timing.cc revision 3201
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/timing.hh"
35#include "mem/packet_impl.hh"
36#include "sim/builder.hh"
37#include "sim/system.hh"
38
39using namespace std;
40using namespace TheISA;
41
42Port *
43TimingSimpleCPU::getPort(const std::string &if_name, int idx)
44{
45    if (if_name == "dcache_port")
46        return &dcachePort;
47    else if (if_name == "icache_port")
48        return &icachePort;
49    else
50        panic("No Such Port\n");
51}
52
53void
54TimingSimpleCPU::init()
55{
56    BaseCPU::init();
57#if FULL_SYSTEM
58    for (int i = 0; i < threadContexts.size(); ++i) {
59        ThreadContext *tc = threadContexts[i];
60
61        // initialize CPU, including PC
62        TheISA::initCPU(tc, tc->readCpuId());
63    }
64#endif
65}
66
67Tick
68TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
69{
70    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
71    return curTick;
72}
73
74void
75TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
76{
77    //No internal storage to update, jusst return
78    return;
79}
80
81void
82TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
83{
84    if (status == RangeChange)
85        return;
86
87    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
88}
89
90
91void
92TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
93{
94    pkt = _pkt;
95    Event::schedule(t);
96}
97
98TimingSimpleCPU::TimingSimpleCPU(Params *p)
99    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
100      cpu_id(p->cpu_id)
101{
102    _status = Idle;
103    ifetch_pkt = dcache_pkt = NULL;
104    drainEvent = NULL;
105    fetchEvent = NULL;
106    changeState(SimObject::Running);
107}
108
109
110TimingSimpleCPU::~TimingSimpleCPU()
111{
112}
113
114void
115TimingSimpleCPU::serialize(ostream &os)
116{
117    SimObject::State so_state = SimObject::getState();
118    SERIALIZE_ENUM(so_state);
119    BaseSimpleCPU::serialize(os);
120}
121
122void
123TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
124{
125    SimObject::State so_state;
126    UNSERIALIZE_ENUM(so_state);
127    BaseSimpleCPU::unserialize(cp, section);
128}
129
130unsigned int
131TimingSimpleCPU::drain(Event *drain_event)
132{
133    // TimingSimpleCPU is ready to drain if it's not waiting for
134    // an access to complete.
135    if (status() == Idle || status() == Running || status() == SwitchedOut) {
136        changeState(SimObject::Drained);
137        return 0;
138    } else {
139        changeState(SimObject::Draining);
140        drainEvent = drain_event;
141        return 1;
142    }
143}
144
145void
146TimingSimpleCPU::resume()
147{
148    if (_status != SwitchedOut && _status != Idle) {
149        assert(system->getMemoryMode() == System::Timing);
150
151        // Delete the old event if it existed.
152        if (fetchEvent) {
153            if (fetchEvent->scheduled())
154                fetchEvent->deschedule();
155
156            delete fetchEvent;
157        }
158
159        fetchEvent =
160            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
161        fetchEvent->schedule(curTick);
162    }
163
164    changeState(SimObject::Running);
165}
166
167void
168TimingSimpleCPU::switchOut()
169{
170    assert(status() == Running || status() == Idle);
171    _status = SwitchedOut;
172
173    // If we've been scheduled to resume but are then told to switch out,
174    // we'll need to cancel it.
175    if (fetchEvent && fetchEvent->scheduled())
176        fetchEvent->deschedule();
177}
178
179
180void
181TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
182{
183    BaseCPU::takeOverFrom(oldCPU);
184
185    // if any of this CPU's ThreadContexts are active, mark the CPU as
186    // running and schedule its tick event.
187    for (int i = 0; i < threadContexts.size(); ++i) {
188        ThreadContext *tc = threadContexts[i];
189        if (tc->status() == ThreadContext::Active && _status != Running) {
190            _status = Running;
191            break;
192        }
193    }
194
195    if (_status != Running) {
196        _status = Idle;
197    }
198}
199
200
201void
202TimingSimpleCPU::activateContext(int thread_num, int delay)
203{
204    assert(thread_num == 0);
205    assert(thread);
206
207    assert(_status == Idle);
208
209    notIdleFraction++;
210    _status = Running;
211    // kick things off by initiating the fetch of the next instruction
212    fetchEvent =
213        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
214    fetchEvent->schedule(curTick + cycles(delay));
215}
216
217
218void
219TimingSimpleCPU::suspendContext(int thread_num)
220{
221    assert(thread_num == 0);
222    assert(thread);
223
224    assert(_status == Running);
225
226    // just change status to Idle... if status != Running,
227    // completeInst() will not initiate fetch of next instruction.
228
229    notIdleFraction--;
230    _status = Idle;
231}
232
233
234template <class T>
235Fault
236TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
237{
238    Request *req =
239        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
240                    cpu_id, /* thread ID */ 0);
241
242    if (traceData) {
243        traceData->setAddr(req->getVaddr());
244    }
245
246   // translate to physical address
247    Fault fault = thread->translateDataReadReq(req);
248
249    // Now do the access.
250    if (fault == NoFault) {
251        Packet *pkt =
252            new Packet(req, Packet::ReadReq, Packet::Broadcast);
253        pkt->dataDynamic<T>(new T);
254
255        if (!dcachePort.sendTiming(pkt)) {
256            _status = DcacheRetry;
257            dcache_pkt = pkt;
258        } else {
259            _status = DcacheWaitResponse;
260            // memory system takes ownership of packet
261            dcache_pkt = NULL;
262        }
263    }
264
265    // This will need a new way to tell if it has a dcache attached.
266    if (req->isUncacheable())
267        recordEvent("Uncached Read");
268
269    return fault;
270}
271
272#ifndef DOXYGEN_SHOULD_SKIP_THIS
273
274template
275Fault
276TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
277
278template
279Fault
280TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
281
282template
283Fault
284TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
285
286template
287Fault
288TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
289
290#endif //DOXYGEN_SHOULD_SKIP_THIS
291
292template<>
293Fault
294TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
295{
296    return read(addr, *(uint64_t*)&data, flags);
297}
298
299template<>
300Fault
301TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
302{
303    return read(addr, *(uint32_t*)&data, flags);
304}
305
306
307template<>
308Fault
309TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
310{
311    return read(addr, (uint32_t&)data, flags);
312}
313
314
315template <class T>
316Fault
317TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
318{
319    Request *req =
320        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
321                    cpu_id, /* thread ID */ 0);
322
323    // translate to physical address
324    Fault fault = thread->translateDataWriteReq(req);
325
326    // Now do the access.
327    if (fault == NoFault) {
328        assert(dcache_pkt == NULL);
329        dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
330        dcache_pkt->allocate();
331        dcache_pkt->set(data);
332
333        bool do_access = true;  // flag to suppress cache access
334
335        if (req->isLocked()) {
336            do_access = TheISA::handleLockedWrite(thread, req);
337        }
338
339        if (do_access) {
340            if (!dcachePort.sendTiming(dcache_pkt)) {
341                _status = DcacheRetry;
342            } else {
343                _status = DcacheWaitResponse;
344                // memory system takes ownership of packet
345                dcache_pkt = NULL;
346            }
347        }
348    }
349
350    // This will need a new way to tell if it's hooked up to a cache or not.
351    if (req->isUncacheable())
352        recordEvent("Uncached Write");
353
354    // If the write needs to have a fault on the access, consider calling
355    // changeStatus() and changing it to "bad addr write" or something.
356    return fault;
357}
358
359
360#ifndef DOXYGEN_SHOULD_SKIP_THIS
361template
362Fault
363TimingSimpleCPU::write(uint64_t data, Addr addr,
364                       unsigned flags, uint64_t *res);
365
366template
367Fault
368TimingSimpleCPU::write(uint32_t data, Addr addr,
369                       unsigned flags, uint64_t *res);
370
371template
372Fault
373TimingSimpleCPU::write(uint16_t data, Addr addr,
374                       unsigned flags, uint64_t *res);
375
376template
377Fault
378TimingSimpleCPU::write(uint8_t data, Addr addr,
379                       unsigned flags, uint64_t *res);
380
381#endif //DOXYGEN_SHOULD_SKIP_THIS
382
383template<>
384Fault
385TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
386{
387    return write(*(uint64_t*)&data, addr, flags, res);
388}
389
390template<>
391Fault
392TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
393{
394    return write(*(uint32_t*)&data, addr, flags, res);
395}
396
397
398template<>
399Fault
400TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
401{
402    return write((uint32_t)data, addr, flags, res);
403}
404
405
406void
407TimingSimpleCPU::fetch()
408{
409    checkForInterrupts();
410
411    Request *ifetch_req = new Request();
412    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
413    Fault fault = setupFetchRequest(ifetch_req);
414
415    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
416    ifetch_pkt->dataStatic(&inst);
417
418    if (fault == NoFault) {
419        if (!icachePort.sendTiming(ifetch_pkt)) {
420            // Need to wait for retry
421            _status = IcacheRetry;
422        } else {
423            // Need to wait for cache to respond
424            _status = IcacheWaitResponse;
425            // ownership of packet transferred to memory system
426            ifetch_pkt = NULL;
427        }
428    } else {
429        // fetch fault: advance directly to next instruction (fault handler)
430        advanceInst(fault);
431    }
432}
433
434
435void
436TimingSimpleCPU::advanceInst(Fault fault)
437{
438    advancePC(fault);
439
440    if (_status == Running) {
441        // kick off fetch of next instruction... callback from icache
442        // response will cause that instruction to be executed,
443        // keeping the CPU running.
444        fetch();
445    }
446}
447
448
449void
450TimingSimpleCPU::completeIfetch(Packet *pkt)
451{
452    // received a response from the icache: execute the received
453    // instruction
454    assert(pkt->result == Packet::Success);
455    assert(_status == IcacheWaitResponse);
456
457    _status = Running;
458
459    delete pkt->req;
460    delete pkt;
461
462    if (getState() == SimObject::Draining) {
463        completeDrain();
464        return;
465    }
466
467    preExecute();
468    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
469        // load or store: just send to dcache
470        Fault fault = curStaticInst->initiateAcc(this, traceData);
471        if (_status != Running) {
472            // instruction will complete in dcache response callback
473            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
474            assert(fault == NoFault);
475        } else {
476            if (fault == NoFault) {
477                // early fail on store conditional: complete now
478                assert(dcache_pkt != NULL);
479                fault = curStaticInst->completeAcc(dcache_pkt, this,
480                                                   traceData);
481                delete dcache_pkt->req;
482                delete dcache_pkt;
483                dcache_pkt = NULL;
484            }
485            postExecute();
486            advanceInst(fault);
487        }
488    } else {
489        // non-memory instruction: execute completely now
490        Fault fault = curStaticInst->execute(this, traceData);
491        postExecute();
492        advanceInst(fault);
493    }
494}
495
496void
497TimingSimpleCPU::IcachePort::ITickEvent::process()
498{
499    cpu->completeIfetch(pkt);
500}
501
502bool
503TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
504{
505    // delay processing of returned data until next CPU clock edge
506    Tick time = pkt->req->getTime();
507    while (time < curTick)
508        time += lat;
509
510    if (time == curTick)
511        cpu->completeIfetch(pkt);
512    else
513        tickEvent.schedule(pkt, time);
514
515    return true;
516}
517
518void
519TimingSimpleCPU::IcachePort::recvRetry()
520{
521    // we shouldn't get a retry unless we have a packet that we're
522    // waiting to transmit
523    assert(cpu->ifetch_pkt != NULL);
524    assert(cpu->_status == IcacheRetry);
525    Packet *tmp = cpu->ifetch_pkt;
526    if (sendTiming(tmp)) {
527        cpu->_status = IcacheWaitResponse;
528        cpu->ifetch_pkt = NULL;
529    }
530}
531
532void
533TimingSimpleCPU::completeDataAccess(Packet *pkt)
534{
535    // received a response from the dcache: complete the load or store
536    // instruction
537    assert(pkt->result == Packet::Success);
538    assert(_status == DcacheWaitResponse);
539    _status = Running;
540
541    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
542
543    if (pkt->isRead() && pkt->req->isLocked()) {
544        TheISA::handleLockedRead(thread, pkt->req);
545    }
546
547    delete pkt->req;
548    delete pkt;
549
550    if (getState() == SimObject::Draining) {
551        advancePC(fault);
552        completeDrain();
553
554        return;
555    }
556
557    postExecute();
558    advanceInst(fault);
559}
560
561
562void
563TimingSimpleCPU::completeDrain()
564{
565    DPRINTF(Config, "Done draining\n");
566    changeState(SimObject::Drained);
567    drainEvent->process();
568}
569
570bool
571TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
572{
573    // delay processing of returned data until next CPU clock edge
574    Tick time = pkt->req->getTime();
575    while (time < curTick)
576        time += lat;
577
578    if (time == curTick)
579        cpu->completeDataAccess(pkt);
580    else
581        tickEvent.schedule(pkt, time);
582
583    return true;
584}
585
586void
587TimingSimpleCPU::DcachePort::DTickEvent::process()
588{
589    cpu->completeDataAccess(pkt);
590}
591
592void
593TimingSimpleCPU::DcachePort::recvRetry()
594{
595    // we shouldn't get a retry unless we have a packet that we're
596    // waiting to transmit
597    assert(cpu->dcache_pkt != NULL);
598    assert(cpu->_status == DcacheRetry);
599    Packet *tmp = cpu->dcache_pkt;
600    if (sendTiming(tmp)) {
601        cpu->_status = DcacheWaitResponse;
602        // memory system takes ownership of packet
603        cpu->dcache_pkt = NULL;
604    }
605}
606
607
608////////////////////////////////////////////////////////////////////////
609//
610//  TimingSimpleCPU Simulation Object
611//
612BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
613
614    Param<Counter> max_insts_any_thread;
615    Param<Counter> max_insts_all_threads;
616    Param<Counter> max_loads_any_thread;
617    Param<Counter> max_loads_all_threads;
618    Param<Tick> progress_interval;
619    SimObjectParam<MemObject *> mem;
620    SimObjectParam<System *> system;
621    Param<int> cpu_id;
622
623#if FULL_SYSTEM
624    SimObjectParam<AlphaITB *> itb;
625    SimObjectParam<AlphaDTB *> dtb;
626    Param<Tick> profile;
627#else
628    SimObjectParam<Process *> workload;
629#endif // FULL_SYSTEM
630
631    Param<int> clock;
632
633    Param<bool> defer_registration;
634    Param<int> width;
635    Param<bool> function_trace;
636    Param<Tick> function_trace_start;
637    Param<bool> simulate_stalls;
638
639END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
640
641BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
642
643    INIT_PARAM(max_insts_any_thread,
644               "terminate when any thread reaches this inst count"),
645    INIT_PARAM(max_insts_all_threads,
646               "terminate when all threads have reached this inst count"),
647    INIT_PARAM(max_loads_any_thread,
648               "terminate when any thread reaches this load count"),
649    INIT_PARAM(max_loads_all_threads,
650               "terminate when all threads have reached this load count"),
651    INIT_PARAM(progress_interval, "Progress interval"),
652    INIT_PARAM(mem, "memory"),
653    INIT_PARAM(system, "system object"),
654    INIT_PARAM(cpu_id, "processor ID"),
655
656#if FULL_SYSTEM
657    INIT_PARAM(itb, "Instruction TLB"),
658    INIT_PARAM(dtb, "Data TLB"),
659    INIT_PARAM(profile, ""),
660#else
661    INIT_PARAM(workload, "processes to run"),
662#endif // FULL_SYSTEM
663
664    INIT_PARAM(clock, "clock speed"),
665    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
666    INIT_PARAM(width, "cpu width"),
667    INIT_PARAM(function_trace, "Enable function trace"),
668    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
669    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
670
671END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
672
673
674CREATE_SIM_OBJECT(TimingSimpleCPU)
675{
676    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
677    params->name = getInstanceName();
678    params->numberOfThreads = 1;
679    params->max_insts_any_thread = max_insts_any_thread;
680    params->max_insts_all_threads = max_insts_all_threads;
681    params->max_loads_any_thread = max_loads_any_thread;
682    params->max_loads_all_threads = max_loads_all_threads;
683    params->progress_interval = progress_interval;
684    params->deferRegistration = defer_registration;
685    params->clock = clock;
686    params->functionTrace = function_trace;
687    params->functionTraceStart = function_trace_start;
688    params->mem = mem;
689    params->system = system;
690    params->cpu_id = cpu_id;
691
692#if FULL_SYSTEM
693    params->itb = itb;
694    params->dtb = dtb;
695    params->profile = profile;
696#else
697    params->process = workload;
698#endif
699
700    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
701    return cpu;
702}
703
704REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
705
706