base.hh revision 9023:e9201a7bce59
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 *          Dave Greene
42 *          Nathan Binkert
43 */
44
45#ifndef __CPU_SIMPLE_BASE_HH__
46#define __CPU_SIMPLE_BASE_HH__
47
48#include "base/statistics.hh"
49#include "config/the_isa.hh"
50#include "cpu/base.hh"
51#include "cpu/checker/cpu.hh"
52#include "cpu/pc_event.hh"
53#include "cpu/simple_thread.hh"
54#include "cpu/static_inst.hh"
55#include "mem/packet.hh"
56#include "mem/port.hh"
57#include "mem/request.hh"
58#include "sim/eventq.hh"
59#include "sim/full_system.hh"
60#include "sim/system.hh"
61
62// forward declarations
63class Checkpoint;
64class Process;
65class Processor;
66class ThreadContext;
67
68namespace TheISA
69{
70    class DTB;
71    class ITB;
72}
73
74namespace Trace {
75    class InstRecord;
76}
77
78struct BaseSimpleCPUParams;
79
80
81class BaseSimpleCPU : public BaseCPU
82{
83  protected:
84    typedef TheISA::MiscReg MiscReg;
85    typedef TheISA::FloatReg FloatReg;
86    typedef TheISA::FloatRegBits FloatRegBits;
87
88  protected:
89    Trace::InstRecord *traceData;
90
91    inline void checkPcEventQueue() {
92        Addr oldpc, pc = thread->instAddr();
93        do {
94            oldpc = pc;
95            system->pcEventQueue.service(tc);
96            pc = thread->instAddr();
97        } while (oldpc != pc);
98    }
99
100  public:
101    void wakeup();
102
103    void zero_fill_64(Addr addr) {
104      static int warned = 0;
105      if (!warned) {
106        warn ("WH64 is not implemented");
107        warned = 1;
108      }
109    };
110
111  public:
112    BaseSimpleCPU(BaseSimpleCPUParams *params);
113    virtual ~BaseSimpleCPU();
114
115  public:
116    /** SimpleThread object, provides all the architectural state. */
117    SimpleThread *thread;
118
119    /** ThreadContext object, provides an interface for external
120     * objects to modify this thread's state.
121     */
122    ThreadContext *tc;
123
124    CheckerCPU *checker;
125
126  protected:
127
128    enum Status {
129        Idle,
130        Running,
131        Faulting,
132        ITBWaitResponse,
133        IcacheRetry,
134        IcacheWaitResponse,
135        IcacheWaitSwitch,
136        DTBWaitResponse,
137        DcacheRetry,
138        DcacheWaitResponse,
139        DcacheWaitSwitch,
140        SwitchedOut
141    };
142
143    Status _status;
144
145  public:
146
147    Addr dbg_vtophys(Addr addr);
148
149    bool interval_stats;
150
151    // current instruction
152    TheISA::MachInst inst;
153
154    StaticInstPtr curStaticInst;
155    StaticInstPtr curMacroStaticInst;
156
157    //This is the offset from the current pc that fetch should be performed at
158    Addr fetchOffset;
159    //This flag says to stay at the current pc. This is useful for
160    //instructions which go beyond MachInst boundaries.
161    bool stayAtPC;
162
163    void checkForInterrupts();
164    void setupFetchRequest(Request *req);
165    void preExecute();
166    void postExecute();
167    void advancePC(Fault fault);
168
169    virtual void deallocateContext(ThreadID thread_num);
170    virtual void haltContext(ThreadID thread_num);
171
172    // statistics
173    virtual void regStats();
174    virtual void resetStats();
175
176    // number of simulated instructions
177    Counter numInst;
178    Counter startNumInst;
179    Stats::Scalar numInsts;
180    Counter numOp;
181    Counter startNumOp;
182    Stats::Scalar numOps;
183
184    void countInst()
185    {
186        if (!curStaticInst->isMicroop() || curStaticInst->isLastMicroop()) {
187            numInst++;
188            numInsts++;
189        }
190        numOp++;
191        numOps++;
192
193        system->totalNumInsts++;
194        thread->funcExeInst++;
195    }
196
197    virtual Counter totalInsts() const
198    {
199        return numInst - startNumInst;
200    }
201
202    virtual Counter totalOps() const
203    {
204        return numOp - startNumOp;
205    }
206
207    //number of integer alu accesses
208    Stats::Scalar numIntAluAccesses;
209
210    //number of float alu accesses
211    Stats::Scalar numFpAluAccesses;
212
213    //number of function calls/returns
214    Stats::Scalar numCallsReturns;
215
216    //conditional control instructions;
217    Stats::Scalar numCondCtrlInsts;
218
219    //number of int instructions
220    Stats::Scalar numIntInsts;
221
222    //number of float instructions
223    Stats::Scalar numFpInsts;
224
225    //number of integer register file accesses
226    Stats::Scalar numIntRegReads;
227    Stats::Scalar numIntRegWrites;
228
229    //number of float register file accesses
230    Stats::Scalar numFpRegReads;
231    Stats::Scalar numFpRegWrites;
232
233    // number of simulated memory references
234    Stats::Scalar numMemRefs;
235    Stats::Scalar numLoadInsts;
236    Stats::Scalar numStoreInsts;
237
238    // number of idle cycles
239    Stats::Formula numIdleCycles;
240
241    // number of busy cycles
242    Stats::Formula numBusyCycles;
243
244    // number of simulated loads
245    Counter numLoad;
246    Counter startNumLoad;
247
248    // number of idle cycles
249    Stats::Average notIdleFraction;
250    Stats::Formula idleFraction;
251
252    // number of cycles stalled for I-cache responses
253    Stats::Scalar icacheStallCycles;
254    Counter lastIcacheStall;
255
256    // number of cycles stalled for I-cache retries
257    Stats::Scalar icacheRetryCycles;
258    Counter lastIcacheRetry;
259
260    // number of cycles stalled for D-cache responses
261    Stats::Scalar dcacheStallCycles;
262    Counter lastDcacheStall;
263
264    // number of cycles stalled for D-cache retries
265    Stats::Scalar dcacheRetryCycles;
266    Counter lastDcacheRetry;
267
268    virtual void serialize(std::ostream &os);
269    virtual void unserialize(Checkpoint *cp, const std::string &section);
270
271    // These functions are only used in CPU models that split
272    // effective address computation from the actual memory access.
273    void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
274    Addr getEA()        { panic("BaseSimpleCPU::getEA() not implemented\n");
275        M5_DUMMY_RETURN}
276
277    // The register accessor methods provide the index of the
278    // instruction's operand (e.g., 0 or 1), not the architectural
279    // register index, to simplify the implementation of register
280    // renaming.  We find the architectural register index by indexing
281    // into the instruction's own operand index table.  Note that a
282    // raw pointer to the StaticInst is provided instead of a
283    // ref-counted StaticInstPtr to redice overhead.  This is fine as
284    // long as these methods don't copy the pointer into any long-term
285    // storage (which is pretty hard to imagine they would have reason
286    // to do).
287
288    uint64_t readIntRegOperand(const StaticInst *si, int idx)
289    {
290        numIntRegReads++;
291        return thread->readIntReg(si->srcRegIdx(idx));
292    }
293
294    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
295    {
296        numFpRegReads++;
297        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
298        return thread->readFloatReg(reg_idx);
299    }
300
301    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
302    {
303        numFpRegReads++;
304        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
305        return thread->readFloatRegBits(reg_idx);
306    }
307
308    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
309    {
310        numIntRegWrites++;
311        thread->setIntReg(si->destRegIdx(idx), val);
312    }
313
314    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
315    {
316        numFpRegWrites++;
317        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
318        thread->setFloatReg(reg_idx, val);
319    }
320
321    void setFloatRegOperandBits(const StaticInst *si, int idx,
322                                FloatRegBits val)
323    {
324        numFpRegWrites++;
325        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
326        thread->setFloatRegBits(reg_idx, val);
327    }
328
329    bool readPredicate() { return thread->readPredicate(); }
330    void setPredicate(bool val)
331    {
332        thread->setPredicate(val);
333        if (traceData) {
334            traceData->setPredicate(val);
335        }
336    }
337    TheISA::PCState pcState() { return thread->pcState(); }
338    void pcState(const TheISA::PCState &val) { thread->pcState(val); }
339    Addr instAddr() { return thread->instAddr(); }
340    Addr nextInstAddr() { return thread->nextInstAddr(); }
341    MicroPC microPC() { return thread->microPC(); }
342
343    MiscReg readMiscRegNoEffect(int misc_reg)
344    {
345        return thread->readMiscRegNoEffect(misc_reg);
346    }
347
348    MiscReg readMiscReg(int misc_reg)
349    {
350        numIntRegReads++;
351        return thread->readMiscReg(misc_reg);
352    }
353
354    void setMiscReg(int misc_reg, const MiscReg &val)
355    {
356        numIntRegWrites++;
357        return thread->setMiscReg(misc_reg, val);
358    }
359
360    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
361    {
362        numIntRegReads++;
363        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
364        return thread->readMiscReg(reg_idx);
365    }
366
367    void setMiscRegOperand(
368            const StaticInst *si, int idx, const MiscReg &val)
369    {
370        numIntRegWrites++;
371        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
372        return thread->setMiscReg(reg_idx, val);
373    }
374
375    void demapPage(Addr vaddr, uint64_t asn)
376    {
377        thread->demapPage(vaddr, asn);
378    }
379
380    void demapInstPage(Addr vaddr, uint64_t asn)
381    {
382        thread->demapInstPage(vaddr, asn);
383    }
384
385    void demapDataPage(Addr vaddr, uint64_t asn)
386    {
387        thread->demapDataPage(vaddr, asn);
388    }
389
390    unsigned readStCondFailures() {
391        return thread->readStCondFailures();
392    }
393
394    void setStCondFailures(unsigned sc_failures) {
395        thread->setStCondFailures(sc_failures);
396    }
397
398     MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID)
399     {
400        panic("Simple CPU models do not support multithreaded "
401              "register access.\n");
402     }
403
404     void setRegOtherThread(int regIdx, const MiscReg &val,
405                            ThreadID tid = InvalidThreadID)
406     {
407        panic("Simple CPU models do not support multithreaded "
408              "register access.\n");
409     }
410
411    //Fault CacheOp(uint8_t Op, Addr EA);
412
413    Fault hwrei() { return thread->hwrei(); }
414    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
415
416    void
417    syscall(int64_t callnum)
418    {
419        if (FullSystem)
420            panic("Syscall emulation isn't available in FS mode.\n");
421
422        thread->syscall(callnum);
423    }
424
425    bool misspeculating() { return thread->misspeculating(); }
426    ThreadContext *tcBase() { return tc; }
427};
428
429#endif // __CPU_SIMPLE_BASE_HH__
430