timing.cc revision 2839
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40
41void
42TimingSimpleCPU::init()
43{
44    //Create Memory Ports (conect them up)
45    Port *mem_dport = mem->getPort("");
46    dcachePort.setPeer(mem_dport);
47    mem_dport->setPeer(&dcachePort);
48
49    Port *mem_iport = mem->getPort("");
50    icachePort.setPeer(mem_iport);
51    mem_iport->setPeer(&icachePort);
52
53    BaseCPU::init();
54#if FULL_SYSTEM
55    for (int i = 0; i < threadContexts.size(); ++i) {
56        ThreadContext *tc = threadContexts[i];
57
58        // initialize CPU, including PC
59        TheISA::initCPU(tc, tc->readCpuId());
60    }
61#endif
62}
63
64Tick
65TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66{
67    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68    return curTick;
69}
70
71void
72TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73{
74    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75}
76
77void
78TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79{
80    if (status == RangeChange)
81        return;
82
83    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84}
85
86TimingSimpleCPU::TimingSimpleCPU(Params *p)
87    : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88{
89    _status = Idle;
90    ifetch_pkt = dcache_pkt = NULL;
91    drainEvent = NULL;
92    state = SimObject::Timing;
93}
94
95
96TimingSimpleCPU::~TimingSimpleCPU()
97{
98}
99
100void
101TimingSimpleCPU::serialize(ostream &os)
102{
103    SERIALIZE_ENUM(_status);
104    BaseSimpleCPU::serialize(os);
105}
106
107void
108TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
109{
110    UNSERIALIZE_ENUM(_status);
111    BaseSimpleCPU::unserialize(cp, section);
112}
113
114bool
115TimingSimpleCPU::drain(Event *drain_event)
116{
117    // TimingSimpleCPU is ready to drain if it's not waiting for
118    // an access to complete.
119    if (status() == Idle || status() == Running || status() == SwitchedOut) {
120        changeState(SimObject::DrainedTiming);
121        return false;
122    } else {
123        changeState(SimObject::Draining);
124        drainEvent = drain_event;
125        return true;
126    }
127}
128
129void
130TimingSimpleCPU::resume()
131{
132    if (_status != SwitchedOut && _status != Idle) {
133        Event *e =
134            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
135        e->schedule(curTick);
136    }
137}
138
139void
140TimingSimpleCPU::setMemoryMode(State new_mode)
141{
142    assert(new_mode == SimObject::Timing);
143}
144
145void
146TimingSimpleCPU::switchOut()
147{
148    assert(status() == Running || status() == Idle);
149    _status = SwitchedOut;
150}
151
152
153void
154TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
155{
156    BaseCPU::takeOverFrom(oldCPU);
157
158    // if any of this CPU's ThreadContexts are active, mark the CPU as
159    // running and schedule its tick event.
160    for (int i = 0; i < threadContexts.size(); ++i) {
161        ThreadContext *tc = threadContexts[i];
162        if (tc->status() == ThreadContext::Active && _status != Running) {
163            _status = Running;
164            break;
165        }
166    }
167}
168
169
170void
171TimingSimpleCPU::activateContext(int thread_num, int delay)
172{
173    assert(thread_num == 0);
174    assert(thread);
175
176    assert(_status == Idle);
177
178    notIdleFraction++;
179    _status = Running;
180    // kick things off by initiating the fetch of the next instruction
181    Event *e =
182        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
183    e->schedule(curTick + cycles(delay));
184}
185
186
187void
188TimingSimpleCPU::suspendContext(int thread_num)
189{
190    assert(thread_num == 0);
191    assert(thread);
192
193    assert(_status == Running);
194
195    // just change status to Idle... if status != Running,
196    // completeInst() will not initiate fetch of next instruction.
197
198    notIdleFraction--;
199    _status = Idle;
200}
201
202
203template <class T>
204Fault
205TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
206{
207    // need to fill in CPU & thread IDs here
208    Request *data_read_req = new Request();
209    data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
210    data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
211
212    if (traceData) {
213        traceData->setAddr(data_read_req->getVaddr());
214    }
215
216   // translate to physical address
217    Fault fault = thread->translateDataReadReq(data_read_req);
218
219    // Now do the access.
220    if (fault == NoFault) {
221        Packet *data_read_pkt =
222            new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
223        data_read_pkt->dataDynamic<T>(new T);
224
225        if (!dcachePort.sendTiming(data_read_pkt)) {
226            _status = DcacheRetry;
227            dcache_pkt = data_read_pkt;
228        } else {
229            _status = DcacheWaitResponse;
230            dcache_pkt = NULL;
231        }
232    }
233
234    // This will need a new way to tell if it has a dcache attached.
235    if (data_read_req->getFlags() & UNCACHEABLE)
236        recordEvent("Uncached Read");
237
238    return fault;
239}
240
241#ifndef DOXYGEN_SHOULD_SKIP_THIS
242
243template
244Fault
245TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
246
247template
248Fault
249TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
250
251template
252Fault
253TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
254
255template
256Fault
257TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
258
259#endif //DOXYGEN_SHOULD_SKIP_THIS
260
261template<>
262Fault
263TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
264{
265    return read(addr, *(uint64_t*)&data, flags);
266}
267
268template<>
269Fault
270TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
271{
272    return read(addr, *(uint32_t*)&data, flags);
273}
274
275
276template<>
277Fault
278TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
279{
280    return read(addr, (uint32_t&)data, flags);
281}
282
283
284template <class T>
285Fault
286TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
287{
288    // need to fill in CPU & thread IDs here
289    Request *data_write_req = new Request();
290    data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
291    data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
292
293    // translate to physical address
294    Fault fault = thread->translateDataWriteReq(data_write_req);
295    // Now do the access.
296    if (fault == NoFault) {
297        Packet *data_write_pkt =
298            new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
299        data_write_pkt->allocate();
300        data_write_pkt->set(data);
301
302        if (!dcachePort.sendTiming(data_write_pkt)) {
303            _status = DcacheRetry;
304            dcache_pkt = data_write_pkt;
305        } else {
306            _status = DcacheWaitResponse;
307            dcache_pkt = NULL;
308        }
309    }
310
311    // This will need a new way to tell if it's hooked up to a cache or not.
312    if (data_write_req->getFlags() & UNCACHEABLE)
313        recordEvent("Uncached Write");
314
315    // If the write needs to have a fault on the access, consider calling
316    // changeStatus() and changing it to "bad addr write" or something.
317    return fault;
318}
319
320
321#ifndef DOXYGEN_SHOULD_SKIP_THIS
322template
323Fault
324TimingSimpleCPU::write(uint64_t data, Addr addr,
325                       unsigned flags, uint64_t *res);
326
327template
328Fault
329TimingSimpleCPU::write(uint32_t data, Addr addr,
330                       unsigned flags, uint64_t *res);
331
332template
333Fault
334TimingSimpleCPU::write(uint16_t data, Addr addr,
335                       unsigned flags, uint64_t *res);
336
337template
338Fault
339TimingSimpleCPU::write(uint8_t data, Addr addr,
340                       unsigned flags, uint64_t *res);
341
342#endif //DOXYGEN_SHOULD_SKIP_THIS
343
344template<>
345Fault
346TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
347{
348    return write(*(uint64_t*)&data, addr, flags, res);
349}
350
351template<>
352Fault
353TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
354{
355    return write(*(uint32_t*)&data, addr, flags, res);
356}
357
358
359template<>
360Fault
361TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
362{
363    return write((uint32_t)data, addr, flags, res);
364}
365
366
367void
368TimingSimpleCPU::fetch()
369{
370    checkForInterrupts();
371
372    // need to fill in CPU & thread IDs here
373    Request *ifetch_req = new Request();
374    ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
375    Fault fault = setupFetchRequest(ifetch_req);
376
377    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
378    ifetch_pkt->dataStatic(&inst);
379
380    if (fault == NoFault) {
381        if (!icachePort.sendTiming(ifetch_pkt)) {
382            // Need to wait for retry
383            _status = IcacheRetry;
384        } else {
385            // Need to wait for cache to respond
386            _status = IcacheWaitResponse;
387            // ownership of packet transferred to memory system
388            ifetch_pkt = NULL;
389        }
390    } else {
391        // fetch fault: advance directly to next instruction (fault handler)
392        advanceInst(fault);
393    }
394}
395
396
397void
398TimingSimpleCPU::advanceInst(Fault fault)
399{
400    advancePC(fault);
401
402    if (_status == Running) {
403        // kick off fetch of next instruction... callback from icache
404        // response will cause that instruction to be executed,
405        // keeping the CPU running.
406        fetch();
407    }
408}
409
410
411void
412TimingSimpleCPU::completeIfetch(Packet *pkt)
413{
414    // received a response from the icache: execute the received
415    // instruction
416    assert(pkt->result == Packet::Success);
417    assert(_status == IcacheWaitResponse);
418
419    _status = Running;
420
421    delete pkt->req;
422    delete pkt;
423
424    if (getState() == SimObject::Draining) {
425        completeDrain();
426        return;
427    }
428
429    preExecute();
430    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
431        // load or store: just send to dcache
432        Fault fault = curStaticInst->initiateAcc(this, traceData);
433        if (fault == NoFault) {
434            // successfully initiated access: instruction will
435            // complete in dcache response callback
436            assert(_status == DcacheWaitResponse);
437        } else {
438            // fault: complete now to invoke fault handler
439            postExecute();
440            advanceInst(fault);
441        }
442    } else {
443        // non-memory instruction: execute completely now
444        Fault fault = curStaticInst->execute(this, traceData);
445        postExecute();
446        advanceInst(fault);
447    }
448}
449
450
451bool
452TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
453{
454    cpu->completeIfetch(pkt);
455    return true;
456}
457
458void
459TimingSimpleCPU::IcachePort::recvRetry()
460{
461    // we shouldn't get a retry unless we have a packet that we're
462    // waiting to transmit
463    assert(cpu->ifetch_pkt != NULL);
464    assert(cpu->_status == IcacheRetry);
465    Packet *tmp = cpu->ifetch_pkt;
466    if (sendTiming(tmp)) {
467        cpu->_status = IcacheWaitResponse;
468        cpu->ifetch_pkt = NULL;
469    }
470}
471
472void
473TimingSimpleCPU::completeDataAccess(Packet *pkt)
474{
475    // received a response from the dcache: complete the load or store
476    // instruction
477    assert(pkt->result == Packet::Success);
478    assert(_status == DcacheWaitResponse);
479    _status = Running;
480
481    if (getState() == SimObject::Draining) {
482        completeDrain();
483
484        delete pkt->req;
485        delete pkt;
486
487        return;
488    }
489
490    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
491
492    delete pkt->req;
493    delete pkt;
494
495    postExecute();
496    advanceInst(fault);
497}
498
499
500void
501TimingSimpleCPU::completeDrain()
502{
503    DPRINTF(Config, "Done draining\n");
504    changeState(SimObject::DrainedTiming);
505    drainEvent->process();
506}
507
508bool
509TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
510{
511    cpu->completeDataAccess(pkt);
512    return true;
513}
514
515void
516TimingSimpleCPU::DcachePort::recvRetry()
517{
518    // we shouldn't get a retry unless we have a packet that we're
519    // waiting to transmit
520    assert(cpu->dcache_pkt != NULL);
521    assert(cpu->_status == DcacheRetry);
522    Packet *tmp = cpu->dcache_pkt;
523    if (sendTiming(tmp)) {
524        cpu->_status = DcacheWaitResponse;
525        cpu->dcache_pkt = NULL;
526    }
527}
528
529
530////////////////////////////////////////////////////////////////////////
531//
532//  TimingSimpleCPU Simulation Object
533//
534BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
535
536    Param<Counter> max_insts_any_thread;
537    Param<Counter> max_insts_all_threads;
538    Param<Counter> max_loads_any_thread;
539    Param<Counter> max_loads_all_threads;
540    SimObjectParam<MemObject *> mem;
541
542#if FULL_SYSTEM
543    SimObjectParam<AlphaITB *> itb;
544    SimObjectParam<AlphaDTB *> dtb;
545    SimObjectParam<System *> system;
546    Param<int> cpu_id;
547    Param<Tick> profile;
548#else
549    SimObjectParam<Process *> workload;
550#endif // FULL_SYSTEM
551
552    Param<int> clock;
553
554    Param<bool> defer_registration;
555    Param<int> width;
556    Param<bool> function_trace;
557    Param<Tick> function_trace_start;
558    Param<bool> simulate_stalls;
559
560END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
561
562BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
563
564    INIT_PARAM(max_insts_any_thread,
565               "terminate when any thread reaches this inst count"),
566    INIT_PARAM(max_insts_all_threads,
567               "terminate when all threads have reached this inst count"),
568    INIT_PARAM(max_loads_any_thread,
569               "terminate when any thread reaches this load count"),
570    INIT_PARAM(max_loads_all_threads,
571               "terminate when all threads have reached this load count"),
572    INIT_PARAM(mem, "memory"),
573
574#if FULL_SYSTEM
575    INIT_PARAM(itb, "Instruction TLB"),
576    INIT_PARAM(dtb, "Data TLB"),
577    INIT_PARAM(system, "system object"),
578    INIT_PARAM(cpu_id, "processor ID"),
579    INIT_PARAM(profile, ""),
580#else
581    INIT_PARAM(workload, "processes to run"),
582#endif // FULL_SYSTEM
583
584    INIT_PARAM(clock, "clock speed"),
585    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
586    INIT_PARAM(width, "cpu width"),
587    INIT_PARAM(function_trace, "Enable function trace"),
588    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
589    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
590
591END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
592
593
594CREATE_SIM_OBJECT(TimingSimpleCPU)
595{
596    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
597    params->name = getInstanceName();
598    params->numberOfThreads = 1;
599    params->max_insts_any_thread = max_insts_any_thread;
600    params->max_insts_all_threads = max_insts_all_threads;
601    params->max_loads_any_thread = max_loads_any_thread;
602    params->max_loads_all_threads = max_loads_all_threads;
603    params->deferRegistration = defer_registration;
604    params->clock = clock;
605    params->functionTrace = function_trace;
606    params->functionTraceStart = function_trace_start;
607    params->mem = mem;
608
609#if FULL_SYSTEM
610    params->itb = itb;
611    params->dtb = dtb;
612    params->system = system;
613    params->cpu_id = cpu_id;
614    params->profile = profile;
615#else
616    params->process = workload;
617#endif
618
619    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
620    return cpu;
621}
622
623REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
624
625