timing.cc revision 2823:ff50d1693ee5
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40
41void
42TimingSimpleCPU::init()
43{
44    //Create Memory Ports (conect them up)
45    Port *mem_dport = mem->getPort("");
46    dcachePort.setPeer(mem_dport);
47    mem_dport->setPeer(&dcachePort);
48
49    Port *mem_iport = mem->getPort("");
50    icachePort.setPeer(mem_iport);
51    mem_iport->setPeer(&icachePort);
52
53    BaseCPU::init();
54#if FULL_SYSTEM
55    for (int i = 0; i < threadContexts.size(); ++i) {
56        ThreadContext *tc = threadContexts[i];
57
58        // initialize CPU, including PC
59        TheISA::initCPU(tc, tc->readCpuId());
60    }
61#endif
62}
63
64Tick
65TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66{
67    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68    return curTick;
69}
70
71void
72TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73{
74    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75}
76
77void
78TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79{
80    if (status == RangeChange)
81        return;
82
83    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84}
85
86TimingSimpleCPU::TimingSimpleCPU(Params *p)
87    : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88{
89    _status = Idle;
90    ifetch_pkt = dcache_pkt = NULL;
91    quiesceEvent = NULL;
92    state = SimObject::Timing;
93}
94
95
96TimingSimpleCPU::~TimingSimpleCPU()
97{
98}
99
100void
101TimingSimpleCPU::serialize(ostream &os)
102{
103    SERIALIZE_ENUM(_status);
104    BaseSimpleCPU::serialize(os);
105}
106
107void
108TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
109{
110    UNSERIALIZE_ENUM(_status);
111    BaseSimpleCPU::unserialize(cp, section);
112}
113
114bool
115TimingSimpleCPU::quiesce(Event *quiesce_event)
116{
117    // TimingSimpleCPU is ready to quiesce if it's not waiting for
118    // an access to complete.
119    if (status() == Idle || status() == Running || status() == SwitchedOut) {
120        DPRINTF(Config, "Ready to quiesce\n");
121        changeState(SimObject::QuiescedTiming);
122        return false;
123    } else {
124        DPRINTF(Config, "Waiting to quiesce\n");
125        changeState(SimObject::Quiescing);
126        quiesceEvent = quiesce_event;
127        return true;
128    }
129}
130
131void
132TimingSimpleCPU::resume()
133{
134    if (_status != SwitchedOut && _status != Idle) {
135        Event *e =
136            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
137        e->schedule(curTick);
138    }
139}
140
141void
142TimingSimpleCPU::setMemoryMode(State new_mode)
143{
144    assert(new_mode == SimObject::Timing);
145}
146
147void
148TimingSimpleCPU::switchOut()
149{
150    assert(status() == Running || status() == Idle);
151    _status = SwitchedOut;
152}
153
154
155void
156TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
157{
158    BaseCPU::takeOverFrom(oldCPU);
159
160    // if any of this CPU's ThreadContexts are active, mark the CPU as
161    // running and schedule its tick event.
162    for (int i = 0; i < threadContexts.size(); ++i) {
163        ThreadContext *tc = threadContexts[i];
164        if (tc->status() == ThreadContext::Active && _status != Running) {
165            _status = Running;
166            break;
167        }
168    }
169}
170
171
172void
173TimingSimpleCPU::activateContext(int thread_num, int delay)
174{
175    assert(thread_num == 0);
176    assert(thread);
177
178    assert(_status == Idle);
179
180    notIdleFraction++;
181    _status = Running;
182    // kick things off by initiating the fetch of the next instruction
183    Event *e =
184        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
185    e->schedule(curTick + cycles(delay));
186}
187
188
189void
190TimingSimpleCPU::suspendContext(int thread_num)
191{
192    assert(thread_num == 0);
193    assert(thread);
194
195    assert(_status == Running);
196
197    // just change status to Idle... if status != Running,
198    // completeInst() will not initiate fetch of next instruction.
199
200    notIdleFraction--;
201    _status = Idle;
202}
203
204
205template <class T>
206Fault
207TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
208{
209    // need to fill in CPU & thread IDs here
210    Request *data_read_req = new Request();
211
212    data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
213
214    if (traceData) {
215        traceData->setAddr(data_read_req->getVaddr());
216    }
217
218   // translate to physical address
219    Fault fault = thread->translateDataReadReq(data_read_req);
220
221    // Now do the access.
222    if (fault == NoFault) {
223        Packet *data_read_pkt =
224            new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
225        data_read_pkt->dataDynamic<T>(new T);
226
227        if (!dcachePort.sendTiming(data_read_pkt)) {
228            _status = DcacheRetry;
229            dcache_pkt = data_read_pkt;
230        } else {
231            _status = DcacheWaitResponse;
232            dcache_pkt = NULL;
233        }
234    }
235
236    // This will need a new way to tell if it has a dcache attached.
237    if (data_read_req->getFlags() & UNCACHEABLE)
238        recordEvent("Uncached Read");
239
240    return fault;
241}
242
243#ifndef DOXYGEN_SHOULD_SKIP_THIS
244
245template
246Fault
247TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
248
249template
250Fault
251TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
252
253template
254Fault
255TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
256
257template
258Fault
259TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
260
261#endif //DOXYGEN_SHOULD_SKIP_THIS
262
263template<>
264Fault
265TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
266{
267    return read(addr, *(uint64_t*)&data, flags);
268}
269
270template<>
271Fault
272TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
273{
274    return read(addr, *(uint32_t*)&data, flags);
275}
276
277
278template<>
279Fault
280TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
281{
282    return read(addr, (uint32_t&)data, flags);
283}
284
285
286template <class T>
287Fault
288TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
289{
290    // need to fill in CPU & thread IDs here
291    Request *data_write_req = new Request();
292    data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
293
294    // translate to physical address
295    Fault fault = thread->translateDataWriteReq(data_write_req);
296    // Now do the access.
297    if (fault == NoFault) {
298        Packet *data_write_pkt =
299            new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
300        data_write_pkt->allocate();
301        data_write_pkt->set(data);
302
303        if (!dcachePort.sendTiming(data_write_pkt)) {
304            _status = DcacheRetry;
305            dcache_pkt = data_write_pkt;
306        } else {
307            _status = DcacheWaitResponse;
308            dcache_pkt = NULL;
309        }
310    }
311
312    // This will need a new way to tell if it's hooked up to a cache or not.
313    if (data_write_req->getFlags() & UNCACHEABLE)
314        recordEvent("Uncached Write");
315
316    // If the write needs to have a fault on the access, consider calling
317    // changeStatus() and changing it to "bad addr write" or something.
318    return fault;
319}
320
321
322#ifndef DOXYGEN_SHOULD_SKIP_THIS
323template
324Fault
325TimingSimpleCPU::write(uint64_t data, Addr addr,
326                       unsigned flags, uint64_t *res);
327
328template
329Fault
330TimingSimpleCPU::write(uint32_t data, Addr addr,
331                       unsigned flags, uint64_t *res);
332
333template
334Fault
335TimingSimpleCPU::write(uint16_t data, Addr addr,
336                       unsigned flags, uint64_t *res);
337
338template
339Fault
340TimingSimpleCPU::write(uint8_t data, Addr addr,
341                       unsigned flags, uint64_t *res);
342
343#endif //DOXYGEN_SHOULD_SKIP_THIS
344
345template<>
346Fault
347TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
348{
349    return write(*(uint64_t*)&data, addr, flags, res);
350}
351
352template<>
353Fault
354TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
355{
356    return write(*(uint32_t*)&data, addr, flags, res);
357}
358
359
360template<>
361Fault
362TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
363{
364    return write((uint32_t)data, addr, flags, res);
365}
366
367
368void
369TimingSimpleCPU::fetch()
370{
371    checkForInterrupts();
372
373    // need to fill in CPU & thread IDs here
374    Request *ifetch_req = new Request();
375    Fault fault = setupFetchRequest(ifetch_req);
376
377    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
378    ifetch_pkt->dataStatic(&inst);
379
380    if (fault == NoFault) {
381        if (!icachePort.sendTiming(ifetch_pkt)) {
382            // Need to wait for retry
383            _status = IcacheRetry;
384        } else {
385            // Need to wait for cache to respond
386            _status = IcacheWaitResponse;
387            // ownership of packet transferred to memory system
388            ifetch_pkt = NULL;
389        }
390    } else {
391        // fetch fault: advance directly to next instruction (fault handler)
392        advanceInst(fault);
393    }
394}
395
396
397void
398TimingSimpleCPU::advanceInst(Fault fault)
399{
400    advancePC(fault);
401
402    if (_status == Running) {
403        // kick off fetch of next instruction... callback from icache
404        // response will cause that instruction to be executed,
405        // keeping the CPU running.
406        fetch();
407    }
408}
409
410
411void
412TimingSimpleCPU::completeIfetch(Packet *pkt)
413{
414    // received a response from the icache: execute the received
415    // instruction
416    assert(pkt->result == Packet::Success);
417    assert(_status == IcacheWaitResponse);
418
419    _status = Running;
420
421    delete pkt->req;
422    delete pkt;
423
424    if (getState() == SimObject::Quiescing) {
425        completeQuiesce();
426        return;
427    }
428
429    preExecute();
430    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
431        // load or store: just send to dcache
432        Fault fault = curStaticInst->initiateAcc(this, traceData);
433        if (fault == NoFault) {
434            // successfully initiated access: instruction will
435            // complete in dcache response callback
436            assert(_status == DcacheWaitResponse);
437        } else {
438            // fault: complete now to invoke fault handler
439            postExecute();
440            advanceInst(fault);
441        }
442    } else {
443        // non-memory instruction: execute completely now
444        Fault fault = curStaticInst->execute(this, traceData);
445        postExecute();
446        advanceInst(fault);
447    }
448}
449
450
451bool
452TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
453{
454    cpu->completeIfetch(pkt);
455    return true;
456}
457
458void
459TimingSimpleCPU::IcachePort::recvRetry()
460{
461    // we shouldn't get a retry unless we have a packet that we're
462    // waiting to transmit
463    assert(cpu->ifetch_pkt != NULL);
464    assert(cpu->_status == IcacheRetry);
465    Packet *tmp = cpu->ifetch_pkt;
466    if (sendTiming(tmp)) {
467        cpu->_status = IcacheWaitResponse;
468        cpu->ifetch_pkt = NULL;
469    }
470}
471
472void
473TimingSimpleCPU::completeDataAccess(Packet *pkt)
474{
475    // received a response from the dcache: complete the load or store
476    // instruction
477    assert(pkt->result == Packet::Success);
478    assert(_status == DcacheWaitResponse);
479    _status = Running;
480
481    if (getState() == SimObject::Quiescing) {
482        completeQuiesce();
483
484        delete pkt->req;
485        delete pkt;
486
487        return;
488    }
489
490    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
491
492    delete pkt->req;
493    delete pkt;
494
495    postExecute();
496    advanceInst(fault);
497}
498
499
500void
501TimingSimpleCPU::completeQuiesce()
502{
503    DPRINTF(Config, "Done quiescing\n");
504    changeState(SimObject::QuiescedTiming);
505    quiesceEvent->process();
506}
507
508bool
509TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
510{
511    cpu->completeDataAccess(pkt);
512    return true;
513}
514
515void
516TimingSimpleCPU::DcachePort::recvRetry()
517{
518    // we shouldn't get a retry unless we have a packet that we're
519    // waiting to transmit
520    assert(cpu->dcache_pkt != NULL);
521    assert(cpu->_status == DcacheRetry);
522    Packet *tmp = cpu->dcache_pkt;
523    if (sendTiming(tmp)) {
524        cpu->_status = DcacheWaitResponse;
525        cpu->dcache_pkt = NULL;
526    }
527}
528
529
530////////////////////////////////////////////////////////////////////////
531//
532//  TimingSimpleCPU Simulation Object
533//
534BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
535
536    Param<Counter> max_insts_any_thread;
537    Param<Counter> max_insts_all_threads;
538    Param<Counter> max_loads_any_thread;
539    Param<Counter> max_loads_all_threads;
540    SimObjectParam<MemObject *> mem;
541
542#if FULL_SYSTEM
543    SimObjectParam<AlphaITB *> itb;
544    SimObjectParam<AlphaDTB *> dtb;
545    SimObjectParam<System *> system;
546    Param<int> cpu_id;
547    Param<Tick> profile;
548#else
549    SimObjectParam<Process *> workload;
550#endif // FULL_SYSTEM
551
552    Param<int> clock;
553
554    Param<bool> defer_registration;
555    Param<int> width;
556    Param<bool> function_trace;
557    Param<Tick> function_trace_start;
558    Param<bool> simulate_stalls;
559
560END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
561
562BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
563
564    INIT_PARAM(max_insts_any_thread,
565               "terminate when any thread reaches this inst count"),
566    INIT_PARAM(max_insts_all_threads,
567               "terminate when all threads have reached this inst count"),
568    INIT_PARAM(max_loads_any_thread,
569               "terminate when any thread reaches this load count"),
570    INIT_PARAM(max_loads_all_threads,
571               "terminate when all threads have reached this load count"),
572    INIT_PARAM(mem, "memory"),
573
574#if FULL_SYSTEM
575    INIT_PARAM(itb, "Instruction TLB"),
576    INIT_PARAM(dtb, "Data TLB"),
577    INIT_PARAM(system, "system object"),
578    INIT_PARAM(cpu_id, "processor ID"),
579    INIT_PARAM(profile, ""),
580#else
581    INIT_PARAM(workload, "processes to run"),
582#endif // FULL_SYSTEM
583
584    INIT_PARAM(clock, "clock speed"),
585    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
586    INIT_PARAM(width, "cpu width"),
587    INIT_PARAM(function_trace, "Enable function trace"),
588    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
589    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
590
591END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
592
593
594CREATE_SIM_OBJECT(TimingSimpleCPU)
595{
596    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
597    params->name = getInstanceName();
598    params->numberOfThreads = 1;
599    params->max_insts_any_thread = max_insts_any_thread;
600    params->max_insts_all_threads = max_insts_all_threads;
601    params->max_loads_any_thread = max_loads_any_thread;
602    params->max_loads_all_threads = max_loads_all_threads;
603    params->deferRegistration = defer_registration;
604    params->clock = clock;
605    params->functionTrace = function_trace;
606    params->functionTraceStart = function_trace_start;
607    params->mem = mem;
608
609#if FULL_SYSTEM
610    params->itb = itb;
611    params->dtb = dtb;
612    params->system = system;
613    params->cpu_id = cpu_id;
614    params->profile = profile;
615#else
616    params->process = workload;
617#endif
618
619    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
620    return cpu;
621}
622
623REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
624
625