timing.cc revision 4762:c94e103c83ad
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "base/bigint.hh"
34#include "cpu/exetrace.hh"
35#include "cpu/simple/timing.hh"
36#include "mem/packet.hh"
37#include "mem/packet_access.hh"
38#include "params/TimingSimpleCPU.hh"
39#include "sim/system.hh"
40
41using namespace std;
42using namespace TheISA;
43
44Port *
45TimingSimpleCPU::getPort(const std::string &if_name, int idx)
46{
47    if (if_name == "dcache_port")
48        return &dcachePort;
49    else if (if_name == "icache_port")
50        return &icachePort;
51    else
52        panic("No Such Port\n");
53}
54
55void
56TimingSimpleCPU::init()
57{
58    BaseCPU::init();
59#if FULL_SYSTEM
60    for (int i = 0; i < threadContexts.size(); ++i) {
61        ThreadContext *tc = threadContexts[i];
62
63        // initialize CPU, including PC
64        TheISA::initCPU(tc, tc->readCpuId());
65    }
66#endif
67}
68
69Tick
70TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
71{
72    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
73    return curTick;
74}
75
76void
77TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
78{
79    //No internal storage to update, jusst return
80    return;
81}
82
83void
84TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
85{
86    if (status == RangeChange) {
87        if (!snoopRangeSent) {
88            snoopRangeSent = true;
89            sendStatusChange(Port::RangeChange);
90        }
91        return;
92    }
93
94    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
95}
96
97
98void
99TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
100{
101    pkt = _pkt;
102    Event::schedule(t);
103}
104
105TimingSimpleCPU::TimingSimpleCPU(Params *p)
106    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
107      cpu_id(p->cpu_id)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    fetchEvent = NULL;
117    previousTick = 0;
118    changeState(SimObject::Running);
119}
120
121
122TimingSimpleCPU::~TimingSimpleCPU()
123{
124}
125
126void
127TimingSimpleCPU::serialize(ostream &os)
128{
129    SimObject::State so_state = SimObject::getState();
130    SERIALIZE_ENUM(so_state);
131    BaseSimpleCPU::serialize(os);
132}
133
134void
135TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137    SimObject::State so_state;
138    UNSERIALIZE_ENUM(so_state);
139    BaseSimpleCPU::unserialize(cp, section);
140}
141
142unsigned int
143TimingSimpleCPU::drain(Event *drain_event)
144{
145    // TimingSimpleCPU is ready to drain if it's not waiting for
146    // an access to complete.
147    if (status() == Idle || status() == Running || status() == SwitchedOut) {
148        changeState(SimObject::Drained);
149        return 0;
150    } else {
151        changeState(SimObject::Draining);
152        drainEvent = drain_event;
153        return 1;
154    }
155}
156
157void
158TimingSimpleCPU::resume()
159{
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == Enums::timing);
162
163        // Delete the old event if it existed.
164        if (fetchEvent) {
165            if (fetchEvent->scheduled())
166                fetchEvent->deschedule();
167
168            delete fetchEvent;
169        }
170
171        fetchEvent = new FetchEvent(this, nextCycle());
172    }
173
174    changeState(SimObject::Running);
175    previousTick = curTick;
176}
177
178void
179TimingSimpleCPU::switchOut()
180{
181    assert(status() == Running || status() == Idle);
182    _status = SwitchedOut;
183    numCycles += curTick - previousTick;
184
185    // If we've been scheduled to resume but are then told to switch out,
186    // we'll need to cancel it.
187    if (fetchEvent && fetchEvent->scheduled())
188        fetchEvent->deschedule();
189}
190
191
192void
193TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
194{
195    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
196
197    // if any of this CPU's ThreadContexts are active, mark the CPU as
198    // running and schedule its tick event.
199    for (int i = 0; i < threadContexts.size(); ++i) {
200        ThreadContext *tc = threadContexts[i];
201        if (tc->status() == ThreadContext::Active && _status != Running) {
202            _status = Running;
203            break;
204        }
205    }
206
207    if (_status != Running) {
208        _status = Idle;
209    }
210}
211
212
213void
214TimingSimpleCPU::activateContext(int thread_num, int delay)
215{
216    assert(thread_num == 0);
217    assert(thread);
218
219    assert(_status == Idle);
220
221    notIdleFraction++;
222    _status = Running;
223
224    // kick things off by initiating the fetch of the next instruction
225    fetchEvent = new FetchEvent(this, nextCycle(curTick + cycles(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232    assert(thread_num == 0);
233    assert(thread);
234
235    assert(_status == Running);
236
237    // just change status to Idle... if status != Running,
238    // completeInst() will not initiate fetch of next instruction.
239
240    notIdleFraction--;
241    _status = Idle;
242}
243
244
245template <class T>
246Fault
247TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
248{
249    Request *req =
250        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
251                    cpu_id, /* thread ID */ 0);
252
253    if (traceData) {
254        traceData->setAddr(req->getVaddr());
255    }
256
257   // translate to physical address
258    Fault fault = thread->translateDataReadReq(req);
259
260    // Now do the access.
261    if (fault == NoFault) {
262        PacketPtr pkt =
263            new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
264        pkt->dataDynamic<T>(new T);
265
266        if (!dcachePort.sendTiming(pkt)) {
267            _status = DcacheRetry;
268            dcache_pkt = pkt;
269        } else {
270            _status = DcacheWaitResponse;
271            // memory system takes ownership of packet
272            dcache_pkt = NULL;
273        }
274
275        // This will need a new way to tell if it has a dcache attached.
276        if (req->isUncacheable())
277            recordEvent("Uncached Read");
278    } else {
279        delete req;
280    }
281
282    return fault;
283}
284
285#ifndef DOXYGEN_SHOULD_SKIP_THIS
286
287template
288Fault
289TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
290
291template
292Fault
293TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
294
295template
296Fault
297TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
298
299template
300Fault
301TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
302
303template
304Fault
305TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
306
307template
308Fault
309TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
310
311#endif //DOXYGEN_SHOULD_SKIP_THIS
312
313template<>
314Fault
315TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
316{
317    return read(addr, *(uint64_t*)&data, flags);
318}
319
320template<>
321Fault
322TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
323{
324    return read(addr, *(uint32_t*)&data, flags);
325}
326
327
328template<>
329Fault
330TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
331{
332    return read(addr, (uint32_t&)data, flags);
333}
334
335
336template <class T>
337Fault
338TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
339{
340    Request *req =
341        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
342                    cpu_id, /* thread ID */ 0);
343
344    if (traceData) {
345        traceData->setAddr(req->getVaddr());
346    }
347
348    // translate to physical address
349    Fault fault = thread->translateDataWriteReq(req);
350
351    // Now do the access.
352    if (fault == NoFault) {
353        assert(dcache_pkt == NULL);
354        if (req->isSwap())
355            dcache_pkt = new Packet(req, MemCmd::SwapReq, Packet::Broadcast);
356        else
357            dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
358        dcache_pkt->allocate();
359        dcache_pkt->set(data);
360
361        bool do_access = true;  // flag to suppress cache access
362
363        if (req->isLocked()) {
364            do_access = TheISA::handleLockedWrite(thread, req);
365        }
366        if (req->isCondSwap()) {
367             assert(res);
368             req->setExtraData(*res);
369        }
370
371        if (do_access) {
372            if (!dcachePort.sendTiming(dcache_pkt)) {
373                _status = DcacheRetry;
374            } else {
375                _status = DcacheWaitResponse;
376                // memory system takes ownership of packet
377                dcache_pkt = NULL;
378            }
379        }
380        // This will need a new way to tell if it's hooked up to a cache or not.
381        if (req->isUncacheable())
382            recordEvent("Uncached Write");
383    } else {
384        delete req;
385    }
386
387
388    // If the write needs to have a fault on the access, consider calling
389    // changeStatus() and changing it to "bad addr write" or something.
390    return fault;
391}
392
393
394#ifndef DOXYGEN_SHOULD_SKIP_THIS
395template
396Fault
397TimingSimpleCPU::write(Twin32_t data, Addr addr,
398                       unsigned flags, uint64_t *res);
399
400template
401Fault
402TimingSimpleCPU::write(Twin64_t data, Addr addr,
403                       unsigned flags, uint64_t *res);
404
405template
406Fault
407TimingSimpleCPU::write(uint64_t data, Addr addr,
408                       unsigned flags, uint64_t *res);
409
410template
411Fault
412TimingSimpleCPU::write(uint32_t data, Addr addr,
413                       unsigned flags, uint64_t *res);
414
415template
416Fault
417TimingSimpleCPU::write(uint16_t data, Addr addr,
418                       unsigned flags, uint64_t *res);
419
420template
421Fault
422TimingSimpleCPU::write(uint8_t data, Addr addr,
423                       unsigned flags, uint64_t *res);
424
425#endif //DOXYGEN_SHOULD_SKIP_THIS
426
427template<>
428Fault
429TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
430{
431    return write(*(uint64_t*)&data, addr, flags, res);
432}
433
434template<>
435Fault
436TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
437{
438    return write(*(uint32_t*)&data, addr, flags, res);
439}
440
441
442template<>
443Fault
444TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
445{
446    return write((uint32_t)data, addr, flags, res);
447}
448
449
450void
451TimingSimpleCPU::fetch()
452{
453    if (!curStaticInst || !curStaticInst->isDelayedCommit())
454        checkForInterrupts();
455
456    Request *ifetch_req = new Request();
457    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
458    Fault fault = setupFetchRequest(ifetch_req);
459
460    ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
461    ifetch_pkt->dataStatic(&inst);
462
463    if (fault == NoFault) {
464        if (!icachePort.sendTiming(ifetch_pkt)) {
465            // Need to wait for retry
466            _status = IcacheRetry;
467        } else {
468            // Need to wait for cache to respond
469            _status = IcacheWaitResponse;
470            // ownership of packet transferred to memory system
471            ifetch_pkt = NULL;
472        }
473    } else {
474        delete ifetch_req;
475        delete ifetch_pkt;
476        // fetch fault: advance directly to next instruction (fault handler)
477        advanceInst(fault);
478    }
479
480    numCycles += curTick - previousTick;
481    previousTick = curTick;
482}
483
484
485void
486TimingSimpleCPU::advanceInst(Fault fault)
487{
488    advancePC(fault);
489
490    if (_status == Running) {
491        // kick off fetch of next instruction... callback from icache
492        // response will cause that instruction to be executed,
493        // keeping the CPU running.
494        fetch();
495    }
496}
497
498
499void
500TimingSimpleCPU::completeIfetch(PacketPtr pkt)
501{
502    // received a response from the icache: execute the received
503    // instruction
504    assert(pkt->result == Packet::Success);
505    assert(_status == IcacheWaitResponse);
506
507    _status = Running;
508
509    numCycles += curTick - previousTick;
510    previousTick = curTick;
511
512    if (getState() == SimObject::Draining) {
513        delete pkt->req;
514        delete pkt;
515
516        completeDrain();
517        return;
518    }
519
520    preExecute();
521    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
522        // load or store: just send to dcache
523        Fault fault = curStaticInst->initiateAcc(this, traceData);
524        if (_status != Running) {
525            // instruction will complete in dcache response callback
526            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
527            assert(fault == NoFault);
528        } else {
529            if (fault == NoFault) {
530                // early fail on store conditional: complete now
531                assert(dcache_pkt != NULL);
532                fault = curStaticInst->completeAcc(dcache_pkt, this,
533                                                   traceData);
534                delete dcache_pkt->req;
535                delete dcache_pkt;
536                dcache_pkt = NULL;
537            }
538            postExecute();
539            advanceInst(fault);
540        }
541    } else {
542        // non-memory instruction: execute completely now
543        Fault fault = curStaticInst->execute(this, traceData);
544        postExecute();
545        advanceInst(fault);
546    }
547
548    delete pkt->req;
549    delete pkt;
550}
551
552void
553TimingSimpleCPU::IcachePort::ITickEvent::process()
554{
555    cpu->completeIfetch(pkt);
556}
557
558bool
559TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
560{
561    if (pkt->isResponse()) {
562        // delay processing of returned data until next CPU clock edge
563        Tick next_tick = cpu->nextCycle(curTick);
564
565        if (next_tick == curTick)
566            cpu->completeIfetch(pkt);
567        else
568            tickEvent.schedule(pkt, next_tick);
569
570        return true;
571    }
572    else if (pkt->result == Packet::Nacked) {
573        assert(cpu->_status == IcacheWaitResponse);
574        pkt->reinitNacked();
575        if (!sendTiming(pkt)) {
576            cpu->_status = IcacheRetry;
577            cpu->ifetch_pkt = pkt;
578        }
579    }
580    //Snooping a Coherence Request, do nothing
581    return true;
582}
583
584void
585TimingSimpleCPU::IcachePort::recvRetry()
586{
587    // we shouldn't get a retry unless we have a packet that we're
588    // waiting to transmit
589    assert(cpu->ifetch_pkt != NULL);
590    assert(cpu->_status == IcacheRetry);
591    PacketPtr tmp = cpu->ifetch_pkt;
592    if (sendTiming(tmp)) {
593        cpu->_status = IcacheWaitResponse;
594        cpu->ifetch_pkt = NULL;
595    }
596}
597
598void
599TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
600{
601    // received a response from the dcache: complete the load or store
602    // instruction
603    assert(pkt->result == Packet::Success);
604    assert(_status == DcacheWaitResponse);
605    _status = Running;
606
607    numCycles += curTick - previousTick;
608    previousTick = curTick;
609
610    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
611
612    if (pkt->isRead() && pkt->req->isLocked()) {
613        TheISA::handleLockedRead(thread, pkt->req);
614    }
615
616    delete pkt->req;
617    delete pkt;
618
619    postExecute();
620
621    if (getState() == SimObject::Draining) {
622        advancePC(fault);
623        completeDrain();
624
625        return;
626    }
627
628    advanceInst(fault);
629}
630
631
632void
633TimingSimpleCPU::completeDrain()
634{
635    DPRINTF(Config, "Done draining\n");
636    changeState(SimObject::Drained);
637    drainEvent->process();
638}
639
640void
641TimingSimpleCPU::DcachePort::setPeer(Port *port)
642{
643    Port::setPeer(port);
644
645#if FULL_SYSTEM
646    // Update the ThreadContext's memory ports (Functional/Virtual
647    // Ports)
648    cpu->tcBase()->connectMemPorts();
649#endif
650}
651
652bool
653TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
654{
655    if (pkt->isResponse()) {
656        // delay processing of returned data until next CPU clock edge
657        Tick next_tick = cpu->nextCycle(curTick);
658
659        if (next_tick == curTick)
660            cpu->completeDataAccess(pkt);
661        else
662            tickEvent.schedule(pkt, next_tick);
663
664        return true;
665    }
666    else if (pkt->result == Packet::Nacked) {
667        assert(cpu->_status == DcacheWaitResponse);
668        pkt->reinitNacked();
669        if (!sendTiming(pkt)) {
670            cpu->_status = DcacheRetry;
671            cpu->dcache_pkt = pkt;
672        }
673    }
674    //Snooping a Coherence Request, do nothing
675    return true;
676}
677
678void
679TimingSimpleCPU::DcachePort::DTickEvent::process()
680{
681    cpu->completeDataAccess(pkt);
682}
683
684void
685TimingSimpleCPU::DcachePort::recvRetry()
686{
687    // we shouldn't get a retry unless we have a packet that we're
688    // waiting to transmit
689    assert(cpu->dcache_pkt != NULL);
690    assert(cpu->_status == DcacheRetry);
691    PacketPtr tmp = cpu->dcache_pkt;
692    if (sendTiming(tmp)) {
693        cpu->_status = DcacheWaitResponse;
694        // memory system takes ownership of packet
695        cpu->dcache_pkt = NULL;
696    }
697}
698
699
700////////////////////////////////////////////////////////////////////////
701//
702//  TimingSimpleCPU Simulation Object
703//
704TimingSimpleCPU *
705TimingSimpleCPUParams::create()
706{
707    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
708    params->name = name;
709    params->numberOfThreads = 1;
710    params->max_insts_any_thread = max_insts_any_thread;
711    params->max_insts_all_threads = max_insts_all_threads;
712    params->max_loads_any_thread = max_loads_any_thread;
713    params->max_loads_all_threads = max_loads_all_threads;
714    params->progress_interval = progress_interval;
715    params->deferRegistration = defer_registration;
716    params->clock = clock;
717    params->phase = phase;
718    params->functionTrace = function_trace;
719    params->functionTraceStart = function_trace_start;
720    params->system = system;
721    params->cpu_id = cpu_id;
722
723#if FULL_SYSTEM
724    params->itb = itb;
725    params->dtb = dtb;
726    params->profile = profile;
727    params->do_quiesce = do_quiesce;
728    params->do_checkpoint_insts = do_checkpoint_insts;
729    params->do_statistics_insts = do_statistics_insts;
730#else
731    if (workload.size() != 1)
732        panic("only one workload allowed");
733    params->process = workload[0];
734#endif
735
736    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
737    return cpu;
738}
739