, state->data, state->res,
699                     state->mode == BaseTLB::Read);
700        } else {
701            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
702                          state->data, state->mode == BaseTLB::Read);
703        }
704    }
705
706    delete state;
707}
708
709
710void
711TimingSimpleCPU::fetch()
712{
713    DPRINTF(SimpleCPU, "Fetch\n");
714
715    if (!curStaticInst || !curStaticInst->isDelayedCommit())
716        checkForInterrupts();
717
718    checkPcEventQueue();
719
720    // We must have just got suspended by a PC event
721    if (_status == Idle)
722        return;
723
724    TheISA::PCState pcState = thread->pcState();
725    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
726
727    if (needToFetch) {
728        Request *ifetch_req = new Request();
729        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
730        setupFetchRequest(ifetch_req);
731        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
732                BaseTLB::Execute);
733    } else {
734        _status = IcacheWaitResponse;
735        completeIfetch(NULL);
736
737        numCycles += tickToCycles(curTick() - previousTick);
738        previousTick = curTick();
739    }
740}
741
742
743void
744TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
745{
746    if (fault == NoFault) {
747        ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
748        ifetch_pkt->dataStatic(&inst);
749
750        if (!icachePort.sendTiming(ifetch_pkt)) {
751            // Need to wait for retry
752            _status = IcacheRetry;
753        } else {
754            // Need to wait for cache to respond
755            _status = IcacheWaitResponse;
756            // ownership of packet transferred to memory system
757            ifetch_pkt = NULL;
758        }
759    } else {
760        delete req;
761        // fetch fault: advance directly to next instruction (fault handler)
762        _status = Running;
763        advanceInst(fault);
764    }
765
766    numCycles += tickToCycles(curTick() - previousTick);
767    previousTick = curTick();
768}
769
770
771void
772TimingSimpleCPU::advanceInst(Fault fault)
773{
774    if (fault != NoFault || !stayAtPC)
775        advancePC(fault);
776
777    if (_status == Running) {
778        // kick off fetch of next instruction... callback from icache
779        // response will cause that instruction to be executed,
780        // keeping the CPU running.
781        fetch();
782    }
783}
784
785
786void
787TimingSimpleCPU::completeIfetch(PacketPtr pkt)
788{
789    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
790
791    // received a response from the icache: execute the received
792    // instruction
793
794    assert(!pkt || !pkt->isError());
795    assert(_status == IcacheWaitResponse);
796
797    _status = Running;
798
799    numCycles += tickToCycles(curTick() - previousTick);
800    previousTick = curTick();
801
802    if (getState() == SimObject::Draining) {
803        if (pkt) {
804            delete pkt->req;
805            delete pkt;
806        }
807
808        completeDrain();
809        return;
810    }
811
812    preExecute();
813    if (curStaticInst && curStaticInst->isMemRef()) {
814        // load or store: just send to dcache
815        Fault fault = curStaticInst->initiateAcc(this, traceData);
816
817        // If we're not running now the instruction will complete in a dcache
818        // response callback or the instruction faulted and has started an
819        // ifetch
820        if (_status == Running) {
821            if (fault != NoFault && traceData) {
822                // If there was a fault, we shouldn't trace this instruction.
823                delete traceData;
824                traceData = NULL;
825            }
826
827            postExecute();
828            // @todo remove me after debugging with legion done
829            if (curStaticInst && (!curStaticInst->isMicroop() ||
830                        curStaticInst->isFirstMicroop()))
831                instCnt++;
832            advanceInst(fault);
833        }
834    } else if (curStaticInst) {
835        // non-memory instruction: execute completely now
836        Fault fault = curStaticInst->execute(this, traceData);
837
838        // keep an instruction count
839        if (fault == NoFault)
840            countInst();
841        else if (traceData && !DTRACE(ExecFaulting)) {
842            delete traceData;
843            traceData = NULL;
844        }
845
846        postExecute();
847        // @todo remove me after debugging with legion done
848        if (curStaticInst && (!curStaticInst->isMicroop() ||
849                    curStaticInst->isFirstMicroop()))
850            instCnt++;
851        advanceInst(fault);
852    } else {
853        advanceInst(NoFault);
854    }
855
856    if (pkt) {
857        delete pkt->req;
858        delete pkt;
859    }
860}
861
862void
863TimingSimpleCPU::IcachePort::ITickEvent::process()
864{
865    cpu->completeIfetch(pkt);
866}
867
868bool
869TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
870{
871    if (pkt->isResponse() && !pkt->wasNacked()) {
872        // delay processing of returned data until next CPU clock edge
873        Tick next_tick = cpu->nextCycle(curTick());
874
875        if (next_tick == curTick())
876            cpu->completeIfetch(pkt);
877        else
878            tickEvent.schedule(pkt, next_tick);
879
880        return true;
881    }
882    else if (pkt->wasNacked()) {
883        assert(cpu->_status == IcacheWaitResponse);
884        pkt->reinitNacked();
885        if (!sendTiming(pkt)) {
886            cpu->_status = IcacheRetry;
887            cpu->ifetch_pkt = pkt;
888        }
889    }
890    //Snooping a Coherence Request, do nothing
891    return true;
892}
893
894void
895TimingSimpleCPU::IcachePort::recvRetry()
896{
897    // we shouldn't get a retry unless we have a packet that we're
898    // waiting to transmit
899    assert(cpu->ifetch_pkt != NULL);
900    assert(cpu->_status == IcacheRetry);
901    PacketPtr tmp = cpu->ifetch_pkt;
902    if (sendTiming(tmp)) {
903        cpu->_status = IcacheWaitResponse;
904        cpu->ifetch_pkt = NULL;
905    }
906}
907
908void
909TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
910{
911    // received a response from the dcache: complete the load or store
912    // instruction
913    assert(!pkt->isError());
914    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
915           pkt->req->getFlags().isSet(Request::NO_ACCESS));
916
917    numCycles += tickToCycles(curTick() - previousTick);
918    previousTick = curTick();
919
920    if (pkt->senderState) {
921        SplitFragmentSenderState * send_state =
922            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
923        assert(send_state);
924        delete pkt->req;
925        delete pkt;
926        PacketPtr big_pkt = send_state->bigPkt;
927        delete send_state;
928
929        SplitMainSenderState * main_send_state =
930            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
931        assert(main_send_state);
932        // Record the fact that this packet is no longer outstanding.
933        assert(main_send_state->outstanding != 0);
934        main_send_state->outstanding--;
935
936        if (main_send_state->outstanding) {
937            return;
938        } else {
939            delete main_send_state;
940            big_pkt->senderState = NULL;
941            pkt = big_pkt;
942        }
943    }
944
945    _status = Running;
946
947    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
948
949    // keep an instruction count
950    if (fault == NoFault)
951        countInst();
952    else if (traceData) {
953        // If there was a fault, we shouldn't trace this instruction.
954        delete traceData;
955        traceData = NULL;
956    }
957
958    // the locked flag may be cleared on the response packet, so check
959    // pkt->req and not pkt to see if it was a load-locked
960    if (pkt->isRead() && pkt->req->isLLSC()) {
961        TheISA::handleLockedRead(thread, pkt->req);
962    }
963
964    delete pkt->req;
965    delete pkt;
966
967    postExecute();
968
969    if (getState() == SimObject::Draining) {
970        advancePC(fault);
971        completeDrain();
972
973        return;
974    }
975
976    advanceInst(fault);
977}
978
979
980void
981TimingSimpleCPU::completeDrain()
982{
983    DPRINTF(Config, "Done draining\n");
984    changeState(SimObject::Drained);
985    drainEvent->process();
986}
987
988void
989TimingSimpleCPU::DcachePort::setPeer(Port *port)
990{
991    Port::setPeer(port);
992
993#if FULL_SYSTEM
994    // Update the ThreadContext's memory ports (Functional/Virtual
995    // Ports)
996    cpu->tcBase()->connectMemPorts(cpu->tcBase());
997#endif
998}
999
1000bool
1001TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
1002{
1003    if (pkt->isResponse() && !pkt->wasNacked()) {
1004        // delay processing of returned data until next CPU clock edge
1005        Tick next_tick = cpu->nextCycle(curTick());
1006
1007        if (next_tick == curTick()) {
1008            cpu->completeDataAccess(pkt);
1009        } else {
1010            if (!tickEvent.scheduled()) {
1011                tickEvent.schedule(pkt, next_tick);
1012            } else {
1013                // In the case of a split transaction and a cache that is
1014                // faster than a CPU we could get two responses before
1015                // next_tick expires
1016                if (!retryEvent.scheduled())
1017                    schedule(retryEvent, next_tick);
1018                return false;
1019            }
1020        }
1021
1022        return true;
1023    }
1024    else if (pkt->wasNacked()) {
1025        assert(cpu->_status == DcacheWaitResponse);
1026        pkt->reinitNacked();
1027        if (!sendTiming(pkt)) {
1028            cpu->_status = DcacheRetry;
1029            cpu->dcache_pkt = pkt;
1030        }
1031    }
1032    //Snooping a Coherence Request, do nothing
1033    return true;
1034}
1035
1036void
1037TimingSimpleCPU::DcachePort::DTickEvent::process()
1038{
1039    cpu->completeDataAccess(pkt);
1040}
1041
1042void
1043TimingSimpleCPU::DcachePort::recvRetry()
1044{
1045    // we shouldn't get a retry unless we have a packet that we're
1046    // waiting to transmit
1047    assert(cpu->dcache_pkt != NULL);
1048    assert(cpu->_status == DcacheRetry);
1049    PacketPtr tmp = cpu->dcache_pkt;
1050    if (tmp->senderState) {
1051        // This is a packet from a split access.
1052        SplitFragmentSenderState * send_state =
1053            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1054        assert(send_state);
1055        PacketPtr big_pkt = send_state->bigPkt;
1056
1057        SplitMainSenderState * main_send_state =
1058            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1059        assert(main_send_state);
1060
1061        if (sendTiming(tmp)) {
1062            // If we were able to send without retrying, record that fact
1063            // and try sending the other fragment.
1064            send_state->clearFromParent();
1065            int other_index = main_send_state->getPendingFragment();
1066            if (other_index > 0) {
1067                tmp = main_send_state->fragments[other_index];
1068                cpu->dcache_pkt = tmp;
1069                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1070                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
1071                    main_send_state->fragments[other_index] = NULL;
1072                }
1073            } else {
1074                cpu->_status = DcacheWaitResponse;
1075                // memory system takes ownership of packet
1076                cpu->dcache_pkt = NULL;
1077            }
1078        }
1079    } else if (sendTiming(tmp)) {
1080        cpu->_status = DcacheWaitResponse;
1081        // memory system takes ownership of packet
1082        cpu->dcache_pkt = NULL;
1083    }
1084}
1085
1086TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1087    Tick t)
1088    : pkt(_pkt), cpu(_cpu)
1089{
1090    cpu->schedule(this, t);
1091}
1092
1093void
1094TimingSimpleCPU::IprEvent::process()
1095{
1096    cpu->completeDataAccess(pkt);
1097}
1098
1099const char *
1100TimingSimpleCPU::IprEvent::description() const
1101{
1102    return "Timing Simple CPU Delay IPR event";
1103}
1104
1105
1106void
1107TimingSimpleCPU::printAddr(Addr a)
1108{
1109    dcachePort.printAddr(a);
1110}
1111
1112
1113////////////////////////////////////////////////////////////////////////
1114//
1115//  TimingSimpleCPU Simulation Object
1116//
1117TimingSimpleCPU *
1118TimingSimpleCPUParams::create()
1119{
1120    numThreads = 1;
1121#if !FULL_SYSTEM
1122    if (workload.size() != 1)
1123        panic("only one workload allowed");
1124#endif
1125    return new TimingSimpleCPU(this);
1126}
1127