timing.cc revision 5103
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48    if (if_name == "dcache_port")
49        return &dcachePort;
50    else if (if_name == "icache_port")
51        return &icachePort;
52    else
53        panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59    BaseCPU::init();
60#if FULL_SYSTEM
61    for (int i = 0; i < threadContexts.size(); ++i) {
62        ThreadContext *tc = threadContexts[i];
63
64        // initialize CPU, including PC
65        TheISA::initCPU(tc, tc->readCpuId());
66    }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74    return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80    //No internal storage to update, jusst return
81    return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87    if (status == RangeChange) {
88        if (!snoopRangeSent) {
89            snoopRangeSent = true;
90            sendStatusChange(Port::RangeChange);
91        }
92        return;
93    }
94
95    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102    pkt = _pkt;
103    Event::schedule(t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(Params *p)
107    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
108      cpu_id(p->cpu_id)
109{
110    _status = Idle;
111
112    icachePort.snoopRangeSent = false;
113    dcachePort.snoopRangeSent = false;
114
115    ifetch_pkt = dcache_pkt = NULL;
116    drainEvent = NULL;
117    fetchEvent = NULL;
118    previousTick = 0;
119    changeState(SimObject::Running);
120}
121
122
123TimingSimpleCPU::~TimingSimpleCPU()
124{
125}
126
127void
128TimingSimpleCPU::serialize(ostream &os)
129{
130    SimObject::State so_state = SimObject::getState();
131    SERIALIZE_ENUM(so_state);
132    BaseSimpleCPU::serialize(os);
133}
134
135void
136TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138    SimObject::State so_state;
139    UNSERIALIZE_ENUM(so_state);
140    BaseSimpleCPU::unserialize(cp, section);
141}
142
143unsigned int
144TimingSimpleCPU::drain(Event *drain_event)
145{
146    // TimingSimpleCPU is ready to drain if it's not waiting for
147    // an access to complete.
148    if (status() == Idle || status() == Running || status() == SwitchedOut) {
149        changeState(SimObject::Drained);
150        return 0;
151    } else {
152        changeState(SimObject::Draining);
153        drainEvent = drain_event;
154        return 1;
155    }
156}
157
158void
159TimingSimpleCPU::resume()
160{
161    if (_status != SwitchedOut && _status != Idle) {
162        assert(system->getMemoryMode() == Enums::timing);
163
164        // Delete the old event if it existed.
165        if (fetchEvent) {
166            if (fetchEvent->scheduled())
167                fetchEvent->deschedule();
168
169            delete fetchEvent;
170        }
171
172        fetchEvent = new FetchEvent(this, nextCycle());
173    }
174
175    changeState(SimObject::Running);
176}
177
178void
179TimingSimpleCPU::switchOut()
180{
181    assert(status() == Running || status() == Idle);
182    _status = SwitchedOut;
183    numCycles += tickToCycles(curTick - previousTick);
184
185    // If we've been scheduled to resume but are then told to switch out,
186    // we'll need to cancel it.
187    if (fetchEvent && fetchEvent->scheduled())
188        fetchEvent->deschedule();
189}
190
191
192void
193TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
194{
195    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
196
197    // if any of this CPU's ThreadContexts are active, mark the CPU as
198    // running and schedule its tick event.
199    for (int i = 0; i < threadContexts.size(); ++i) {
200        ThreadContext *tc = threadContexts[i];
201        if (tc->status() == ThreadContext::Active && _status != Running) {
202            _status = Running;
203            break;
204        }
205    }
206
207    if (_status != Running) {
208        _status = Idle;
209    }
210    previousTick = curTick;
211}
212
213
214void
215TimingSimpleCPU::activateContext(int thread_num, int delay)
216{
217    assert(thread_num == 0);
218    assert(thread);
219
220    assert(_status == Idle);
221
222    notIdleFraction++;
223    _status = Running;
224
225    // kick things off by initiating the fetch of the next instruction
226    fetchEvent = new FetchEvent(this, nextCycle(curTick + ticks(delay)));
227}
228
229
230void
231TimingSimpleCPU::suspendContext(int thread_num)
232{
233    assert(thread_num == 0);
234    assert(thread);
235
236    assert(_status == Running);
237
238    // just change status to Idle... if status != Running,
239    // completeInst() will not initiate fetch of next instruction.
240
241    notIdleFraction--;
242    _status = Idle;
243}
244
245
246template <class T>
247Fault
248TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
249{
250    Request *req =
251        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
252                    cpu_id, /* thread ID */ 0);
253
254    if (traceData) {
255        traceData->setAddr(req->getVaddr());
256    }
257
258   // translate to physical address
259    Fault fault = thread->translateDataReadReq(req);
260
261    // Now do the access.
262    if (fault == NoFault) {
263        PacketPtr pkt =
264            new Packet(req,
265                       (req->isLocked() ?
266                        MemCmd::LoadLockedReq : MemCmd::ReadReq),
267                       Packet::Broadcast);
268        pkt->dataDynamic<T>(new T);
269
270        if (req->isMmapedIpr()) {
271            Tick delay;
272            delay = TheISA::handleIprRead(thread->getTC(), pkt);
273            new IprEvent(pkt, this, nextCycle(curTick + delay));
274            _status = DcacheWaitResponse;
275            dcache_pkt = NULL;
276        } else if (!dcachePort.sendTiming(pkt)) {
277            _status = DcacheRetry;
278            dcache_pkt = pkt;
279        } else {
280            _status = DcacheWaitResponse;
281            // memory system takes ownership of packet
282            dcache_pkt = NULL;
283        }
284
285        // This will need a new way to tell if it has a dcache attached.
286        if (req->isUncacheable())
287            recordEvent("Uncached Read");
288    } else {
289        delete req;
290    }
291
292    return fault;
293}
294
295#ifndef DOXYGEN_SHOULD_SKIP_THIS
296
297template
298Fault
299TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
300
301template
302Fault
303TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
304
305template
306Fault
307TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
308
309template
310Fault
311TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
312
313template
314Fault
315TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
316
317template
318Fault
319TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
320
321#endif //DOXYGEN_SHOULD_SKIP_THIS
322
323template<>
324Fault
325TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
326{
327    return read(addr, *(uint64_t*)&data, flags);
328}
329
330template<>
331Fault
332TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
333{
334    return read(addr, *(uint32_t*)&data, flags);
335}
336
337
338template<>
339Fault
340TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
341{
342    return read(addr, (uint32_t&)data, flags);
343}
344
345
346template <class T>
347Fault
348TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
349{
350    Request *req =
351        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
352                    cpu_id, /* thread ID */ 0);
353
354    if (traceData) {
355        traceData->setAddr(req->getVaddr());
356    }
357
358    // translate to physical address
359    Fault fault = thread->translateDataWriteReq(req);
360
361    // Now do the access.
362    if (fault == NoFault) {
363        MemCmd cmd = MemCmd::WriteReq; // default
364        bool do_access = true;  // flag to suppress cache access
365
366        if (req->isLocked()) {
367            cmd = MemCmd::StoreCondReq;
368            do_access = TheISA::handleLockedWrite(thread, req);
369        } else if (req->isSwap()) {
370            cmd = MemCmd::SwapReq;
371            if (req->isCondSwap()) {
372                assert(res);
373                req->setExtraData(*res);
374            }
375        }
376
377        // Note: need to allocate dcache_pkt even if do_access is
378        // false, as it's used unconditionally to call completeAcc().
379        assert(dcache_pkt == NULL);
380        dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
381        dcache_pkt->allocate();
382        dcache_pkt->set(data);
383
384        if (do_access) {
385            if (req->isMmapedIpr()) {
386                Tick delay;
387                dcache_pkt->set(htog(data));
388                delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
389                new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
390                _status = DcacheWaitResponse;
391                dcache_pkt = NULL;
392            } else if (!dcachePort.sendTiming(dcache_pkt)) {
393                _status = DcacheRetry;
394            } else {
395                _status = DcacheWaitResponse;
396                // memory system takes ownership of packet
397                dcache_pkt = NULL;
398            }
399        }
400        // This will need a new way to tell if it's hooked up to a cache or not.
401        if (req->isUncacheable())
402            recordEvent("Uncached Write");
403    } else {
404        delete req;
405    }
406
407
408    // If the write needs to have a fault on the access, consider calling
409    // changeStatus() and changing it to "bad addr write" or something.
410    return fault;
411}
412
413
414#ifndef DOXYGEN_SHOULD_SKIP_THIS
415template
416Fault
417TimingSimpleCPU::write(Twin32_t data, Addr addr,
418                       unsigned flags, uint64_t *res);
419
420template
421Fault
422TimingSimpleCPU::write(Twin64_t data, Addr addr,
423                       unsigned flags, uint64_t *res);
424
425template
426Fault
427TimingSimpleCPU::write(uint64_t data, Addr addr,
428                       unsigned flags, uint64_t *res);
429
430template
431Fault
432TimingSimpleCPU::write(uint32_t data, Addr addr,
433                       unsigned flags, uint64_t *res);
434
435template
436Fault
437TimingSimpleCPU::write(uint16_t data, Addr addr,
438                       unsigned flags, uint64_t *res);
439
440template
441Fault
442TimingSimpleCPU::write(uint8_t data, Addr addr,
443                       unsigned flags, uint64_t *res);
444
445#endif //DOXYGEN_SHOULD_SKIP_THIS
446
447template<>
448Fault
449TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
450{
451    return write(*(uint64_t*)&data, addr, flags, res);
452}
453
454template<>
455Fault
456TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
457{
458    return write(*(uint32_t*)&data, addr, flags, res);
459}
460
461
462template<>
463Fault
464TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
465{
466    return write((uint32_t)data, addr, flags, res);
467}
468
469
470void
471TimingSimpleCPU::fetch()
472{
473    if (!curStaticInst || !curStaticInst->isDelayedCommit())
474        checkForInterrupts();
475
476    Request *ifetch_req = new Request();
477    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
478    Fault fault = setupFetchRequest(ifetch_req);
479
480    ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
481    ifetch_pkt->dataStatic(&inst);
482
483    if (fault == NoFault) {
484        if (!icachePort.sendTiming(ifetch_pkt)) {
485            // Need to wait for retry
486            _status = IcacheRetry;
487        } else {
488            // Need to wait for cache to respond
489            _status = IcacheWaitResponse;
490            // ownership of packet transferred to memory system
491            ifetch_pkt = NULL;
492        }
493    } else {
494        delete ifetch_req;
495        delete ifetch_pkt;
496        // fetch fault: advance directly to next instruction (fault handler)
497        advanceInst(fault);
498    }
499
500    numCycles += tickToCycles(curTick - previousTick);
501    previousTick = curTick;
502}
503
504
505void
506TimingSimpleCPU::advanceInst(Fault fault)
507{
508    advancePC(fault);
509
510    if (_status == Running) {
511        // kick off fetch of next instruction... callback from icache
512        // response will cause that instruction to be executed,
513        // keeping the CPU running.
514        fetch();
515    }
516}
517
518
519void
520TimingSimpleCPU::completeIfetch(PacketPtr pkt)
521{
522    // received a response from the icache: execute the received
523    // instruction
524    assert(!pkt->isError());
525    assert(_status == IcacheWaitResponse);
526
527    _status = Running;
528
529    numCycles += tickToCycles(curTick - previousTick);
530    previousTick = curTick;
531
532    if (getState() == SimObject::Draining) {
533        delete pkt->req;
534        delete pkt;
535
536        completeDrain();
537        return;
538    }
539
540    preExecute();
541    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
542        // load or store: just send to dcache
543        Fault fault = curStaticInst->initiateAcc(this, traceData);
544        if (_status != Running) {
545            // instruction will complete in dcache response callback
546            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
547            assert(fault == NoFault);
548        } else {
549            if (fault == NoFault) {
550                // early fail on store conditional: complete now
551                assert(dcache_pkt != NULL);
552                fault = curStaticInst->completeAcc(dcache_pkt, this,
553                                                   traceData);
554                delete dcache_pkt->req;
555                delete dcache_pkt;
556                dcache_pkt = NULL;
557
558                // keep an instruction count
559                if (fault == NoFault)
560                    countInst();
561            } else if (traceData) {
562                // If there was a fault, we shouldn't trace this instruction.
563                delete traceData;
564                traceData = NULL;
565            }
566
567            postExecute();
568            // @todo remove me after debugging with legion done
569            if (curStaticInst && (!curStaticInst->isMicroop() ||
570                        curStaticInst->isFirstMicroop()))
571                instCnt++;
572            advanceInst(fault);
573        }
574    } else {
575        // non-memory instruction: execute completely now
576        Fault fault = curStaticInst->execute(this, traceData);
577
578        // keep an instruction count
579        if (fault == NoFault)
580            countInst();
581        else if (traceData) {
582            // If there was a fault, we shouldn't trace this instruction.
583            delete traceData;
584            traceData = NULL;
585        }
586
587        postExecute();
588        // @todo remove me after debugging with legion done
589        if (curStaticInst && (!curStaticInst->isMicroop() ||
590                    curStaticInst->isFirstMicroop()))
591            instCnt++;
592        advanceInst(fault);
593    }
594
595    delete pkt->req;
596    delete pkt;
597}
598
599void
600TimingSimpleCPU::IcachePort::ITickEvent::process()
601{
602    cpu->completeIfetch(pkt);
603}
604
605bool
606TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
607{
608    if (pkt->isResponse() && !pkt->wasNacked()) {
609        // delay processing of returned data until next CPU clock edge
610        Tick next_tick = cpu->nextCycle(curTick);
611
612        if (next_tick == curTick)
613            cpu->completeIfetch(pkt);
614        else
615            tickEvent.schedule(pkt, next_tick);
616
617        return true;
618    }
619    else if (pkt->wasNacked()) {
620        assert(cpu->_status == IcacheWaitResponse);
621        pkt->reinitNacked();
622        if (!sendTiming(pkt)) {
623            cpu->_status = IcacheRetry;
624            cpu->ifetch_pkt = pkt;
625        }
626    }
627    //Snooping a Coherence Request, do nothing
628    return true;
629}
630
631void
632TimingSimpleCPU::IcachePort::recvRetry()
633{
634    // we shouldn't get a retry unless we have a packet that we're
635    // waiting to transmit
636    assert(cpu->ifetch_pkt != NULL);
637    assert(cpu->_status == IcacheRetry);
638    PacketPtr tmp = cpu->ifetch_pkt;
639    if (sendTiming(tmp)) {
640        cpu->_status = IcacheWaitResponse;
641        cpu->ifetch_pkt = NULL;
642    }
643}
644
645void
646TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
647{
648    // received a response from the dcache: complete the load or store
649    // instruction
650    assert(!pkt->isError());
651    assert(_status == DcacheWaitResponse);
652    _status = Running;
653
654    numCycles += tickToCycles(curTick - previousTick);
655    previousTick = curTick;
656
657    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
658
659    // keep an instruction count
660    if (fault == NoFault)
661        countInst();
662    else if (traceData) {
663        // If there was a fault, we shouldn't trace this instruction.
664        delete traceData;
665        traceData = NULL;
666    }
667
668    if (pkt->isRead() && pkt->isLocked()) {
669        TheISA::handleLockedRead(thread, pkt->req);
670    }
671
672    delete pkt->req;
673    delete pkt;
674
675    postExecute();
676
677    if (getState() == SimObject::Draining) {
678        advancePC(fault);
679        completeDrain();
680
681        return;
682    }
683
684    advanceInst(fault);
685}
686
687
688void
689TimingSimpleCPU::completeDrain()
690{
691    DPRINTF(Config, "Done draining\n");
692    changeState(SimObject::Drained);
693    drainEvent->process();
694}
695
696void
697TimingSimpleCPU::DcachePort::setPeer(Port *port)
698{
699    Port::setPeer(port);
700
701#if FULL_SYSTEM
702    // Update the ThreadContext's memory ports (Functional/Virtual
703    // Ports)
704    cpu->tcBase()->connectMemPorts();
705#endif
706}
707
708bool
709TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
710{
711    if (pkt->isResponse() && !pkt->wasNacked()) {
712        // delay processing of returned data until next CPU clock edge
713        Tick next_tick = cpu->nextCycle(curTick);
714
715        if (next_tick == curTick)
716            cpu->completeDataAccess(pkt);
717        else
718            tickEvent.schedule(pkt, next_tick);
719
720        return true;
721    }
722    else if (pkt->wasNacked()) {
723        assert(cpu->_status == DcacheWaitResponse);
724        pkt->reinitNacked();
725        if (!sendTiming(pkt)) {
726            cpu->_status = DcacheRetry;
727            cpu->dcache_pkt = pkt;
728        }
729    }
730    //Snooping a Coherence Request, do nothing
731    return true;
732}
733
734void
735TimingSimpleCPU::DcachePort::DTickEvent::process()
736{
737    cpu->completeDataAccess(pkt);
738}
739
740void
741TimingSimpleCPU::DcachePort::recvRetry()
742{
743    // we shouldn't get a retry unless we have a packet that we're
744    // waiting to transmit
745    assert(cpu->dcache_pkt != NULL);
746    assert(cpu->_status == DcacheRetry);
747    PacketPtr tmp = cpu->dcache_pkt;
748    if (sendTiming(tmp)) {
749        cpu->_status = DcacheWaitResponse;
750        // memory system takes ownership of packet
751        cpu->dcache_pkt = NULL;
752    }
753}
754
755TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t)
756    : Event(&mainEventQueue), pkt(_pkt), cpu(_cpu)
757{
758    schedule(t);
759}
760
761void
762TimingSimpleCPU::IprEvent::process()
763{
764    cpu->completeDataAccess(pkt);
765}
766
767const char *
768TimingSimpleCPU::IprEvent::description()
769{
770    return "Timing Simple CPU Delay IPR event";
771}
772
773
774////////////////////////////////////////////////////////////////////////
775//
776//  TimingSimpleCPU Simulation Object
777//
778TimingSimpleCPU *
779TimingSimpleCPUParams::create()
780{
781    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
782    params->name = name;
783    params->numberOfThreads = 1;
784    params->max_insts_any_thread = max_insts_any_thread;
785    params->max_insts_all_threads = max_insts_all_threads;
786    params->max_loads_any_thread = max_loads_any_thread;
787    params->max_loads_all_threads = max_loads_all_threads;
788    params->progress_interval = progress_interval;
789    params->deferRegistration = defer_registration;
790    params->clock = clock;
791    params->phase = phase;
792    params->functionTrace = function_trace;
793    params->functionTraceStart = function_trace_start;
794    params->system = system;
795    params->cpu_id = cpu_id;
796    params->tracer = tracer;
797
798    params->itb = itb;
799    params->dtb = dtb;
800#if FULL_SYSTEM
801    params->profile = profile;
802    params->do_quiesce = do_quiesce;
803    params->do_checkpoint_insts = do_checkpoint_insts;
804    params->do_statistics_insts = do_statistics_insts;
805#else
806    if (workload.size() != 1)
807        panic("only one workload allowed");
808    params->process = workload[0];
809#endif
810
811    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
812    return cpu;
813}
814