timing.cc revision 2836:c8f549058964
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40
41void
42TimingSimpleCPU::init()
43{
44    //Create Memory Ports (conect them up)
45    Port *mem_dport = mem->getPort("");
46    dcachePort.setPeer(mem_dport);
47    mem_dport->setPeer(&dcachePort);
48
49    Port *mem_iport = mem->getPort("");
50    icachePort.setPeer(mem_iport);
51    mem_iport->setPeer(&icachePort);
52
53    BaseCPU::init();
54#if FULL_SYSTEM
55    for (int i = 0; i < threadContexts.size(); ++i) {
56        ThreadContext *tc = threadContexts[i];
57
58        // initialize CPU, including PC
59        TheISA::initCPU(tc, tc->readCpuId());
60    }
61#endif
62}
63
64Tick
65TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66{
67    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68    return curTick;
69}
70
71void
72TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73{
74    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75}
76
77void
78TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79{
80    if (status == RangeChange)
81        return;
82
83    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84}
85
86TimingSimpleCPU::TimingSimpleCPU(Params *p)
87    : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88{
89    _status = Idle;
90    ifetch_pkt = dcache_pkt = NULL;
91    quiesceEvent = NULL;
92    state = SimObject::Timing;
93}
94
95
96TimingSimpleCPU::~TimingSimpleCPU()
97{
98}
99
100void
101TimingSimpleCPU::serialize(ostream &os)
102{
103    SERIALIZE_ENUM(_status);
104    BaseSimpleCPU::serialize(os);
105}
106
107void
108TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
109{
110    UNSERIALIZE_ENUM(_status);
111    BaseSimpleCPU::unserialize(cp, section);
112}
113
114bool
115TimingSimpleCPU::quiesce(Event *quiesce_event)
116{
117    // TimingSimpleCPU is ready to quiesce if it's not waiting for
118    // an access to complete.
119    if (status() == Idle || status() == Running || status() == SwitchedOut) {
120        DPRINTF(Config, "Ready to quiesce\n");
121        changeState(SimObject::QuiescedTiming);
122        return false;
123    } else {
124        DPRINTF(Config, "Waiting to quiesce\n");
125        changeState(SimObject::Quiescing);
126        quiesceEvent = quiesce_event;
127        return true;
128    }
129}
130
131void
132TimingSimpleCPU::resume()
133{
134    if (_status != SwitchedOut && _status != Idle) {
135        Event *e =
136            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
137        e->schedule(curTick);
138    }
139}
140
141void
142TimingSimpleCPU::setMemoryMode(State new_mode)
143{
144    assert(new_mode == SimObject::Timing);
145}
146
147void
148TimingSimpleCPU::switchOut()
149{
150    assert(status() == Running || status() == Idle);
151    _status = SwitchedOut;
152}
153
154
155void
156TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
157{
158    BaseCPU::takeOverFrom(oldCPU);
159
160    // if any of this CPU's ThreadContexts are active, mark the CPU as
161    // running and schedule its tick event.
162    for (int i = 0; i < threadContexts.size(); ++i) {
163        ThreadContext *tc = threadContexts[i];
164        if (tc->status() == ThreadContext::Active && _status != Running) {
165            _status = Running;
166            break;
167        }
168    }
169}
170
171
172void
173TimingSimpleCPU::activateContext(int thread_num, int delay)
174{
175    assert(thread_num == 0);
176    assert(thread);
177
178    assert(_status == Idle);
179
180    notIdleFraction++;
181    _status = Running;
182    // kick things off by initiating the fetch of the next instruction
183    Event *e =
184        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
185    e->schedule(curTick + cycles(delay));
186}
187
188
189void
190TimingSimpleCPU::suspendContext(int thread_num)
191{
192    assert(thread_num == 0);
193    assert(thread);
194
195    assert(_status == Running);
196
197    // just change status to Idle... if status != Running,
198    // completeInst() will not initiate fetch of next instruction.
199
200    notIdleFraction--;
201    _status = Idle;
202}
203
204
205template <class T>
206Fault
207TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
208{
209    // need to fill in CPU & thread IDs here
210    Request *data_read_req = new Request();
211    data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
212    data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
213
214    if (traceData) {
215        traceData->setAddr(data_read_req->getVaddr());
216    }
217
218   // translate to physical address
219    Fault fault = thread->translateDataReadReq(data_read_req);
220
221    // Now do the access.
222    if (fault == NoFault) {
223        Packet *data_read_pkt =
224            new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
225        data_read_pkt->dataDynamic<T>(new T);
226
227        if (!dcachePort.sendTiming(data_read_pkt)) {
228            _status = DcacheRetry;
229            dcache_pkt = data_read_pkt;
230        } else {
231            _status = DcacheWaitResponse;
232            dcache_pkt = NULL;
233        }
234    }
235
236    // This will need a new way to tell if it has a dcache attached.
237    if (data_read_req->getFlags() & UNCACHEABLE)
238        recordEvent("Uncached Read");
239
240    return fault;
241}
242
243#ifndef DOXYGEN_SHOULD_SKIP_THIS
244
245template
246Fault
247TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
248
249template
250Fault
251TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
252
253template
254Fault
255TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
256
257template
258Fault
259TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
260
261#endif //DOXYGEN_SHOULD_SKIP_THIS
262
263template<>
264Fault
265TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
266{
267    return read(addr, *(uint64_t*)&data, flags);
268}
269
270template<>
271Fault
272TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
273{
274    return read(addr, *(uint32_t*)&data, flags);
275}
276
277
278template<>
279Fault
280TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
281{
282    return read(addr, (uint32_t&)data, flags);
283}
284
285
286template <class T>
287Fault
288TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
289{
290    // need to fill in CPU & thread IDs here
291    Request *data_write_req = new Request();
292    data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
293    data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
294
295    // translate to physical address
296    Fault fault = thread->translateDataWriteReq(data_write_req);
297    // Now do the access.
298    if (fault == NoFault) {
299        Packet *data_write_pkt =
300            new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
301        data_write_pkt->allocate();
302        data_write_pkt->set(data);
303
304        if (!dcachePort.sendTiming(data_write_pkt)) {
305            _status = DcacheRetry;
306            dcache_pkt = data_write_pkt;
307        } else {
308            _status = DcacheWaitResponse;
309            dcache_pkt = NULL;
310        }
311    }
312
313    // This will need a new way to tell if it's hooked up to a cache or not.
314    if (data_write_req->getFlags() & UNCACHEABLE)
315        recordEvent("Uncached Write");
316
317    // If the write needs to have a fault on the access, consider calling
318    // changeStatus() and changing it to "bad addr write" or something.
319    return fault;
320}
321
322
323#ifndef DOXYGEN_SHOULD_SKIP_THIS
324template
325Fault
326TimingSimpleCPU::write(uint64_t data, Addr addr,
327                       unsigned flags, uint64_t *res);
328
329template
330Fault
331TimingSimpleCPU::write(uint32_t data, Addr addr,
332                       unsigned flags, uint64_t *res);
333
334template
335Fault
336TimingSimpleCPU::write(uint16_t data, Addr addr,
337                       unsigned flags, uint64_t *res);
338
339template
340Fault
341TimingSimpleCPU::write(uint8_t data, Addr addr,
342                       unsigned flags, uint64_t *res);
343
344#endif //DOXYGEN_SHOULD_SKIP_THIS
345
346template<>
347Fault
348TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
349{
350    return write(*(uint64_t*)&data, addr, flags, res);
351}
352
353template<>
354Fault
355TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
356{
357    return write(*(uint32_t*)&data, addr, flags, res);
358}
359
360
361template<>
362Fault
363TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
364{
365    return write((uint32_t)data, addr, flags, res);
366}
367
368
369void
370TimingSimpleCPU::fetch()
371{
372    checkForInterrupts();
373
374    // need to fill in CPU & thread IDs here
375    Request *ifetch_req = new Request();
376    ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
377    Fault fault = setupFetchRequest(ifetch_req);
378
379    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
380    ifetch_pkt->dataStatic(&inst);
381
382    if (fault == NoFault) {
383        if (!icachePort.sendTiming(ifetch_pkt)) {
384            // Need to wait for retry
385            _status = IcacheRetry;
386        } else {
387            // Need to wait for cache to respond
388            _status = IcacheWaitResponse;
389            // ownership of packet transferred to memory system
390            ifetch_pkt = NULL;
391        }
392    } else {
393        // fetch fault: advance directly to next instruction (fault handler)
394        advanceInst(fault);
395    }
396}
397
398
399void
400TimingSimpleCPU::advanceInst(Fault fault)
401{
402    advancePC(fault);
403
404    if (_status == Running) {
405        // kick off fetch of next instruction... callback from icache
406        // response will cause that instruction to be executed,
407        // keeping the CPU running.
408        fetch();
409    }
410}
411
412
413void
414TimingSimpleCPU::completeIfetch(Packet *pkt)
415{
416    // received a response from the icache: execute the received
417    // instruction
418    assert(pkt->result == Packet::Success);
419    assert(_status == IcacheWaitResponse);
420
421    _status = Running;
422
423    delete pkt->req;
424    delete pkt;
425
426    if (getState() == SimObject::Quiescing) {
427        completeQuiesce();
428        return;
429    }
430
431    preExecute();
432    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
433        // load or store: just send to dcache
434        Fault fault = curStaticInst->initiateAcc(this, traceData);
435        if (fault == NoFault) {
436            // successfully initiated access: instruction will
437            // complete in dcache response callback
438            assert(_status == DcacheWaitResponse);
439        } else {
440            // fault: complete now to invoke fault handler
441            postExecute();
442            advanceInst(fault);
443        }
444    } else {
445        // non-memory instruction: execute completely now
446        Fault fault = curStaticInst->execute(this, traceData);
447        postExecute();
448        advanceInst(fault);
449    }
450}
451
452
453bool
454TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
455{
456    cpu->completeIfetch(pkt);
457    return true;
458}
459
460void
461TimingSimpleCPU::IcachePort::recvRetry()
462{
463    // we shouldn't get a retry unless we have a packet that we're
464    // waiting to transmit
465    assert(cpu->ifetch_pkt != NULL);
466    assert(cpu->_status == IcacheRetry);
467    Packet *tmp = cpu->ifetch_pkt;
468    if (sendTiming(tmp)) {
469        cpu->_status = IcacheWaitResponse;
470        cpu->ifetch_pkt = NULL;
471    }
472}
473
474void
475TimingSimpleCPU::completeDataAccess(Packet *pkt)
476{
477    // received a response from the dcache: complete the load or store
478    // instruction
479    assert(pkt->result == Packet::Success);
480    assert(_status == DcacheWaitResponse);
481    _status = Running;
482
483    if (getState() == SimObject::Quiescing) {
484        completeQuiesce();
485
486        delete pkt->req;
487        delete pkt;
488
489        return;
490    }
491
492    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
493
494    delete pkt->req;
495    delete pkt;
496
497    postExecute();
498    advanceInst(fault);
499}
500
501
502void
503TimingSimpleCPU::completeQuiesce()
504{
505    DPRINTF(Config, "Done quiescing\n");
506    changeState(SimObject::QuiescedTiming);
507    quiesceEvent->process();
508}
509
510bool
511TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
512{
513    cpu->completeDataAccess(pkt);
514    return true;
515}
516
517void
518TimingSimpleCPU::DcachePort::recvRetry()
519{
520    // we shouldn't get a retry unless we have a packet that we're
521    // waiting to transmit
522    assert(cpu->dcache_pkt != NULL);
523    assert(cpu->_status == DcacheRetry);
524    Packet *tmp = cpu->dcache_pkt;
525    if (sendTiming(tmp)) {
526        cpu->_status = DcacheWaitResponse;
527        cpu->dcache_pkt = NULL;
528    }
529}
530
531
532////////////////////////////////////////////////////////////////////////
533//
534//  TimingSimpleCPU Simulation Object
535//
536BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
537
538    Param<Counter> max_insts_any_thread;
539    Param<Counter> max_insts_all_threads;
540    Param<Counter> max_loads_any_thread;
541    Param<Counter> max_loads_all_threads;
542    SimObjectParam<MemObject *> mem;
543
544#if FULL_SYSTEM
545    SimObjectParam<AlphaITB *> itb;
546    SimObjectParam<AlphaDTB *> dtb;
547    SimObjectParam<System *> system;
548    Param<int> cpu_id;
549    Param<Tick> profile;
550#else
551    SimObjectParam<Process *> workload;
552#endif // FULL_SYSTEM
553
554    Param<int> clock;
555
556    Param<bool> defer_registration;
557    Param<int> width;
558    Param<bool> function_trace;
559    Param<Tick> function_trace_start;
560    Param<bool> simulate_stalls;
561
562END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
563
564BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
565
566    INIT_PARAM(max_insts_any_thread,
567               "terminate when any thread reaches this inst count"),
568    INIT_PARAM(max_insts_all_threads,
569               "terminate when all threads have reached this inst count"),
570    INIT_PARAM(max_loads_any_thread,
571               "terminate when any thread reaches this load count"),
572    INIT_PARAM(max_loads_all_threads,
573               "terminate when all threads have reached this load count"),
574    INIT_PARAM(mem, "memory"),
575
576#if FULL_SYSTEM
577    INIT_PARAM(itb, "Instruction TLB"),
578    INIT_PARAM(dtb, "Data TLB"),
579    INIT_PARAM(system, "system object"),
580    INIT_PARAM(cpu_id, "processor ID"),
581    INIT_PARAM(profile, ""),
582#else
583    INIT_PARAM(workload, "processes to run"),
584#endif // FULL_SYSTEM
585
586    INIT_PARAM(clock, "clock speed"),
587    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
588    INIT_PARAM(width, "cpu width"),
589    INIT_PARAM(function_trace, "Enable function trace"),
590    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
591    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
592
593END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
594
595
596CREATE_SIM_OBJECT(TimingSimpleCPU)
597{
598    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
599    params->name = getInstanceName();
600    params->numberOfThreads = 1;
601    params->max_insts_any_thread = max_insts_any_thread;
602    params->max_insts_all_threads = max_insts_all_threads;
603    params->max_loads_any_thread = max_loads_any_thread;
604    params->max_loads_all_threads = max_loads_all_threads;
605    params->deferRegistration = defer_registration;
606    params->clock = clock;
607    params->functionTrace = function_trace;
608    params->functionTraceStart = function_trace_start;
609    params->mem = mem;
610
611#if FULL_SYSTEM
612    params->itb = itb;
613    params->dtb = dtb;
614    params->system = system;
615    params->cpu_id = cpu_id;
616    params->profile = profile;
617#else
618    params->process = workload;
619#endif
620
621    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
622    return cpu;
623}
624
625REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
626
627