timing.cc revision 3169
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36#include "sim/system.hh"
37
38using namespace std;
39using namespace TheISA;
40
41Port *
42TimingSimpleCPU::getPort(const std::string &if_name, int idx)
43{
44    if (if_name == "dcache_port")
45        return &dcachePort;
46    else if (if_name == "icache_port")
47        return &icachePort;
48    else
49        panic("No Such Port\n");
50}
51
52void
53TimingSimpleCPU::init()
54{
55    BaseCPU::init();
56#if FULL_SYSTEM
57    for (int i = 0; i < threadContexts.size(); ++i) {
58        ThreadContext *tc = threadContexts[i];
59
60        // initialize CPU, including PC
61        TheISA::initCPU(tc, tc->readCpuId());
62    }
63#endif
64}
65
66Tick
67TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
68{
69    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
70    return curTick;
71}
72
73void
74TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
75{
76    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
77}
78
79void
80TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
81{
82    if (status == RangeChange)
83        return;
84
85    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
86}
87
88
89void
90TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
91{
92    pkt = _pkt;
93    Event::schedule(t);
94}
95
96TimingSimpleCPU::TimingSimpleCPU(Params *p)
97    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
98{
99    _status = Idle;
100    ifetch_pkt = dcache_pkt = NULL;
101    drainEvent = NULL;
102    fetchEvent = NULL;
103    changeState(SimObject::Running);
104}
105
106
107TimingSimpleCPU::~TimingSimpleCPU()
108{
109}
110
111void
112TimingSimpleCPU::serialize(ostream &os)
113{
114    SimObject::State so_state = SimObject::getState();
115    SERIALIZE_ENUM(so_state);
116    BaseSimpleCPU::serialize(os);
117}
118
119void
120TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
121{
122    SimObject::State so_state;
123    UNSERIALIZE_ENUM(so_state);
124    BaseSimpleCPU::unserialize(cp, section);
125}
126
127unsigned int
128TimingSimpleCPU::drain(Event *drain_event)
129{
130    // TimingSimpleCPU is ready to drain if it's not waiting for
131    // an access to complete.
132    if (status() == Idle || status() == Running || status() == SwitchedOut) {
133        changeState(SimObject::Drained);
134        return 0;
135    } else {
136        changeState(SimObject::Draining);
137        drainEvent = drain_event;
138        return 1;
139    }
140}
141
142void
143TimingSimpleCPU::resume()
144{
145    if (_status != SwitchedOut && _status != Idle) {
146        // Delete the old event if it existed.
147        if (fetchEvent) {
148            if (fetchEvent->scheduled())
149                fetchEvent->deschedule();
150
151            delete fetchEvent;
152        }
153
154        fetchEvent =
155            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
156        fetchEvent->schedule(curTick);
157    }
158
159    assert(system->getMemoryMode() == System::Timing);
160    changeState(SimObject::Running);
161}
162
163void
164TimingSimpleCPU::switchOut()
165{
166    assert(status() == Running || status() == Idle);
167    _status = SwitchedOut;
168
169    // If we've been scheduled to resume but are then told to switch out,
170    // we'll need to cancel it.
171    if (fetchEvent && fetchEvent->scheduled())
172        fetchEvent->deschedule();
173}
174
175
176void
177TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
178{
179    BaseCPU::takeOverFrom(oldCPU);
180
181    // if any of this CPU's ThreadContexts are active, mark the CPU as
182    // running and schedule its tick event.
183    for (int i = 0; i < threadContexts.size(); ++i) {
184        ThreadContext *tc = threadContexts[i];
185        if (tc->status() == ThreadContext::Active && _status != Running) {
186            _status = Running;
187            break;
188        }
189    }
190}
191
192
193void
194TimingSimpleCPU::activateContext(int thread_num, int delay)
195{
196    assert(thread_num == 0);
197    assert(thread);
198
199    assert(_status == Idle);
200
201    notIdleFraction++;
202    _status = Running;
203    // kick things off by initiating the fetch of the next instruction
204    fetchEvent =
205        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
206    fetchEvent->schedule(curTick + cycles(delay));
207}
208
209
210void
211TimingSimpleCPU::suspendContext(int thread_num)
212{
213    assert(thread_num == 0);
214    assert(thread);
215
216    assert(_status == Running);
217
218    // just change status to Idle... if status != Running,
219    // completeInst() will not initiate fetch of next instruction.
220
221    notIdleFraction--;
222    _status = Idle;
223}
224
225
226template <class T>
227Fault
228TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
229{
230    Request *req =
231        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
232                    /* CPU ID */ 0, /* thread ID */ 0);
233
234    if (traceData) {
235        traceData->setAddr(req->getVaddr());
236    }
237
238   // translate to physical address
239    Fault fault = thread->translateDataReadReq(req);
240
241    // Now do the access.
242    if (fault == NoFault) {
243        Packet *pkt =
244            new Packet(req, Packet::ReadReq, Packet::Broadcast);
245        pkt->dataDynamic<T>(new T);
246
247        if (!dcachePort.sendTiming(pkt)) {
248            _status = DcacheRetry;
249            dcache_pkt = pkt;
250        } else {
251            _status = DcacheWaitResponse;
252            // memory system takes ownership of packet
253            dcache_pkt = NULL;
254        }
255    }
256
257    // This will need a new way to tell if it has a dcache attached.
258    if (req->getFlags() & UNCACHEABLE)
259        recordEvent("Uncached Read");
260
261    return fault;
262}
263
264#ifndef DOXYGEN_SHOULD_SKIP_THIS
265
266template
267Fault
268TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
269
270template
271Fault
272TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
273
274template
275Fault
276TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
277
278template
279Fault
280TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
281
282#endif //DOXYGEN_SHOULD_SKIP_THIS
283
284template<>
285Fault
286TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
287{
288    return read(addr, *(uint64_t*)&data, flags);
289}
290
291template<>
292Fault
293TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
294{
295    return read(addr, *(uint32_t*)&data, flags);
296}
297
298
299template<>
300Fault
301TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
302{
303    return read(addr, (uint32_t&)data, flags);
304}
305
306
307template <class T>
308Fault
309TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
310{
311    Request *req =
312        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
313                    /* CPU ID */ 0, /* thread ID */ 0);
314
315    // translate to physical address
316    Fault fault = thread->translateDataWriteReq(req);
317
318    // Now do the access.
319    if (fault == NoFault) {
320        assert(dcache_pkt == NULL);
321        dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
322        dcache_pkt->allocate();
323        dcache_pkt->set(data);
324
325        if (!dcachePort.sendTiming(dcache_pkt)) {
326            _status = DcacheRetry;
327        } else {
328            _status = DcacheWaitResponse;
329            // memory system takes ownership of packet
330            dcache_pkt = NULL;
331        }
332    }
333
334    // This will need a new way to tell if it's hooked up to a cache or not.
335    if (req->getFlags() & UNCACHEABLE)
336        recordEvent("Uncached Write");
337
338    // If the write needs to have a fault on the access, consider calling
339    // changeStatus() and changing it to "bad addr write" or something.
340    return fault;
341}
342
343
344#ifndef DOXYGEN_SHOULD_SKIP_THIS
345template
346Fault
347TimingSimpleCPU::write(uint64_t data, Addr addr,
348                       unsigned flags, uint64_t *res);
349
350template
351Fault
352TimingSimpleCPU::write(uint32_t data, Addr addr,
353                       unsigned flags, uint64_t *res);
354
355template
356Fault
357TimingSimpleCPU::write(uint16_t data, Addr addr,
358                       unsigned flags, uint64_t *res);
359
360template
361Fault
362TimingSimpleCPU::write(uint8_t data, Addr addr,
363                       unsigned flags, uint64_t *res);
364
365#endif //DOXYGEN_SHOULD_SKIP_THIS
366
367template<>
368Fault
369TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
370{
371    return write(*(uint64_t*)&data, addr, flags, res);
372}
373
374template<>
375Fault
376TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
377{
378    return write(*(uint32_t*)&data, addr, flags, res);
379}
380
381
382template<>
383Fault
384TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
385{
386    return write((uint32_t)data, addr, flags, res);
387}
388
389
390void
391TimingSimpleCPU::fetch()
392{
393    checkForInterrupts();
394
395    // need to fill in CPU & thread IDs here
396    Request *ifetch_req = new Request();
397    ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
398    Fault fault = setupFetchRequest(ifetch_req);
399
400    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
401    ifetch_pkt->dataStatic(&inst);
402
403    if (fault == NoFault) {
404        if (!icachePort.sendTiming(ifetch_pkt)) {
405            // Need to wait for retry
406            _status = IcacheRetry;
407        } else {
408            // Need to wait for cache to respond
409            _status = IcacheWaitResponse;
410            // ownership of packet transferred to memory system
411            ifetch_pkt = NULL;
412        }
413    } else {
414        // fetch fault: advance directly to next instruction (fault handler)
415        advanceInst(fault);
416    }
417}
418
419
420void
421TimingSimpleCPU::advanceInst(Fault fault)
422{
423    advancePC(fault);
424
425    if (_status == Running) {
426        // kick off fetch of next instruction... callback from icache
427        // response will cause that instruction to be executed,
428        // keeping the CPU running.
429        fetch();
430    }
431}
432
433
434void
435TimingSimpleCPU::completeIfetch(Packet *pkt)
436{
437    // received a response from the icache: execute the received
438    // instruction
439    assert(pkt->result == Packet::Success);
440    assert(_status == IcacheWaitResponse);
441
442    _status = Running;
443
444    delete pkt->req;
445    delete pkt;
446
447    if (getState() == SimObject::Draining) {
448        completeDrain();
449        return;
450    }
451
452    preExecute();
453    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
454        // load or store: just send to dcache
455        Fault fault = curStaticInst->initiateAcc(this, traceData);
456        if (fault == NoFault) {
457            // successfully initiated access: instruction will
458            // complete in dcache response callback
459            assert(_status == DcacheWaitResponse);
460        } else {
461            // fault: complete now to invoke fault handler
462            postExecute();
463            advanceInst(fault);
464        }
465    } else {
466        // non-memory instruction: execute completely now
467        Fault fault = curStaticInst->execute(this, traceData);
468        postExecute();
469        advanceInst(fault);
470    }
471}
472
473void
474TimingSimpleCPU::IcachePort::ITickEvent::process()
475{
476    cpu->completeIfetch(pkt);
477}
478
479bool
480TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
481{
482    // These next few lines could be replaced with something faster
483    // who knows what though
484    Tick time = pkt->req->getTime();
485    while (time < curTick)
486        time += lat;
487
488    if (time == curTick)
489        cpu->completeIfetch(pkt);
490    else
491        tickEvent.schedule(pkt, time);
492
493    return true;
494}
495
496void
497TimingSimpleCPU::IcachePort::recvRetry()
498{
499    // we shouldn't get a retry unless we have a packet that we're
500    // waiting to transmit
501    assert(cpu->ifetch_pkt != NULL);
502    assert(cpu->_status == IcacheRetry);
503    Packet *tmp = cpu->ifetch_pkt;
504    if (sendTiming(tmp)) {
505        cpu->_status = IcacheWaitResponse;
506        cpu->ifetch_pkt = NULL;
507    }
508}
509
510void
511TimingSimpleCPU::completeDataAccess(Packet *pkt)
512{
513    // received a response from the dcache: complete the load or store
514    // instruction
515    assert(pkt->result == Packet::Success);
516    assert(_status == DcacheWaitResponse);
517    _status = Running;
518
519    if (getState() == SimObject::Draining) {
520        completeDrain();
521
522        delete pkt->req;
523        delete pkt;
524
525        return;
526    }
527
528    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
529
530    delete pkt->req;
531    delete pkt;
532
533    postExecute();
534    advanceInst(fault);
535}
536
537
538void
539TimingSimpleCPU::completeDrain()
540{
541    DPRINTF(Config, "Done draining\n");
542    changeState(SimObject::Drained);
543    drainEvent->process();
544}
545
546bool
547TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
548{
549    Tick time = pkt->req->getTime();
550    while (time < curTick)
551        time += lat;
552
553    if (time == curTick)
554        cpu->completeDataAccess(pkt);
555    else
556        tickEvent.schedule(pkt, time);
557
558    return true;
559}
560
561void
562TimingSimpleCPU::DcachePort::DTickEvent::process()
563{
564    cpu->completeDataAccess(pkt);
565}
566
567void
568TimingSimpleCPU::DcachePort::recvRetry()
569{
570    // we shouldn't get a retry unless we have a packet that we're
571    // waiting to transmit
572    assert(cpu->dcache_pkt != NULL);
573    assert(cpu->_status == DcacheRetry);
574    Packet *tmp = cpu->dcache_pkt;
575    if (sendTiming(tmp)) {
576        cpu->_status = DcacheWaitResponse;
577        cpu->dcache_pkt = NULL;
578    }
579}
580
581
582////////////////////////////////////////////////////////////////////////
583//
584//  TimingSimpleCPU Simulation Object
585//
586BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
587
588    Param<Counter> max_insts_any_thread;
589    Param<Counter> max_insts_all_threads;
590    Param<Counter> max_loads_any_thread;
591    Param<Counter> max_loads_all_threads;
592    Param<Tick> progress_interval;
593    SimObjectParam<MemObject *> mem;
594    SimObjectParam<System *> system;
595
596#if FULL_SYSTEM
597    SimObjectParam<AlphaITB *> itb;
598    SimObjectParam<AlphaDTB *> dtb;
599    Param<int> cpu_id;
600    Param<Tick> profile;
601#else
602    SimObjectParam<Process *> workload;
603#endif // FULL_SYSTEM
604
605    Param<int> clock;
606
607    Param<bool> defer_registration;
608    Param<int> width;
609    Param<bool> function_trace;
610    Param<Tick> function_trace_start;
611    Param<bool> simulate_stalls;
612
613END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
614
615BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
616
617    INIT_PARAM(max_insts_any_thread,
618               "terminate when any thread reaches this inst count"),
619    INIT_PARAM(max_insts_all_threads,
620               "terminate when all threads have reached this inst count"),
621    INIT_PARAM(max_loads_any_thread,
622               "terminate when any thread reaches this load count"),
623    INIT_PARAM(max_loads_all_threads,
624               "terminate when all threads have reached this load count"),
625    INIT_PARAM(progress_interval, "Progress interval"),
626    INIT_PARAM(mem, "memory"),
627    INIT_PARAM(system, "system object"),
628
629#if FULL_SYSTEM
630    INIT_PARAM(itb, "Instruction TLB"),
631    INIT_PARAM(dtb, "Data TLB"),
632    INIT_PARAM(cpu_id, "processor ID"),
633    INIT_PARAM(profile, ""),
634#else
635    INIT_PARAM(workload, "processes to run"),
636#endif // FULL_SYSTEM
637
638    INIT_PARAM(clock, "clock speed"),
639    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
640    INIT_PARAM(width, "cpu width"),
641    INIT_PARAM(function_trace, "Enable function trace"),
642    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
643    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
644
645END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
646
647
648CREATE_SIM_OBJECT(TimingSimpleCPU)
649{
650    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
651    params->name = getInstanceName();
652    params->numberOfThreads = 1;
653    params->max_insts_any_thread = max_insts_any_thread;
654    params->max_insts_all_threads = max_insts_all_threads;
655    params->max_loads_any_thread = max_loads_any_thread;
656    params->max_loads_all_threads = max_loads_all_threads;
657    params->progress_interval = progress_interval;
658    params->deferRegistration = defer_registration;
659    params->clock = clock;
660    params->functionTrace = function_trace;
661    params->functionTraceStart = function_trace_start;
662    params->mem = mem;
663    params->system = system;
664
665#if FULL_SYSTEM
666    params->itb = itb;
667    params->dtb = dtb;
668    params->cpu_id = cpu_id;
669    params->profile = profile;
670#else
671    params->process = workload;
672#endif
673
674    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
675    return cpu;
676}
677
678REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
679
680