timing.cc revision 11435:0f1b46dde3fa
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/timing.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "params/TimingSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/full_system.hh"
60#include "sim/system.hh"
61
62#include "debug/Mwait.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68TimingSimpleCPU::init()
69{
70    BaseSimpleCPU::init();
71}
72
73void
74TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75{
76    pkt = _pkt;
77    cpu->schedule(this, t);
78}
79
80TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83      fetchEvent(this)
84{
85    _status = Idle;
86}
87
88
89
90TimingSimpleCPU::~TimingSimpleCPU()
91{
92}
93
94DrainState
95TimingSimpleCPU::drain()
96{
97    if (switchedOut())
98        return DrainState::Drained;
99
100    if (_status == Idle ||
101        (_status == BaseSimpleCPU::Running && isDrained())) {
102        DPRINTF(Drain, "No need to drain.\n");
103        activeThreads.clear();
104        return DrainState::Drained;
105    } else {
106        DPRINTF(Drain, "Requesting drain.\n");
107
108        // The fetch event can become descheduled if a drain didn't
109        // succeed on the first attempt. We need to reschedule it if
110        // the CPU is waiting for a microcode routine to complete.
111        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
112            schedule(fetchEvent, clockEdge());
113
114        return DrainState::Draining;
115    }
116}
117
118void
119TimingSimpleCPU::drainResume()
120{
121    assert(!fetchEvent.scheduled());
122    if (switchedOut())
123        return;
124
125    DPRINTF(SimpleCPU, "Resume\n");
126    verifyMemoryMode();
127
128    assert(!threadContexts.empty());
129
130    _status = BaseSimpleCPU::Idle;
131
132    for (ThreadID tid = 0; tid < numThreads; tid++) {
133        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
134            threadInfo[tid]->notIdleFraction = 1;
135
136            activeThreads.push_back(tid);
137
138            _status = BaseSimpleCPU::Running;
139
140            // Fetch if any threads active
141            if (!fetchEvent.scheduled()) {
142                schedule(fetchEvent, nextCycle());
143            }
144        } else {
145            threadInfo[tid]->notIdleFraction = 0;
146        }
147    }
148
149    system->totalNumInsts = 0;
150}
151
152bool
153TimingSimpleCPU::tryCompleteDrain()
154{
155    if (drainState() != DrainState::Draining)
156        return false;
157
158    DPRINTF(Drain, "tryCompleteDrain.\n");
159    if (!isDrained())
160        return false;
161
162    DPRINTF(Drain, "CPU done draining, processing drain event\n");
163    signalDrainDone();
164
165    return true;
166}
167
168void
169TimingSimpleCPU::switchOut()
170{
171    SimpleExecContext& t_info = *threadInfo[curThread];
172    M5_VAR_USED SimpleThread* thread = t_info.thread;
173
174    BaseSimpleCPU::switchOut();
175
176    assert(!fetchEvent.scheduled());
177    assert(_status == BaseSimpleCPU::Running || _status == Idle);
178    assert(!t_info.stayAtPC);
179    assert(thread->microPC() == 0);
180
181    updateCycleCounts();
182}
183
184
185void
186TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187{
188    BaseSimpleCPU::takeOverFrom(oldCPU);
189
190    previousCycle = curCycle();
191}
192
193void
194TimingSimpleCPU::verifyMemoryMode() const
195{
196    if (!system->isTimingMode()) {
197        fatal("The timing CPU requires the memory system to be in "
198              "'timing' mode.\n");
199    }
200}
201
202void
203TimingSimpleCPU::activateContext(ThreadID thread_num)
204{
205    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207    assert(thread_num < numThreads);
208
209    threadInfo[thread_num]->notIdleFraction = 1;
210    if (_status == BaseSimpleCPU::Idle)
211        _status = BaseSimpleCPU::Running;
212
213    // kick things off by initiating the fetch of the next instruction
214    if (!fetchEvent.scheduled())
215        schedule(fetchEvent, clockEdge(Cycles(0)));
216
217    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
218         == activeThreads.end()) {
219        activeThreads.push_back(thread_num);
220    }
221}
222
223
224void
225TimingSimpleCPU::suspendContext(ThreadID thread_num)
226{
227    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
228
229    assert(thread_num < numThreads);
230    activeThreads.remove(thread_num);
231
232    if (_status == Idle)
233        return;
234
235    assert(_status == BaseSimpleCPU::Running);
236
237    threadInfo[thread_num]->notIdleFraction = 0;
238
239    if (activeThreads.empty()) {
240        _status = Idle;
241
242        if (fetchEvent.scheduled()) {
243            deschedule(fetchEvent);
244        }
245    }
246}
247
248bool
249TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
250{
251    SimpleExecContext &t_info = *threadInfo[curThread];
252    SimpleThread* thread = t_info.thread;
253
254    RequestPtr req = pkt->req;
255
256    // We're about the issues a locked load, so tell the monitor
257    // to start caring about this address
258    if (pkt->isRead() && pkt->req->isLLSC()) {
259        TheISA::handleLockedRead(thread, pkt->req);
260    }
261    if (req->isMmappedIpr()) {
262        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
263        new IprEvent(pkt, this, clockEdge(delay));
264        _status = DcacheWaitResponse;
265        dcache_pkt = NULL;
266    } else if (!dcachePort.sendTimingReq(pkt)) {
267        _status = DcacheRetry;
268        dcache_pkt = pkt;
269    } else {
270        _status = DcacheWaitResponse;
271        // memory system takes ownership of packet
272        dcache_pkt = NULL;
273    }
274    return dcache_pkt == NULL;
275}
276
277void
278TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
279                          bool read)
280{
281    SimpleExecContext &t_info = *threadInfo[curThread];
282    SimpleThread* thread = t_info.thread;
283
284    PacketPtr pkt = buildPacket(req, read);
285    pkt->dataDynamic<uint8_t>(data);
286    if (req->getFlags().isSet(Request::NO_ACCESS)) {
287        assert(!dcache_pkt);
288        pkt->makeResponse();
289        completeDataAccess(pkt);
290    } else if (read) {
291        handleReadPacket(pkt);
292    } else {
293        bool do_access = true;  // flag to suppress cache access
294
295        if (req->isLLSC()) {
296            do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
297        } else if (req->isCondSwap()) {
298            assert(res);
299            req->setExtraData(*res);
300        }
301
302        if (do_access) {
303            dcache_pkt = pkt;
304            handleWritePacket();
305            threadSnoop(pkt, curThread);
306        } else {
307            _status = DcacheWaitResponse;
308            completeDataAccess(pkt);
309        }
310    }
311}
312
313void
314TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
315                               RequestPtr req, uint8_t *data, bool read)
316{
317    PacketPtr pkt1, pkt2;
318    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
319    if (req->getFlags().isSet(Request::NO_ACCESS)) {
320        assert(!dcache_pkt);
321        pkt1->makeResponse();
322        completeDataAccess(pkt1);
323    } else if (read) {
324        SplitFragmentSenderState * send_state =
325            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
326        if (handleReadPacket(pkt1)) {
327            send_state->clearFromParent();
328            send_state = dynamic_cast<SplitFragmentSenderState *>(
329                    pkt2->senderState);
330            if (handleReadPacket(pkt2)) {
331                send_state->clearFromParent();
332            }
333        }
334    } else {
335        dcache_pkt = pkt1;
336        SplitFragmentSenderState * send_state =
337            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
338        if (handleWritePacket()) {
339            send_state->clearFromParent();
340            dcache_pkt = pkt2;
341            send_state = dynamic_cast<SplitFragmentSenderState *>(
342                    pkt2->senderState);
343            if (handleWritePacket()) {
344                send_state->clearFromParent();
345            }
346        }
347    }
348}
349
350void
351TimingSimpleCPU::translationFault(const Fault &fault)
352{
353    // fault may be NoFault in cases where a fault is suppressed,
354    // for instance prefetches.
355    updateCycleCounts();
356
357    if (traceData) {
358        // Since there was a fault, we shouldn't trace this instruction.
359        delete traceData;
360        traceData = NULL;
361    }
362
363    postExecute();
364
365    advanceInst(fault);
366}
367
368PacketPtr
369TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
370{
371    return read ? Packet::createRead(req) : Packet::createWrite(req);
372}
373
374void
375TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
376        RequestPtr req1, RequestPtr req2, RequestPtr req,
377        uint8_t *data, bool read)
378{
379    pkt1 = pkt2 = NULL;
380
381    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
382
383    if (req->getFlags().isSet(Request::NO_ACCESS)) {
384        pkt1 = buildPacket(req, read);
385        return;
386    }
387
388    pkt1 = buildPacket(req1, read);
389    pkt2 = buildPacket(req2, read);
390
391    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
392
393    pkt->dataDynamic<uint8_t>(data);
394    pkt1->dataStatic<uint8_t>(data);
395    pkt2->dataStatic<uint8_t>(data + req1->getSize());
396
397    SplitMainSenderState * main_send_state = new SplitMainSenderState;
398    pkt->senderState = main_send_state;
399    main_send_state->fragments[0] = pkt1;
400    main_send_state->fragments[1] = pkt2;
401    main_send_state->outstanding = 2;
402    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
403    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
404}
405
406Fault
407TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
408                         unsigned size, unsigned flags)
409{
410    panic("readMem() is for atomic accesses, and should "
411          "never be called on TimingSimpleCPU.\n");
412}
413
414Fault
415TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size, unsigned flags)
416{
417    SimpleExecContext &t_info = *threadInfo[curThread];
418    SimpleThread* thread = t_info.thread;
419
420    Fault fault;
421    const int asid = 0;
422    const Addr pc = thread->instAddr();
423    unsigned block_size = cacheLineSize();
424    BaseTLB::Mode mode = BaseTLB::Read;
425
426    if (traceData)
427        traceData->setMem(addr, size, flags);
428
429    RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
430                                 thread->contextId());
431
432    req->taskId(taskId());
433
434    Addr split_addr = roundDown(addr + size - 1, block_size);
435    assert(split_addr <= addr || split_addr - addr < block_size);
436
437    _status = DTBWaitResponse;
438    if (split_addr > addr) {
439        RequestPtr req1, req2;
440        assert(!req->isLLSC() && !req->isSwap());
441        req->splitOnVaddr(split_addr, req1, req2);
442
443        WholeTranslationState *state =
444            new WholeTranslationState(req, req1, req2, new uint8_t[size],
445                                      NULL, mode);
446        DataTranslation<TimingSimpleCPU *> *trans1 =
447            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
448        DataTranslation<TimingSimpleCPU *> *trans2 =
449            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
450
451        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
452        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
453    } else {
454        WholeTranslationState *state =
455            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
456        DataTranslation<TimingSimpleCPU *> *translation
457            = new DataTranslation<TimingSimpleCPU *>(this, state);
458        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
459    }
460
461    return NoFault;
462}
463
464bool
465TimingSimpleCPU::handleWritePacket()
466{
467    SimpleExecContext &t_info = *threadInfo[curThread];
468    SimpleThread* thread = t_info.thread;
469
470    RequestPtr req = dcache_pkt->req;
471    if (req->isMmappedIpr()) {
472        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
473        new IprEvent(dcache_pkt, this, clockEdge(delay));
474        _status = DcacheWaitResponse;
475        dcache_pkt = NULL;
476    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
477        _status = DcacheRetry;
478    } else {
479        _status = DcacheWaitResponse;
480        // memory system takes ownership of packet
481        dcache_pkt = NULL;
482    }
483    return dcache_pkt == NULL;
484}
485
486Fault
487TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
488                          Addr addr, unsigned flags, uint64_t *res)
489{
490    SimpleExecContext &t_info = *threadInfo[curThread];
491    SimpleThread* thread = t_info.thread;
492
493    uint8_t *newData = new uint8_t[size];
494    const int asid = 0;
495    const Addr pc = thread->instAddr();
496    unsigned block_size = cacheLineSize();
497    BaseTLB::Mode mode = BaseTLB::Write;
498
499    if (data == NULL) {
500        assert(flags & Request::CACHE_BLOCK_ZERO);
501        // This must be a cache block cleaning request
502        memset(newData, 0, size);
503    } else {
504        memcpy(newData, data, size);
505    }
506
507    if (traceData)
508        traceData->setMem(addr, size, flags);
509
510    RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
511                                 thread->contextId());
512
513    req->taskId(taskId());
514
515    Addr split_addr = roundDown(addr + size - 1, block_size);
516    assert(split_addr <= addr || split_addr - addr < block_size);
517
518    _status = DTBWaitResponse;
519    if (split_addr > addr) {
520        RequestPtr req1, req2;
521        assert(!req->isLLSC() && !req->isSwap());
522        req->splitOnVaddr(split_addr, req1, req2);
523
524        WholeTranslationState *state =
525            new WholeTranslationState(req, req1, req2, newData, res, mode);
526        DataTranslation<TimingSimpleCPU *> *trans1 =
527            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
528        DataTranslation<TimingSimpleCPU *> *trans2 =
529            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
530
531        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
532        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
533    } else {
534        WholeTranslationState *state =
535            new WholeTranslationState(req, newData, res, mode);
536        DataTranslation<TimingSimpleCPU *> *translation =
537            new DataTranslation<TimingSimpleCPU *>(this, state);
538        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
539    }
540
541    // Translation faults will be returned via finishTranslation()
542    return NoFault;
543}
544
545void
546TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
547{
548    for (ThreadID tid = 0; tid < numThreads; tid++) {
549        if (tid != sender) {
550            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
551                wakeup(tid);
552            }
553            TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
554                    dcachePort.cacheBlockMask);
555        }
556    }
557}
558
559void
560TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
561{
562    _status = BaseSimpleCPU::Running;
563
564    if (state->getFault() != NoFault) {
565        if (state->isPrefetch()) {
566            state->setNoFault();
567        }
568        delete [] state->data;
569        state->deleteReqs();
570        translationFault(state->getFault());
571    } else {
572        if (!state->isSplit) {
573            sendData(state->mainReq, state->data, state->res,
574                     state->mode == BaseTLB::Read);
575        } else {
576            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
577                          state->data, state->mode == BaseTLB::Read);
578        }
579    }
580
581    delete state;
582}
583
584
585void
586TimingSimpleCPU::fetch()
587{
588    // Change thread if multi-threaded
589    swapActiveThread();
590
591    SimpleExecContext &t_info = *threadInfo[curThread];
592    SimpleThread* thread = t_info.thread;
593
594    DPRINTF(SimpleCPU, "Fetch\n");
595
596    if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
597        checkForInterrupts();
598        checkPcEventQueue();
599    }
600
601    // We must have just got suspended by a PC event
602    if (_status == Idle)
603        return;
604
605    TheISA::PCState pcState = thread->pcState();
606    bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
607                       !curMacroStaticInst;
608
609    if (needToFetch) {
610        _status = BaseSimpleCPU::Running;
611        Request *ifetch_req = new Request();
612        ifetch_req->taskId(taskId());
613        ifetch_req->setContext(thread->contextId());
614        setupFetchRequest(ifetch_req);
615        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
616        thread->itb->translateTiming(ifetch_req, thread->getTC(),
617                &fetchTranslation, BaseTLB::Execute);
618    } else {
619        _status = IcacheWaitResponse;
620        completeIfetch(NULL);
621
622        updateCycleCounts();
623    }
624}
625
626
627void
628TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
629                           ThreadContext *tc)
630{
631    if (fault == NoFault) {
632        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
633                req->getVaddr(), req->getPaddr());
634        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
635        ifetch_pkt->dataStatic(&inst);
636        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
637
638        if (!icachePort.sendTimingReq(ifetch_pkt)) {
639            // Need to wait for retry
640            _status = IcacheRetry;
641        } else {
642            // Need to wait for cache to respond
643            _status = IcacheWaitResponse;
644            // ownership of packet transferred to memory system
645            ifetch_pkt = NULL;
646        }
647    } else {
648        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
649        delete req;
650        // fetch fault: advance directly to next instruction (fault handler)
651        _status = BaseSimpleCPU::Running;
652        advanceInst(fault);
653    }
654
655    updateCycleCounts();
656}
657
658
659void
660TimingSimpleCPU::advanceInst(const Fault &fault)
661{
662    SimpleExecContext &t_info = *threadInfo[curThread];
663
664    if (_status == Faulting)
665        return;
666
667    if (fault != NoFault) {
668        advancePC(fault);
669        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
670        reschedule(fetchEvent, clockEdge(), true);
671        _status = Faulting;
672        return;
673    }
674
675
676    if (!t_info.stayAtPC)
677        advancePC(fault);
678
679    if (tryCompleteDrain())
680            return;
681
682    if (_status == BaseSimpleCPU::Running) {
683        // kick off fetch of next instruction... callback from icache
684        // response will cause that instruction to be executed,
685        // keeping the CPU running.
686        fetch();
687    }
688}
689
690
691void
692TimingSimpleCPU::completeIfetch(PacketPtr pkt)
693{
694    SimpleExecContext& t_info = *threadInfo[curThread];
695
696    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
697            pkt->getAddr() : 0);
698
699    // received a response from the icache: execute the received
700    // instruction
701    assert(!pkt || !pkt->isError());
702    assert(_status == IcacheWaitResponse);
703
704    _status = BaseSimpleCPU::Running;
705
706    updateCycleCounts();
707
708    if (pkt)
709        pkt->req->setAccessLatency();
710
711
712    preExecute();
713    if (curStaticInst && curStaticInst->isMemRef()) {
714        // load or store: just send to dcache
715        Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
716
717        // If we're not running now the instruction will complete in a dcache
718        // response callback or the instruction faulted and has started an
719        // ifetch
720        if (_status == BaseSimpleCPU::Running) {
721            if (fault != NoFault && traceData) {
722                // If there was a fault, we shouldn't trace this instruction.
723                delete traceData;
724                traceData = NULL;
725            }
726
727            postExecute();
728            // @todo remove me after debugging with legion done
729            if (curStaticInst && (!curStaticInst->isMicroop() ||
730                        curStaticInst->isFirstMicroop()))
731                instCnt++;
732            advanceInst(fault);
733        }
734    } else if (curStaticInst) {
735        // non-memory instruction: execute completely now
736        Fault fault = curStaticInst->execute(&t_info, traceData);
737
738        // keep an instruction count
739        if (fault == NoFault)
740            countInst();
741        else if (traceData && !DTRACE(ExecFaulting)) {
742            delete traceData;
743            traceData = NULL;
744        }
745
746        postExecute();
747        // @todo remove me after debugging with legion done
748        if (curStaticInst && (!curStaticInst->isMicroop() ||
749                curStaticInst->isFirstMicroop()))
750            instCnt++;
751        advanceInst(fault);
752    } else {
753        advanceInst(NoFault);
754    }
755
756    if (pkt) {
757        delete pkt->req;
758        delete pkt;
759    }
760}
761
762void
763TimingSimpleCPU::IcachePort::ITickEvent::process()
764{
765    cpu->completeIfetch(pkt);
766}
767
768bool
769TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
770{
771    DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
772    // we should only ever see one response per cycle since we only
773    // issue a new request once this response is sunk
774    assert(!tickEvent.scheduled());
775    // delay processing of returned data until next CPU clock edge
776    tickEvent.schedule(pkt, cpu->clockEdge());
777
778    return true;
779}
780
781void
782TimingSimpleCPU::IcachePort::recvReqRetry()
783{
784    // we shouldn't get a retry unless we have a packet that we're
785    // waiting to transmit
786    assert(cpu->ifetch_pkt != NULL);
787    assert(cpu->_status == IcacheRetry);
788    PacketPtr tmp = cpu->ifetch_pkt;
789    if (sendTimingReq(tmp)) {
790        cpu->_status = IcacheWaitResponse;
791        cpu->ifetch_pkt = NULL;
792    }
793}
794
795void
796TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
797{
798    // received a response from the dcache: complete the load or store
799    // instruction
800    assert(!pkt->isError());
801    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
802           pkt->req->getFlags().isSet(Request::NO_ACCESS));
803
804    pkt->req->setAccessLatency();
805
806    updateCycleCounts();
807
808    if (pkt->senderState) {
809        SplitFragmentSenderState * send_state =
810            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
811        assert(send_state);
812        delete pkt->req;
813        delete pkt;
814        PacketPtr big_pkt = send_state->bigPkt;
815        delete send_state;
816
817        SplitMainSenderState * main_send_state =
818            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
819        assert(main_send_state);
820        // Record the fact that this packet is no longer outstanding.
821        assert(main_send_state->outstanding != 0);
822        main_send_state->outstanding--;
823
824        if (main_send_state->outstanding) {
825            return;
826        } else {
827            delete main_send_state;
828            big_pkt->senderState = NULL;
829            pkt = big_pkt;
830        }
831    }
832
833    _status = BaseSimpleCPU::Running;
834
835    Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
836                                             traceData);
837
838    // keep an instruction count
839    if (fault == NoFault)
840        countInst();
841    else if (traceData) {
842        // If there was a fault, we shouldn't trace this instruction.
843        delete traceData;
844        traceData = NULL;
845    }
846
847    delete pkt->req;
848    delete pkt;
849
850    postExecute();
851
852    advanceInst(fault);
853}
854
855void
856TimingSimpleCPU::updateCycleCounts()
857{
858    const Cycles delta(curCycle() - previousCycle);
859
860    numCycles += delta;
861    ppCycles->notify(delta);
862
863    previousCycle = curCycle();
864}
865
866void
867TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
868{
869    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
870        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
871            cpu->wakeup(tid);
872        }
873    }
874
875    // Making it uniform across all CPUs:
876    // The CPUs need to be woken up only on an invalidation packet (when using caches)
877    // or on an incoming write packet (when not using caches)
878    // It is not necessary to wake up the processor on all incoming packets
879    if (pkt->isInvalidate() || pkt->isWrite()) {
880        for (auto &t_info : cpu->threadInfo) {
881            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
882        }
883    }
884}
885
886void
887TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
888{
889    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
890        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
891            cpu->wakeup(tid);
892        }
893    }
894}
895
896bool
897TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
898{
899    DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
900
901    // The timing CPU is not really ticked, instead it relies on the
902    // memory system (fetch and load/store) to set the pace.
903    if (!tickEvent.scheduled()) {
904        // Delay processing of returned data until next CPU clock edge
905        tickEvent.schedule(pkt, cpu->clockEdge());
906        return true;
907    } else {
908        // In the case of a split transaction and a cache that is
909        // faster than a CPU we could get two responses in the
910        // same tick, delay the second one
911        if (!retryRespEvent.scheduled())
912            cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
913        return false;
914    }
915}
916
917void
918TimingSimpleCPU::DcachePort::DTickEvent::process()
919{
920    cpu->completeDataAccess(pkt);
921}
922
923void
924TimingSimpleCPU::DcachePort::recvReqRetry()
925{
926    // we shouldn't get a retry unless we have a packet that we're
927    // waiting to transmit
928    assert(cpu->dcache_pkt != NULL);
929    assert(cpu->_status == DcacheRetry);
930    PacketPtr tmp = cpu->dcache_pkt;
931    if (tmp->senderState) {
932        // This is a packet from a split access.
933        SplitFragmentSenderState * send_state =
934            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
935        assert(send_state);
936        PacketPtr big_pkt = send_state->bigPkt;
937
938        SplitMainSenderState * main_send_state =
939            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
940        assert(main_send_state);
941
942        if (sendTimingReq(tmp)) {
943            // If we were able to send without retrying, record that fact
944            // and try sending the other fragment.
945            send_state->clearFromParent();
946            int other_index = main_send_state->getPendingFragment();
947            if (other_index > 0) {
948                tmp = main_send_state->fragments[other_index];
949                cpu->dcache_pkt = tmp;
950                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
951                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
952                    main_send_state->fragments[other_index] = NULL;
953                }
954            } else {
955                cpu->_status = DcacheWaitResponse;
956                // memory system takes ownership of packet
957                cpu->dcache_pkt = NULL;
958            }
959        }
960    } else if (sendTimingReq(tmp)) {
961        cpu->_status = DcacheWaitResponse;
962        // memory system takes ownership of packet
963        cpu->dcache_pkt = NULL;
964    }
965}
966
967TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
968    Tick t)
969    : pkt(_pkt), cpu(_cpu)
970{
971    cpu->schedule(this, t);
972}
973
974void
975TimingSimpleCPU::IprEvent::process()
976{
977    cpu->completeDataAccess(pkt);
978}
979
980const char *
981TimingSimpleCPU::IprEvent::description() const
982{
983    return "Timing Simple CPU Delay IPR event";
984}
985
986
987void
988TimingSimpleCPU::printAddr(Addr a)
989{
990    dcachePort.printAddr(a);
991}
992
993
994////////////////////////////////////////////////////////////////////////
995//
996//  TimingSimpleCPU Simulation Object
997//
998TimingSimpleCPU *
999TimingSimpleCPUParams::create()
1000{
1001    return new TimingSimpleCPU(this);
1002}
1003