timing.cc revision 2663
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "arch/utility.hh"
30#include "cpu/exetrace.hh"
31#include "cpu/simple/timing.hh"
32#include "mem/packet_impl.hh"
33#include "sim/builder.hh"
34
35using namespace std;
36using namespace TheISA;
37
38
39void
40TimingSimpleCPU::init()
41{
42    //Create Memory Ports (conect them up)
43    Port *mem_dport = mem->getPort("");
44    dcachePort.setPeer(mem_dport);
45    mem_dport->setPeer(&dcachePort);
46
47    Port *mem_iport = mem->getPort("");
48    icachePort.setPeer(mem_iport);
49    mem_iport->setPeer(&icachePort);
50
51    BaseCPU::init();
52#if FULL_SYSTEM
53    for (int i = 0; i < execContexts.size(); ++i) {
54        ExecContext *xc = execContexts[i];
55
56        // initialize CPU, including PC
57        TheISA::initCPU(xc, xc->readCpuId());
58    }
59#endif
60}
61
62Tick
63TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
64{
65    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
66    return curTick;
67}
68
69void
70TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
71{
72    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
73}
74
75void
76TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
77{
78    if (status == RangeChange)
79        return;
80
81    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
82}
83
84TimingSimpleCPU::TimingSimpleCPU(Params *p)
85    : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
86{
87    _status = Idle;
88    ifetch_pkt = dcache_pkt = NULL;
89}
90
91
92TimingSimpleCPU::~TimingSimpleCPU()
93{
94}
95
96void
97TimingSimpleCPU::serialize(ostream &os)
98{
99    BaseSimpleCPU::serialize(os);
100    SERIALIZE_ENUM(_status);
101}
102
103void
104TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
105{
106    BaseSimpleCPU::unserialize(cp, section);
107    UNSERIALIZE_ENUM(_status);
108}
109
110void
111TimingSimpleCPU::switchOut(Sampler *s)
112{
113    sampler = s;
114    if (status() == Running) {
115        _status = SwitchedOut;
116    }
117    sampler->signalSwitched();
118}
119
120
121void
122TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
123{
124    BaseCPU::takeOverFrom(oldCPU);
125
126    // if any of this CPU's ExecContexts are active, mark the CPU as
127    // running and schedule its tick event.
128    for (int i = 0; i < execContexts.size(); ++i) {
129        ExecContext *xc = execContexts[i];
130        if (xc->status() == ExecContext::Active && _status != Running) {
131            _status = Running;
132            break;
133        }
134    }
135}
136
137
138void
139TimingSimpleCPU::activateContext(int thread_num, int delay)
140{
141    assert(thread_num == 0);
142    assert(cpuXC);
143
144    assert(_status == Idle);
145
146    notIdleFraction++;
147    _status = Running;
148    // kick things off by initiating the fetch of the next instruction
149    Event *e =
150        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
151    e->schedule(curTick + cycles(delay));
152}
153
154
155void
156TimingSimpleCPU::suspendContext(int thread_num)
157{
158    assert(thread_num == 0);
159    assert(cpuXC);
160
161    assert(_status == Running);
162
163    // just change status to Idle... if status != Running,
164    // completeInst() will not initiate fetch of next instruction.
165
166    notIdleFraction--;
167    _status = Idle;
168}
169
170
171template <class T>
172Fault
173TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
174{
175    // need to fill in CPU & thread IDs here
176    Request *data_read_req = new Request();
177
178    data_read_req->setVirt(0, addr, sizeof(T), flags, cpuXC->readPC());
179
180    if (traceData) {
181        traceData->setAddr(data_read_req->getVaddr());
182    }
183
184   // translate to physical address
185    Fault fault = cpuXC->translateDataReadReq(data_read_req);
186
187    // Now do the access.
188    if (fault == NoFault) {
189        Packet *data_read_pkt =
190            new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
191        data_read_pkt->dataDynamic<T>(new T);
192
193        if (!dcachePort.sendTiming(data_read_pkt)) {
194            _status = DcacheRetry;
195            dcache_pkt = data_read_pkt;
196        } else {
197            _status = DcacheWaitResponse;
198            dcache_pkt = NULL;
199        }
200    }
201
202    // This will need a new way to tell if it has a dcache attached.
203    if (data_read_req->getFlags() & UNCACHEABLE)
204        recordEvent("Uncached Read");
205
206    return fault;
207}
208
209#ifndef DOXYGEN_SHOULD_SKIP_THIS
210
211template
212Fault
213TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
214
215template
216Fault
217TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
218
219template
220Fault
221TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
222
223template
224Fault
225TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
226
227#endif //DOXYGEN_SHOULD_SKIP_THIS
228
229template<>
230Fault
231TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
232{
233    return read(addr, *(uint64_t*)&data, flags);
234}
235
236template<>
237Fault
238TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
239{
240    return read(addr, *(uint32_t*)&data, flags);
241}
242
243
244template<>
245Fault
246TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
247{
248    return read(addr, (uint32_t&)data, flags);
249}
250
251
252template <class T>
253Fault
254TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
255{
256    // need to fill in CPU & thread IDs here
257    Request *data_write_req = new Request();
258    data_write_req->setVirt(0, addr, sizeof(T), flags, cpuXC->readPC());
259
260    // translate to physical address
261    Fault fault = cpuXC->translateDataWriteReq(data_write_req);
262    // Now do the access.
263    if (fault == NoFault) {
264        Packet *data_write_pkt =
265            new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
266        data_write_pkt->allocate();
267        data_write_pkt->set(data);
268
269        if (!dcachePort.sendTiming(data_write_pkt)) {
270            _status = DcacheRetry;
271            dcache_pkt = data_write_pkt;
272        } else {
273            _status = DcacheWaitResponse;
274            dcache_pkt = NULL;
275        }
276    }
277
278    // This will need a new way to tell if it's hooked up to a cache or not.
279    if (data_write_req->getFlags() & UNCACHEABLE)
280        recordEvent("Uncached Write");
281
282    // If the write needs to have a fault on the access, consider calling
283    // changeStatus() and changing it to "bad addr write" or something.
284    return fault;
285}
286
287
288#ifndef DOXYGEN_SHOULD_SKIP_THIS
289template
290Fault
291TimingSimpleCPU::write(uint64_t data, Addr addr,
292                       unsigned flags, uint64_t *res);
293
294template
295Fault
296TimingSimpleCPU::write(uint32_t data, Addr addr,
297                       unsigned flags, uint64_t *res);
298
299template
300Fault
301TimingSimpleCPU::write(uint16_t data, Addr addr,
302                       unsigned flags, uint64_t *res);
303
304template
305Fault
306TimingSimpleCPU::write(uint8_t data, Addr addr,
307                       unsigned flags, uint64_t *res);
308
309#endif //DOXYGEN_SHOULD_SKIP_THIS
310
311template<>
312Fault
313TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
314{
315    return write(*(uint64_t*)&data, addr, flags, res);
316}
317
318template<>
319Fault
320TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
321{
322    return write(*(uint32_t*)&data, addr, flags, res);
323}
324
325
326template<>
327Fault
328TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
329{
330    return write((uint32_t)data, addr, flags, res);
331}
332
333
334void
335TimingSimpleCPU::fetch()
336{
337    checkForInterrupts();
338
339    // need to fill in CPU & thread IDs here
340    Request *ifetch_req = new Request();
341    Fault fault = setupFetchRequest(ifetch_req);
342
343    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
344    ifetch_pkt->dataStatic(&inst);
345
346    if (fault == NoFault) {
347        if (!icachePort.sendTiming(ifetch_pkt)) {
348            // Need to wait for retry
349            _status = IcacheRetry;
350        } else {
351            // Need to wait for cache to respond
352            _status = IcacheWaitResponse;
353            // ownership of packet transferred to memory system
354            ifetch_pkt = NULL;
355        }
356    } else {
357        // fetch fault: advance directly to next instruction (fault handler)
358        advanceInst(fault);
359    }
360}
361
362
363void
364TimingSimpleCPU::advanceInst(Fault fault)
365{
366    advancePC(fault);
367
368    if (_status == Running) {
369        // kick off fetch of next instruction... callback from icache
370        // response will cause that instruction to be executed,
371        // keeping the CPU running.
372        fetch();
373    }
374}
375
376
377void
378TimingSimpleCPU::completeIfetch(Packet *pkt)
379{
380    // received a response from the icache: execute the received
381    // instruction
382    assert(pkt->result == Packet::Success);
383    assert(_status == IcacheWaitResponse);
384    _status = Running;
385
386    delete pkt->req;
387    delete pkt;
388
389    preExecute();
390    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
391        // load or store: just send to dcache
392        Fault fault = curStaticInst->initiateAcc(this, traceData);
393        if (fault == NoFault) {
394            // successfully initiated access: instruction will
395            // complete in dcache response callback
396            assert(_status == DcacheWaitResponse);
397        } else {
398            // fault: complete now to invoke fault handler
399            postExecute();
400            advanceInst(fault);
401        }
402    } else {
403        // non-memory instruction: execute completely now
404        Fault fault = curStaticInst->execute(this, traceData);
405        postExecute();
406        advanceInst(fault);
407    }
408}
409
410
411bool
412TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
413{
414    cpu->completeIfetch(pkt);
415    return true;
416}
417
418void
419TimingSimpleCPU::IcachePort::recvRetry()
420{
421    // we shouldn't get a retry unless we have a packet that we're
422    // waiting to transmit
423    assert(cpu->ifetch_pkt != NULL);
424    assert(cpu->_status == IcacheRetry);
425    Packet *tmp = cpu->ifetch_pkt;
426    if (sendTiming(tmp)) {
427        cpu->_status = IcacheWaitResponse;
428        cpu->ifetch_pkt = NULL;
429    }
430}
431
432void
433TimingSimpleCPU::completeDataAccess(Packet *pkt)
434{
435    // received a response from the dcache: complete the load or store
436    // instruction
437    assert(pkt->result == Packet::Success);
438    assert(_status == DcacheWaitResponse);
439    _status = Running;
440
441    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
442
443    delete pkt->req;
444    delete pkt;
445
446    postExecute();
447    advanceInst(fault);
448}
449
450
451
452bool
453TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
454{
455    cpu->completeDataAccess(pkt);
456    return true;
457}
458
459void
460TimingSimpleCPU::DcachePort::recvRetry()
461{
462    // we shouldn't get a retry unless we have a packet that we're
463    // waiting to transmit
464    assert(cpu->dcache_pkt != NULL);
465    assert(cpu->_status == DcacheRetry);
466    Packet *tmp = cpu->dcache_pkt;
467    if (sendTiming(tmp)) {
468        cpu->_status = DcacheWaitResponse;
469        cpu->dcache_pkt = NULL;
470    }
471}
472
473
474////////////////////////////////////////////////////////////////////////
475//
476//  TimingSimpleCPU Simulation Object
477//
478BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
479
480    Param<Counter> max_insts_any_thread;
481    Param<Counter> max_insts_all_threads;
482    Param<Counter> max_loads_any_thread;
483    Param<Counter> max_loads_all_threads;
484    SimObjectParam<MemObject *> mem;
485
486#if FULL_SYSTEM
487    SimObjectParam<AlphaITB *> itb;
488    SimObjectParam<AlphaDTB *> dtb;
489    SimObjectParam<System *> system;
490    Param<int> cpu_id;
491    Param<Tick> profile;
492#else
493    SimObjectParam<Process *> workload;
494#endif // FULL_SYSTEM
495
496    Param<int> clock;
497
498    Param<bool> defer_registration;
499    Param<int> width;
500    Param<bool> function_trace;
501    Param<Tick> function_trace_start;
502    Param<bool> simulate_stalls;
503
504END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
505
506BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
507
508    INIT_PARAM(max_insts_any_thread,
509               "terminate when any thread reaches this inst count"),
510    INIT_PARAM(max_insts_all_threads,
511               "terminate when all threads have reached this inst count"),
512    INIT_PARAM(max_loads_any_thread,
513               "terminate when any thread reaches this load count"),
514    INIT_PARAM(max_loads_all_threads,
515               "terminate when all threads have reached this load count"),
516    INIT_PARAM(mem, "memory"),
517
518#if FULL_SYSTEM
519    INIT_PARAM(itb, "Instruction TLB"),
520    INIT_PARAM(dtb, "Data TLB"),
521    INIT_PARAM(system, "system object"),
522    INIT_PARAM(cpu_id, "processor ID"),
523    INIT_PARAM(profile, ""),
524#else
525    INIT_PARAM(workload, "processes to run"),
526#endif // FULL_SYSTEM
527
528    INIT_PARAM(clock, "clock speed"),
529    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
530    INIT_PARAM(width, "cpu width"),
531    INIT_PARAM(function_trace, "Enable function trace"),
532    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
533    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
534
535END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
536
537
538CREATE_SIM_OBJECT(TimingSimpleCPU)
539{
540    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
541    params->name = getInstanceName();
542    params->numberOfThreads = 1;
543    params->max_insts_any_thread = max_insts_any_thread;
544    params->max_insts_all_threads = max_insts_all_threads;
545    params->max_loads_any_thread = max_loads_any_thread;
546    params->max_loads_all_threads = max_loads_all_threads;
547    params->deferRegistration = defer_registration;
548    params->clock = clock;
549    params->functionTrace = function_trace;
550    params->functionTraceStart = function_trace_start;
551    params->mem = mem;
552
553#if FULL_SYSTEM
554    params->itb = itb;
555    params->dtb = dtb;
556    params->system = system;
557    params->cpu_id = cpu_id;
558    params->profile = profile;
559#else
560    params->process = workload;
561#endif
562
563    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
564    return cpu;
565}
566
567REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
568
569