timing.cc revision 6973
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/timing.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/TimingSimpleCPU.hh"
41#include "sim/system.hh"
42
43using namespace std;
44using namespace TheISA;
45
46Port *
47TimingSimpleCPU::getPort(const std::string &if_name, int idx)
48{
49    if (if_name == "dcache_port")
50        return &dcachePort;
51    else if (if_name == "icache_port")
52        return &icachePort;
53    else
54        panic("No Such Port\n");
55}
56
57void
58TimingSimpleCPU::init()
59{
60    BaseCPU::init();
61#if FULL_SYSTEM
62    for (int i = 0; i < threadContexts.size(); ++i) {
63        ThreadContext *tc = threadContexts[i];
64
65        // initialize CPU, including PC
66        TheISA::initCPU(tc, _cpuId);
67    }
68#endif
69}
70
71Tick
72TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
73{
74    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
75    return curTick;
76}
77
78void
79TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
80{
81    //No internal storage to update, jusst return
82    return;
83}
84
85void
86TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
87{
88    if (status == RangeChange) {
89        if (!snoopRangeSent) {
90            snoopRangeSent = true;
91            sendStatusChange(Port::RangeChange);
92        }
93        return;
94    }
95
96    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
97}
98
99
100void
101TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
102{
103    pkt = _pkt;
104    cpu->schedule(this, t);
105}
106
107TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
108    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this, p->clock),
109    dcachePort(this, p->clock), fetchEvent(this)
110{
111    _status = Idle;
112
113    icachePort.snoopRangeSent = false;
114    dcachePort.snoopRangeSent = false;
115
116    ifetch_pkt = dcache_pkt = NULL;
117    drainEvent = NULL;
118    previousTick = 0;
119    changeState(SimObject::Running);
120}
121
122
123TimingSimpleCPU::~TimingSimpleCPU()
124{
125}
126
127void
128TimingSimpleCPU::serialize(ostream &os)
129{
130    SimObject::State so_state = SimObject::getState();
131    SERIALIZE_ENUM(so_state);
132    BaseSimpleCPU::serialize(os);
133}
134
135void
136TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138    SimObject::State so_state;
139    UNSERIALIZE_ENUM(so_state);
140    BaseSimpleCPU::unserialize(cp, section);
141}
142
143unsigned int
144TimingSimpleCPU::drain(Event *drain_event)
145{
146    // TimingSimpleCPU is ready to drain if it's not waiting for
147    // an access to complete.
148    if (_status == Idle || _status == Running || _status == SwitchedOut) {
149        changeState(SimObject::Drained);
150        return 0;
151    } else {
152        changeState(SimObject::Draining);
153        drainEvent = drain_event;
154        return 1;
155    }
156}
157
158void
159TimingSimpleCPU::resume()
160{
161    DPRINTF(SimpleCPU, "Resume\n");
162    if (_status != SwitchedOut && _status != Idle) {
163        assert(system->getMemoryMode() == Enums::timing);
164
165        if (fetchEvent.scheduled())
166           deschedule(fetchEvent);
167
168        schedule(fetchEvent, nextCycle());
169    }
170
171    changeState(SimObject::Running);
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177    assert(_status == Running || _status == Idle);
178    _status = SwitchedOut;
179    numCycles += tickToCycles(curTick - previousTick);
180
181    // If we've been scheduled to resume but are then told to switch out,
182    // we'll need to cancel it.
183    if (fetchEvent.scheduled())
184        deschedule(fetchEvent);
185}
186
187
188void
189TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
190{
191    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
192
193    // if any of this CPU's ThreadContexts are active, mark the CPU as
194    // running and schedule its tick event.
195    for (int i = 0; i < threadContexts.size(); ++i) {
196        ThreadContext *tc = threadContexts[i];
197        if (tc->status() == ThreadContext::Active && _status != Running) {
198            _status = Running;
199            break;
200        }
201    }
202
203    if (_status != Running) {
204        _status = Idle;
205    }
206    assert(threadContexts.size() == 1);
207    previousTick = curTick;
208}
209
210
211void
212TimingSimpleCPU::activateContext(int thread_num, int delay)
213{
214    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
215
216    assert(thread_num == 0);
217    assert(thread);
218
219    assert(_status == Idle);
220
221    notIdleFraction++;
222    _status = Running;
223
224    // kick things off by initiating the fetch of the next instruction
225    schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
233
234    assert(thread_num == 0);
235    assert(thread);
236
237    if (_status == Idle)
238        return;
239
240    assert(_status == Running);
241
242    // just change status to Idle... if status != Running,
243    // completeInst() will not initiate fetch of next instruction.
244
245    notIdleFraction--;
246    _status = Idle;
247}
248
249bool
250TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
251{
252    RequestPtr req = pkt->req;
253    if (req->isMmapedIpr()) {
254        Tick delay;
255        delay = TheISA::handleIprRead(thread->getTC(), pkt);
256        new IprEvent(pkt, this, nextCycle(curTick + delay));
257        _status = DcacheWaitResponse;
258        dcache_pkt = NULL;
259    } else if (!dcachePort.sendTiming(pkt)) {
260        _status = DcacheRetry;
261        dcache_pkt = pkt;
262    } else {
263        _status = DcacheWaitResponse;
264        // memory system takes ownership of packet
265        dcache_pkt = NULL;
266    }
267    return dcache_pkt == NULL;
268}
269
270void
271TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
272                          bool read)
273{
274    PacketPtr pkt;
275    buildPacket(pkt, req, read);
276    pkt->dataDynamic<uint8_t>(data);
277    if (req->getFlags().isSet(Request::NO_ACCESS)) {
278        assert(!dcache_pkt);
279        pkt->makeResponse();
280        completeDataAccess(pkt);
281    } else if (read) {
282        handleReadPacket(pkt);
283    } else {
284        bool do_access = true;  // flag to suppress cache access
285
286        if (req->isLLSC()) {
287            do_access = TheISA::handleLockedWrite(thread, req);
288        } else if (req->isCondSwap()) {
289            assert(res);
290            req->setExtraData(*res);
291        }
292
293        if (do_access) {
294            dcache_pkt = pkt;
295            handleWritePacket();
296        } else {
297            _status = DcacheWaitResponse;
298            completeDataAccess(pkt);
299        }
300    }
301}
302
303void
304TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
305                               RequestPtr req, uint8_t *data, bool read)
306{
307    PacketPtr pkt1, pkt2;
308    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
309    if (req->getFlags().isSet(Request::NO_ACCESS)) {
310        assert(!dcache_pkt);
311        pkt1->makeResponse();
312        completeDataAccess(pkt1);
313    } else if (read) {
314        if (handleReadPacket(pkt1)) {
315            SplitFragmentSenderState * send_state =
316                dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
317            send_state->clearFromParent();
318            if (handleReadPacket(pkt2)) {
319                send_state = dynamic_cast<SplitFragmentSenderState *>(
320                        pkt1->senderState);
321                send_state->clearFromParent();
322            }
323        }
324    } else {
325        dcache_pkt = pkt1;
326        if (handleWritePacket()) {
327            SplitFragmentSenderState * send_state =
328                dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
329            send_state->clearFromParent();
330            dcache_pkt = pkt2;
331            if (handleWritePacket()) {
332                send_state = dynamic_cast<SplitFragmentSenderState *>(
333                        pkt1->senderState);
334                send_state->clearFromParent();
335            }
336        }
337    }
338}
339
340void
341TimingSimpleCPU::translationFault(Fault fault)
342{
343    // fault may be NoFault in cases where a fault is suppressed,
344    // for instance prefetches.
345    numCycles += tickToCycles(curTick - previousTick);
346    previousTick = curTick;
347
348    if (traceData) {
349        // Since there was a fault, we shouldn't trace this instruction.
350        delete traceData;
351        traceData = NULL;
352    }
353
354    postExecute();
355
356    if (getState() == SimObject::Draining) {
357        advancePC(fault);
358        completeDrain();
359    } else {
360        advanceInst(fault);
361    }
362}
363
364void
365TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
366{
367    MemCmd cmd;
368    if (read) {
369        cmd = MemCmd::ReadReq;
370        if (req->isLLSC())
371            cmd = MemCmd::LoadLockedReq;
372    } else {
373        cmd = MemCmd::WriteReq;
374        if (req->isLLSC()) {
375            cmd = MemCmd::StoreCondReq;
376        } else if (req->isSwap()) {
377            cmd = MemCmd::SwapReq;
378        }
379    }
380    pkt = new Packet(req, cmd, Packet::Broadcast);
381}
382
383void
384TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
385        RequestPtr req1, RequestPtr req2, RequestPtr req,
386        uint8_t *data, bool read)
387{
388    pkt1 = pkt2 = NULL;
389
390    assert(!req1->isMmapedIpr() && !req2->isMmapedIpr());
391
392    if (req->getFlags().isSet(Request::NO_ACCESS)) {
393        buildPacket(pkt1, req, read);
394        return;
395    }
396
397    buildPacket(pkt1, req1, read);
398    buildPacket(pkt2, req2, read);
399
400    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
401    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
402                               Packet::Broadcast);
403
404    pkt->dataDynamic<uint8_t>(data);
405    pkt1->dataStatic<uint8_t>(data);
406    pkt2->dataStatic<uint8_t>(data + req1->getSize());
407
408    SplitMainSenderState * main_send_state = new SplitMainSenderState;
409    pkt->senderState = main_send_state;
410    main_send_state->fragments[0] = pkt1;
411    main_send_state->fragments[1] = pkt2;
412    main_send_state->outstanding = 2;
413    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
414    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
415}
416
417template <class T>
418Fault
419TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
420{
421    Fault fault;
422    const int asid = 0;
423    const ThreadID tid = 0;
424    const Addr pc = thread->readPC();
425    unsigned block_size = dcachePort.peerBlockSize();
426    int data_size = sizeof(T);
427    BaseTLB::Mode mode = BaseTLB::Read;
428
429    RequestPtr req  = new Request(asid, addr, data_size,
430                                  flags, pc, _cpuId, tid);
431
432    Addr split_addr = roundDown(addr + data_size - 1, block_size);
433    assert(split_addr <= addr || split_addr - addr < block_size);
434
435    _status = DTBWaitResponse;
436    if (split_addr > addr) {
437        RequestPtr req1, req2;
438        assert(!req->isLLSC() && !req->isSwap());
439        req->splitOnVaddr(split_addr, req1, req2);
440
441        WholeTranslationState *state =
442            new WholeTranslationState(req, req1, req2, (uint8_t *)(new T),
443                                      NULL, mode);
444        DataTranslation<TimingSimpleCPU> *trans1 =
445            new DataTranslation<TimingSimpleCPU>(this, state, 0);
446        DataTranslation<TimingSimpleCPU> *trans2 =
447            new DataTranslation<TimingSimpleCPU>(this, state, 1);
448
449        thread->dtb->translateTiming(req1, tc, trans1, mode);
450        thread->dtb->translateTiming(req2, tc, trans2, mode);
451    } else {
452        WholeTranslationState *state =
453            new WholeTranslationState(req, (uint8_t *)(new T), NULL, mode);
454        DataTranslation<TimingSimpleCPU> *translation
455            = new DataTranslation<TimingSimpleCPU>(this, state);
456        thread->dtb->translateTiming(req, tc, translation, mode);
457    }
458
459    if (traceData) {
460        traceData->setData(data);
461        traceData->setAddr(addr);
462    }
463
464    // This will need a new way to tell if it has a dcache attached.
465    if (req->isUncacheable())
466        recordEvent("Uncached Read");
467
468    return NoFault;
469}
470
471#ifndef DOXYGEN_SHOULD_SKIP_THIS
472
473template
474Fault
475TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
476
477template
478Fault
479TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
480
481template
482Fault
483TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
484
485template
486Fault
487TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
488
489template
490Fault
491TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
492
493template
494Fault
495TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
496
497#endif //DOXYGEN_SHOULD_SKIP_THIS
498
499template<>
500Fault
501TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
502{
503    return read(addr, *(uint64_t*)&data, flags);
504}
505
506template<>
507Fault
508TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
509{
510    return read(addr, *(uint32_t*)&data, flags);
511}
512
513
514template<>
515Fault
516TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
517{
518    return read(addr, (uint32_t&)data, flags);
519}
520
521bool
522TimingSimpleCPU::handleWritePacket()
523{
524    RequestPtr req = dcache_pkt->req;
525    if (req->isMmapedIpr()) {
526        Tick delay;
527        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
528        new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
529        _status = DcacheWaitResponse;
530        dcache_pkt = NULL;
531    } else if (!dcachePort.sendTiming(dcache_pkt)) {
532        _status = DcacheRetry;
533    } else {
534        _status = DcacheWaitResponse;
535        // memory system takes ownership of packet
536        dcache_pkt = NULL;
537    }
538    return dcache_pkt == NULL;
539}
540
541template <class T>
542Fault
543TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
544{
545    const int asid = 0;
546    const ThreadID tid = 0;
547    const Addr pc = thread->readPC();
548    unsigned block_size = dcachePort.peerBlockSize();
549    int data_size = sizeof(T);
550    BaseTLB::Mode mode = BaseTLB::Write;
551
552    RequestPtr req = new Request(asid, addr, data_size,
553                                 flags, pc, _cpuId, tid);
554
555    Addr split_addr = roundDown(addr + data_size - 1, block_size);
556    assert(split_addr <= addr || split_addr - addr < block_size);
557
558    T *dataP = new T;
559    *dataP = TheISA::htog(data);
560    _status = DTBWaitResponse;
561    if (split_addr > addr) {
562        RequestPtr req1, req2;
563        assert(!req->isLLSC() && !req->isSwap());
564        req->splitOnVaddr(split_addr, req1, req2);
565
566        WholeTranslationState *state =
567            new WholeTranslationState(req, req1, req2, (uint8_t *)dataP,
568                                      res, mode);
569        DataTranslation<TimingSimpleCPU> *trans1 =
570            new DataTranslation<TimingSimpleCPU>(this, state, 0);
571        DataTranslation<TimingSimpleCPU> *trans2 =
572            new DataTranslation<TimingSimpleCPU>(this, state, 1);
573
574        thread->dtb->translateTiming(req1, tc, trans1, mode);
575        thread->dtb->translateTiming(req2, tc, trans2, mode);
576    } else {
577        WholeTranslationState *state =
578            new WholeTranslationState(req, (uint8_t *)dataP, res, mode);
579        DataTranslation<TimingSimpleCPU> *translation =
580            new DataTranslation<TimingSimpleCPU>(this, state);
581        thread->dtb->translateTiming(req, tc, translation, mode);
582    }
583
584    if (traceData) {
585        traceData->setAddr(req->getVaddr());
586        traceData->setData(data);
587    }
588
589    // This will need a new way to tell if it's hooked up to a cache or not.
590    if (req->isUncacheable())
591        recordEvent("Uncached Write");
592
593    // If the write needs to have a fault on the access, consider calling
594    // changeStatus() and changing it to "bad addr write" or something.
595    return NoFault;
596}
597
598
599#ifndef DOXYGEN_SHOULD_SKIP_THIS
600template
601Fault
602TimingSimpleCPU::write(Twin32_t data, Addr addr,
603                       unsigned flags, uint64_t *res);
604
605template
606Fault
607TimingSimpleCPU::write(Twin64_t data, Addr addr,
608                       unsigned flags, uint64_t *res);
609
610template
611Fault
612TimingSimpleCPU::write(uint64_t data, Addr addr,
613                       unsigned flags, uint64_t *res);
614
615template
616Fault
617TimingSimpleCPU::write(uint32_t data, Addr addr,
618                       unsigned flags, uint64_t *res);
619
620template
621Fault
622TimingSimpleCPU::write(uint16_t data, Addr addr,
623                       unsigned flags, uint64_t *res);
624
625template
626Fault
627TimingSimpleCPU::write(uint8_t data, Addr addr,
628                       unsigned flags, uint64_t *res);
629
630#endif //DOXYGEN_SHOULD_SKIP_THIS
631
632template<>
633Fault
634TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
635{
636    return write(*(uint64_t*)&data, addr, flags, res);
637}
638
639template<>
640Fault
641TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
642{
643    return write(*(uint32_t*)&data, addr, flags, res);
644}
645
646
647template<>
648Fault
649TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
650{
651    return write((uint32_t)data, addr, flags, res);
652}
653
654
655void
656TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
657{
658    _status = Running;
659
660    if (state->getFault() != NoFault) {
661        if (state->isPrefetch()) {
662            state->setNoFault();
663        }
664        delete state->data;
665        state->deleteReqs();
666        translationFault(state->getFault());
667    } else {
668        if (!state->isSplit) {
669            sendData(state->mainReq, state->data, state->res,
670                     state->mode == BaseTLB::Read);
671        } else {
672            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
673                          state->data, state->mode == BaseTLB::Read);
674        }
675    }
676
677    delete state;
678}
679
680
681void
682TimingSimpleCPU::fetch()
683{
684    DPRINTF(SimpleCPU, "Fetch\n");
685
686    if (!curStaticInst || !curStaticInst->isDelayedCommit())
687        checkForInterrupts();
688
689    checkPcEventQueue();
690
691    bool fromRom = isRomMicroPC(thread->readMicroPC());
692
693    if (!fromRom && !curMacroStaticInst) {
694        Request *ifetch_req = new Request();
695        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
696        setupFetchRequest(ifetch_req);
697        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
698                BaseTLB::Execute);
699    } else {
700        _status = IcacheWaitResponse;
701        completeIfetch(NULL);
702
703        numCycles += tickToCycles(curTick - previousTick);
704        previousTick = curTick;
705    }
706}
707
708
709void
710TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
711{
712    if (fault == NoFault) {
713        ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
714        ifetch_pkt->dataStatic(&inst);
715
716        if (!icachePort.sendTiming(ifetch_pkt)) {
717            // Need to wait for retry
718            _status = IcacheRetry;
719        } else {
720            // Need to wait for cache to respond
721            _status = IcacheWaitResponse;
722            // ownership of packet transferred to memory system
723            ifetch_pkt = NULL;
724        }
725    } else {
726        delete req;
727        // fetch fault: advance directly to next instruction (fault handler)
728        advanceInst(fault);
729    }
730
731    numCycles += tickToCycles(curTick - previousTick);
732    previousTick = curTick;
733}
734
735
736void
737TimingSimpleCPU::advanceInst(Fault fault)
738{
739    if (fault != NoFault || !stayAtPC)
740        advancePC(fault);
741
742    if (_status == Running) {
743        // kick off fetch of next instruction... callback from icache
744        // response will cause that instruction to be executed,
745        // keeping the CPU running.
746        fetch();
747    }
748}
749
750
751void
752TimingSimpleCPU::completeIfetch(PacketPtr pkt)
753{
754    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
755
756    // received a response from the icache: execute the received
757    // instruction
758
759    assert(!pkt || !pkt->isError());
760    assert(_status == IcacheWaitResponse);
761
762    _status = Running;
763
764    numCycles += tickToCycles(curTick - previousTick);
765    previousTick = curTick;
766
767    if (getState() == SimObject::Draining) {
768        if (pkt) {
769            delete pkt->req;
770            delete pkt;
771        }
772
773        completeDrain();
774        return;
775    }
776
777    preExecute();
778    if (curStaticInst &&
779            curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
780        // load or store: just send to dcache
781        Fault fault = curStaticInst->initiateAcc(this, traceData);
782        if (_status != Running) {
783            // instruction will complete in dcache response callback
784            assert(_status == DcacheWaitResponse ||
785                    _status == DcacheRetry || DTBWaitResponse);
786            assert(fault == NoFault);
787        } else {
788            if (fault != NoFault && traceData) {
789                // If there was a fault, we shouldn't trace this instruction.
790                delete traceData;
791                traceData = NULL;
792            }
793
794            postExecute();
795            // @todo remove me after debugging with legion done
796            if (curStaticInst && (!curStaticInst->isMicroop() ||
797                        curStaticInst->isFirstMicroop()))
798                instCnt++;
799            advanceInst(fault);
800        }
801    } else if (curStaticInst) {
802        // non-memory instruction: execute completely now
803        Fault fault = curStaticInst->execute(this, traceData);
804
805        // keep an instruction count
806        if (fault == NoFault)
807            countInst();
808        else if (traceData) {
809            // If there was a fault, we shouldn't trace this instruction.
810            delete traceData;
811            traceData = NULL;
812        }
813
814        postExecute();
815        // @todo remove me after debugging with legion done
816        if (curStaticInst && (!curStaticInst->isMicroop() ||
817                    curStaticInst->isFirstMicroop()))
818            instCnt++;
819        advanceInst(fault);
820    } else {
821        advanceInst(NoFault);
822    }
823
824    if (pkt) {
825        delete pkt->req;
826        delete pkt;
827    }
828}
829
830void
831TimingSimpleCPU::IcachePort::ITickEvent::process()
832{
833    cpu->completeIfetch(pkt);
834}
835
836bool
837TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
838{
839    if (pkt->isResponse() && !pkt->wasNacked()) {
840        // delay processing of returned data until next CPU clock edge
841        Tick next_tick = cpu->nextCycle(curTick);
842
843        if (next_tick == curTick)
844            cpu->completeIfetch(pkt);
845        else
846            tickEvent.schedule(pkt, next_tick);
847
848        return true;
849    }
850    else if (pkt->wasNacked()) {
851        assert(cpu->_status == IcacheWaitResponse);
852        pkt->reinitNacked();
853        if (!sendTiming(pkt)) {
854            cpu->_status = IcacheRetry;
855            cpu->ifetch_pkt = pkt;
856        }
857    }
858    //Snooping a Coherence Request, do nothing
859    return true;
860}
861
862void
863TimingSimpleCPU::IcachePort::recvRetry()
864{
865    // we shouldn't get a retry unless we have a packet that we're
866    // waiting to transmit
867    assert(cpu->ifetch_pkt != NULL);
868    assert(cpu->_status == IcacheRetry);
869    PacketPtr tmp = cpu->ifetch_pkt;
870    if (sendTiming(tmp)) {
871        cpu->_status = IcacheWaitResponse;
872        cpu->ifetch_pkt = NULL;
873    }
874}
875
876void
877TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
878{
879    // received a response from the dcache: complete the load or store
880    // instruction
881    assert(!pkt->isError());
882
883    numCycles += tickToCycles(curTick - previousTick);
884    previousTick = curTick;
885
886    if (pkt->senderState) {
887        SplitFragmentSenderState * send_state =
888            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
889        assert(send_state);
890        delete pkt->req;
891        delete pkt;
892        PacketPtr big_pkt = send_state->bigPkt;
893        delete send_state;
894
895        SplitMainSenderState * main_send_state =
896            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
897        assert(main_send_state);
898        // Record the fact that this packet is no longer outstanding.
899        assert(main_send_state->outstanding != 0);
900        main_send_state->outstanding--;
901
902        if (main_send_state->outstanding) {
903            return;
904        } else {
905            delete main_send_state;
906            big_pkt->senderState = NULL;
907            pkt = big_pkt;
908        }
909    }
910
911    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse);
912    _status = Running;
913
914    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
915
916    // keep an instruction count
917    if (fault == NoFault)
918        countInst();
919    else if (traceData) {
920        // If there was a fault, we shouldn't trace this instruction.
921        delete traceData;
922        traceData = NULL;
923    }
924
925    // the locked flag may be cleared on the response packet, so check
926    // pkt->req and not pkt to see if it was a load-locked
927    if (pkt->isRead() && pkt->req->isLLSC()) {
928        TheISA::handleLockedRead(thread, pkt->req);
929    }
930
931    delete pkt->req;
932    delete pkt;
933
934    postExecute();
935
936    if (getState() == SimObject::Draining) {
937        advancePC(fault);
938        completeDrain();
939
940        return;
941    }
942
943    advanceInst(fault);
944}
945
946
947void
948TimingSimpleCPU::completeDrain()
949{
950    DPRINTF(Config, "Done draining\n");
951    changeState(SimObject::Drained);
952    drainEvent->process();
953}
954
955void
956TimingSimpleCPU::DcachePort::setPeer(Port *port)
957{
958    Port::setPeer(port);
959
960#if FULL_SYSTEM
961    // Update the ThreadContext's memory ports (Functional/Virtual
962    // Ports)
963    cpu->tcBase()->connectMemPorts(cpu->tcBase());
964#endif
965}
966
967bool
968TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
969{
970    if (pkt->isResponse() && !pkt->wasNacked()) {
971        // delay processing of returned data until next CPU clock edge
972        Tick next_tick = cpu->nextCycle(curTick);
973
974        if (next_tick == curTick) {
975            cpu->completeDataAccess(pkt);
976        } else {
977            tickEvent.schedule(pkt, next_tick);
978        }
979
980        return true;
981    }
982    else if (pkt->wasNacked()) {
983        assert(cpu->_status == DcacheWaitResponse);
984        pkt->reinitNacked();
985        if (!sendTiming(pkt)) {
986            cpu->_status = DcacheRetry;
987            cpu->dcache_pkt = pkt;
988        }
989    }
990    //Snooping a Coherence Request, do nothing
991    return true;
992}
993
994void
995TimingSimpleCPU::DcachePort::DTickEvent::process()
996{
997    cpu->completeDataAccess(pkt);
998}
999
1000void
1001TimingSimpleCPU::DcachePort::recvRetry()
1002{
1003    // we shouldn't get a retry unless we have a packet that we're
1004    // waiting to transmit
1005    assert(cpu->dcache_pkt != NULL);
1006    assert(cpu->_status == DcacheRetry);
1007    PacketPtr tmp = cpu->dcache_pkt;
1008    if (tmp->senderState) {
1009        // This is a packet from a split access.
1010        SplitFragmentSenderState * send_state =
1011            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1012        assert(send_state);
1013        PacketPtr big_pkt = send_state->bigPkt;
1014
1015        SplitMainSenderState * main_send_state =
1016            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1017        assert(main_send_state);
1018
1019        if (sendTiming(tmp)) {
1020            // If we were able to send without retrying, record that fact
1021            // and try sending the other fragment.
1022            send_state->clearFromParent();
1023            int other_index = main_send_state->getPendingFragment();
1024            if (other_index > 0) {
1025                tmp = main_send_state->fragments[other_index];
1026                cpu->dcache_pkt = tmp;
1027                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1028                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
1029                    main_send_state->fragments[other_index] = NULL;
1030                }
1031            } else {
1032                cpu->_status = DcacheWaitResponse;
1033                // memory system takes ownership of packet
1034                cpu->dcache_pkt = NULL;
1035            }
1036        }
1037    } else if (sendTiming(tmp)) {
1038        cpu->_status = DcacheWaitResponse;
1039        // memory system takes ownership of packet
1040        cpu->dcache_pkt = NULL;
1041    }
1042}
1043
1044TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1045    Tick t)
1046    : pkt(_pkt), cpu(_cpu)
1047{
1048    cpu->schedule(this, t);
1049}
1050
1051void
1052TimingSimpleCPU::IprEvent::process()
1053{
1054    cpu->completeDataAccess(pkt);
1055}
1056
1057const char *
1058TimingSimpleCPU::IprEvent::description() const
1059{
1060    return "Timing Simple CPU Delay IPR event";
1061}
1062
1063
1064void
1065TimingSimpleCPU::printAddr(Addr a)
1066{
1067    dcachePort.printAddr(a);
1068}
1069
1070
1071////////////////////////////////////////////////////////////////////////
1072//
1073//  TimingSimpleCPU Simulation Object
1074//
1075TimingSimpleCPU *
1076TimingSimpleCPUParams::create()
1077{
1078    numThreads = 1;
1079#if !FULL_SYSTEM
1080    if (workload.size() != 1)
1081        panic("only one workload allowed");
1082#endif
1083    return new TimingSimpleCPU(this);
1084}
1085