timing.cc revision 3170
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/timing.hh"
35#include "mem/packet_impl.hh"
36#include "sim/builder.hh"
37#include "sim/system.hh"
38
39using namespace std;
40using namespace TheISA;
41
42Port *
43TimingSimpleCPU::getPort(const std::string &if_name, int idx)
44{
45    if (if_name == "dcache_port")
46        return &dcachePort;
47    else if (if_name == "icache_port")
48        return &icachePort;
49    else
50        panic("No Such Port\n");
51}
52
53void
54TimingSimpleCPU::init()
55{
56    BaseCPU::init();
57#if FULL_SYSTEM
58    for (int i = 0; i < threadContexts.size(); ++i) {
59        ThreadContext *tc = threadContexts[i];
60
61        // initialize CPU, including PC
62        TheISA::initCPU(tc, tc->readCpuId());
63    }
64#endif
65}
66
67Tick
68TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
69{
70    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
71    return curTick;
72}
73
74void
75TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
76{
77    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
78}
79
80void
81TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
82{
83    if (status == RangeChange)
84        return;
85
86    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
87}
88
89
90void
91TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
92{
93    pkt = _pkt;
94    Event::schedule(t);
95}
96
97TimingSimpleCPU::TimingSimpleCPU(Params *p)
98    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
99      cpu_id(p->cpu_id)
100{
101    _status = Idle;
102    ifetch_pkt = dcache_pkt = NULL;
103    drainEvent = NULL;
104    fetchEvent = NULL;
105    changeState(SimObject::Running);
106}
107
108
109TimingSimpleCPU::~TimingSimpleCPU()
110{
111}
112
113void
114TimingSimpleCPU::serialize(ostream &os)
115{
116    SimObject::State so_state = SimObject::getState();
117    SERIALIZE_ENUM(so_state);
118    BaseSimpleCPU::serialize(os);
119}
120
121void
122TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
123{
124    SimObject::State so_state;
125    UNSERIALIZE_ENUM(so_state);
126    BaseSimpleCPU::unserialize(cp, section);
127}
128
129unsigned int
130TimingSimpleCPU::drain(Event *drain_event)
131{
132    // TimingSimpleCPU is ready to drain if it's not waiting for
133    // an access to complete.
134    if (status() == Idle || status() == Running || status() == SwitchedOut) {
135        changeState(SimObject::Drained);
136        return 0;
137    } else {
138        changeState(SimObject::Draining);
139        drainEvent = drain_event;
140        return 1;
141    }
142}
143
144void
145TimingSimpleCPU::resume()
146{
147    if (_status != SwitchedOut && _status != Idle) {
148        // Delete the old event if it existed.
149        if (fetchEvent) {
150            if (fetchEvent->scheduled())
151                fetchEvent->deschedule();
152
153            delete fetchEvent;
154        }
155
156        fetchEvent =
157            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
158        fetchEvent->schedule(curTick);
159    }
160
161    assert(system->getMemoryMode() == System::Timing);
162    changeState(SimObject::Running);
163}
164
165void
166TimingSimpleCPU::switchOut()
167{
168    assert(status() == Running || status() == Idle);
169    _status = SwitchedOut;
170
171    // If we've been scheduled to resume but are then told to switch out,
172    // we'll need to cancel it.
173    if (fetchEvent && fetchEvent->scheduled())
174        fetchEvent->deschedule();
175}
176
177
178void
179TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
180{
181    BaseCPU::takeOverFrom(oldCPU);
182
183    // if any of this CPU's ThreadContexts are active, mark the CPU as
184    // running and schedule its tick event.
185    for (int i = 0; i < threadContexts.size(); ++i) {
186        ThreadContext *tc = threadContexts[i];
187        if (tc->status() == ThreadContext::Active && _status != Running) {
188            _status = Running;
189            break;
190        }
191    }
192}
193
194
195void
196TimingSimpleCPU::activateContext(int thread_num, int delay)
197{
198    assert(thread_num == 0);
199    assert(thread);
200
201    assert(_status == Idle);
202
203    notIdleFraction++;
204    _status = Running;
205    // kick things off by initiating the fetch of the next instruction
206    fetchEvent =
207        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
208    fetchEvent->schedule(curTick + cycles(delay));
209}
210
211
212void
213TimingSimpleCPU::suspendContext(int thread_num)
214{
215    assert(thread_num == 0);
216    assert(thread);
217
218    assert(_status == Running);
219
220    // just change status to Idle... if status != Running,
221    // completeInst() will not initiate fetch of next instruction.
222
223    notIdleFraction--;
224    _status = Idle;
225}
226
227
228template <class T>
229Fault
230TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
231{
232    Request *req =
233        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
234                    cpu_id, /* thread ID */ 0);
235
236    if (traceData) {
237        traceData->setAddr(req->getVaddr());
238    }
239
240   // translate to physical address
241    Fault fault = thread->translateDataReadReq(req);
242
243    // Now do the access.
244    if (fault == NoFault) {
245        Packet *pkt =
246            new Packet(req, Packet::ReadReq, Packet::Broadcast);
247        pkt->dataDynamic<T>(new T);
248
249        if (!dcachePort.sendTiming(pkt)) {
250            _status = DcacheRetry;
251            dcache_pkt = pkt;
252        } else {
253            _status = DcacheWaitResponse;
254            // memory system takes ownership of packet
255            dcache_pkt = NULL;
256        }
257    }
258
259    // This will need a new way to tell if it has a dcache attached.
260    if (req->getFlags() & UNCACHEABLE)
261        recordEvent("Uncached Read");
262
263    return fault;
264}
265
266#ifndef DOXYGEN_SHOULD_SKIP_THIS
267
268template
269Fault
270TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
271
272template
273Fault
274TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
275
276template
277Fault
278TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
279
280template
281Fault
282TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
283
284#endif //DOXYGEN_SHOULD_SKIP_THIS
285
286template<>
287Fault
288TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
289{
290    return read(addr, *(uint64_t*)&data, flags);
291}
292
293template<>
294Fault
295TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
296{
297    return read(addr, *(uint32_t*)&data, flags);
298}
299
300
301template<>
302Fault
303TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
304{
305    return read(addr, (uint32_t&)data, flags);
306}
307
308
309template <class T>
310Fault
311TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
312{
313    Request *req =
314        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
315                    cpu_id, /* thread ID */ 0);
316
317    // translate to physical address
318    Fault fault = thread->translateDataWriteReq(req);
319
320    // Now do the access.
321    if (fault == NoFault) {
322        assert(dcache_pkt == NULL);
323        dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
324        dcache_pkt->allocate();
325        dcache_pkt->set(data);
326
327        bool do_access = true;  // flag to suppress cache access
328
329        if (req->isLocked()) {
330            do_access = TheISA::handleLockedWrite(thread, req);
331        }
332
333        if (do_access) {
334            if (!dcachePort.sendTiming(dcache_pkt)) {
335                _status = DcacheRetry;
336            } else {
337                _status = DcacheWaitResponse;
338                // memory system takes ownership of packet
339                dcache_pkt = NULL;
340            }
341        }
342    }
343
344    // This will need a new way to tell if it's hooked up to a cache or not.
345    if (req->getFlags() & UNCACHEABLE)
346        recordEvent("Uncached Write");
347
348    // If the write needs to have a fault on the access, consider calling
349    // changeStatus() and changing it to "bad addr write" or something.
350    return fault;
351}
352
353
354#ifndef DOXYGEN_SHOULD_SKIP_THIS
355template
356Fault
357TimingSimpleCPU::write(uint64_t data, Addr addr,
358                       unsigned flags, uint64_t *res);
359
360template
361Fault
362TimingSimpleCPU::write(uint32_t data, Addr addr,
363                       unsigned flags, uint64_t *res);
364
365template
366Fault
367TimingSimpleCPU::write(uint16_t data, Addr addr,
368                       unsigned flags, uint64_t *res);
369
370template
371Fault
372TimingSimpleCPU::write(uint8_t data, Addr addr,
373                       unsigned flags, uint64_t *res);
374
375#endif //DOXYGEN_SHOULD_SKIP_THIS
376
377template<>
378Fault
379TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
380{
381    return write(*(uint64_t*)&data, addr, flags, res);
382}
383
384template<>
385Fault
386TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
387{
388    return write(*(uint32_t*)&data, addr, flags, res);
389}
390
391
392template<>
393Fault
394TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
395{
396    return write((uint32_t)data, addr, flags, res);
397}
398
399
400void
401TimingSimpleCPU::fetch()
402{
403    checkForInterrupts();
404
405    Request *ifetch_req = new Request();
406    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
407    Fault fault = setupFetchRequest(ifetch_req);
408
409    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
410    ifetch_pkt->dataStatic(&inst);
411
412    if (fault == NoFault) {
413        if (!icachePort.sendTiming(ifetch_pkt)) {
414            // Need to wait for retry
415            _status = IcacheRetry;
416        } else {
417            // Need to wait for cache to respond
418            _status = IcacheWaitResponse;
419            // ownership of packet transferred to memory system
420            ifetch_pkt = NULL;
421        }
422    } else {
423        // fetch fault: advance directly to next instruction (fault handler)
424        advanceInst(fault);
425    }
426}
427
428
429void
430TimingSimpleCPU::advanceInst(Fault fault)
431{
432    advancePC(fault);
433
434    if (_status == Running) {
435        // kick off fetch of next instruction... callback from icache
436        // response will cause that instruction to be executed,
437        // keeping the CPU running.
438        fetch();
439    }
440}
441
442
443void
444TimingSimpleCPU::completeIfetch(Packet *pkt)
445{
446    // received a response from the icache: execute the received
447    // instruction
448    assert(pkt->result == Packet::Success);
449    assert(_status == IcacheWaitResponse);
450
451    _status = Running;
452
453    delete pkt->req;
454    delete pkt;
455
456    if (getState() == SimObject::Draining) {
457        completeDrain();
458        return;
459    }
460
461    preExecute();
462    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
463        // load or store: just send to dcache
464        Fault fault = curStaticInst->initiateAcc(this, traceData);
465        if (_status != Running) {
466            // instruction will complete in dcache response callback
467            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
468            assert(fault == NoFault);
469        } else {
470            if (fault == NoFault) {
471                // early fail on store conditional: complete now
472                assert(dcache_pkt != NULL);
473                fault = curStaticInst->completeAcc(dcache_pkt, this,
474                                                   traceData);
475                delete dcache_pkt->req;
476                delete dcache_pkt;
477                dcache_pkt = NULL;
478            }
479            postExecute();
480            advanceInst(fault);
481        }
482    } else {
483        // non-memory instruction: execute completely now
484        Fault fault = curStaticInst->execute(this, traceData);
485        postExecute();
486        advanceInst(fault);
487    }
488}
489
490void
491TimingSimpleCPU::IcachePort::ITickEvent::process()
492{
493    cpu->completeIfetch(pkt);
494}
495
496bool
497TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
498{
499    // delay processing of returned data until next CPU clock edge
500    Tick time = pkt->req->getTime();
501    while (time < curTick)
502        time += lat;
503
504    if (time == curTick)
505        cpu->completeIfetch(pkt);
506    else
507        tickEvent.schedule(pkt, time);
508
509    return true;
510}
511
512void
513TimingSimpleCPU::IcachePort::recvRetry()
514{
515    // we shouldn't get a retry unless we have a packet that we're
516    // waiting to transmit
517    assert(cpu->ifetch_pkt != NULL);
518    assert(cpu->_status == IcacheRetry);
519    Packet *tmp = cpu->ifetch_pkt;
520    if (sendTiming(tmp)) {
521        cpu->_status = IcacheWaitResponse;
522        cpu->ifetch_pkt = NULL;
523    }
524}
525
526void
527TimingSimpleCPU::completeDataAccess(Packet *pkt)
528{
529    // received a response from the dcache: complete the load or store
530    // instruction
531    assert(pkt->result == Packet::Success);
532    assert(_status == DcacheWaitResponse);
533    _status = Running;
534
535    if (getState() == SimObject::Draining) {
536        completeDrain();
537
538        delete pkt->req;
539        delete pkt;
540
541        return;
542    }
543
544    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
545
546    if (pkt->isRead() && pkt->req->isLocked()) {
547        TheISA::handleLockedRead(thread, pkt->req);
548    }
549
550    delete pkt->req;
551    delete pkt;
552
553    postExecute();
554    advanceInst(fault);
555}
556
557
558void
559TimingSimpleCPU::completeDrain()
560{
561    DPRINTF(Config, "Done draining\n");
562    changeState(SimObject::Drained);
563    drainEvent->process();
564}
565
566bool
567TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
568{
569    // delay processing of returned data until next CPU clock edge
570    Tick time = pkt->req->getTime();
571    while (time < curTick)
572        time += lat;
573
574    if (time == curTick)
575        cpu->completeDataAccess(pkt);
576    else
577        tickEvent.schedule(pkt, time);
578
579    return true;
580}
581
582void
583TimingSimpleCPU::DcachePort::DTickEvent::process()
584{
585    cpu->completeDataAccess(pkt);
586}
587
588void
589TimingSimpleCPU::DcachePort::recvRetry()
590{
591    // we shouldn't get a retry unless we have a packet that we're
592    // waiting to transmit
593    assert(cpu->dcache_pkt != NULL);
594    assert(cpu->_status == DcacheRetry);
595    Packet *tmp = cpu->dcache_pkt;
596    if (sendTiming(tmp)) {
597        cpu->_status = DcacheWaitResponse;
598        // memory system takes ownership of packet
599        cpu->dcache_pkt = NULL;
600    }
601}
602
603
604////////////////////////////////////////////////////////////////////////
605//
606//  TimingSimpleCPU Simulation Object
607//
608BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
609
610    Param<Counter> max_insts_any_thread;
611    Param<Counter> max_insts_all_threads;
612    Param<Counter> max_loads_any_thread;
613    Param<Counter> max_loads_all_threads;
614    Param<Tick> progress_interval;
615    SimObjectParam<MemObject *> mem;
616    SimObjectParam<System *> system;
617    Param<int> cpu_id;
618
619#if FULL_SYSTEM
620    SimObjectParam<AlphaITB *> itb;
621    SimObjectParam<AlphaDTB *> dtb;
622    Param<Tick> profile;
623#else
624    SimObjectParam<Process *> workload;
625#endif // FULL_SYSTEM
626
627    Param<int> clock;
628
629    Param<bool> defer_registration;
630    Param<int> width;
631    Param<bool> function_trace;
632    Param<Tick> function_trace_start;
633    Param<bool> simulate_stalls;
634
635END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
636
637BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
638
639    INIT_PARAM(max_insts_any_thread,
640               "terminate when any thread reaches this inst count"),
641    INIT_PARAM(max_insts_all_threads,
642               "terminate when all threads have reached this inst count"),
643    INIT_PARAM(max_loads_any_thread,
644               "terminate when any thread reaches this load count"),
645    INIT_PARAM(max_loads_all_threads,
646               "terminate when all threads have reached this load count"),
647    INIT_PARAM(progress_interval, "Progress interval"),
648    INIT_PARAM(mem, "memory"),
649    INIT_PARAM(system, "system object"),
650    INIT_PARAM(cpu_id, "processor ID"),
651
652#if FULL_SYSTEM
653    INIT_PARAM(itb, "Instruction TLB"),
654    INIT_PARAM(dtb, "Data TLB"),
655    INIT_PARAM(profile, ""),
656#else
657    INIT_PARAM(workload, "processes to run"),
658#endif // FULL_SYSTEM
659
660    INIT_PARAM(clock, "clock speed"),
661    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
662    INIT_PARAM(width, "cpu width"),
663    INIT_PARAM(function_trace, "Enable function trace"),
664    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
665    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
666
667END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
668
669
670CREATE_SIM_OBJECT(TimingSimpleCPU)
671{
672    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
673    params->name = getInstanceName();
674    params->numberOfThreads = 1;
675    params->max_insts_any_thread = max_insts_any_thread;
676    params->max_insts_all_threads = max_insts_all_threads;
677    params->max_loads_any_thread = max_loads_any_thread;
678    params->max_loads_all_threads = max_loads_all_threads;
679    params->progress_interval = progress_interval;
680    params->deferRegistration = defer_registration;
681    params->clock = clock;
682    params->functionTrace = function_trace;
683    params->functionTraceStart = function_trace_start;
684    params->mem = mem;
685    params->system = system;
686    params->cpu_id = cpu_id;
687
688#if FULL_SYSTEM
689    params->itb = itb;
690    params->dtb = dtb;
691    params->profile = profile;
692#else
693    params->process = workload;
694#endif
695
696    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
697    return cpu;
698}
699
700REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
701
702