base.hh revision 8737
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 *          Dave Greene
42 *          Nathan Binkert
43 */
44
45#ifndef __CPU_SIMPLE_BASE_HH__
46#define __CPU_SIMPLE_BASE_HH__
47
48#include "arch/predecoder.hh"
49#include "base/statistics.hh"
50#include "config/full_system.hh"
51#include "config/the_isa.hh"
52#include "config/use_checker.hh"
53#include "cpu/base.hh"
54#include "cpu/decode.hh"
55#include "cpu/pc_event.hh"
56#include "cpu/simple_thread.hh"
57#include "cpu/static_inst.hh"
58#include "mem/packet.hh"
59#include "mem/port.hh"
60#include "mem/request.hh"
61#include "sim/eventq.hh"
62#include "sim/system.hh"
63
64#if USE_CHECKER
65#include "cpu/checker/cpu.hh"
66#endif
67
68// forward declarations
69#if FULL_SYSTEM
70class Processor;
71namespace TheISA
72{
73    class ITB;
74    class DTB;
75}
76class MemObject;
77
78#else
79
80class Process;
81
82#endif // FULL_SYSTEM
83
84namespace TheISA
85{
86    class Predecoder;
87}
88class ThreadContext;
89class Checkpoint;
90
91namespace Trace {
92    class InstRecord;
93}
94
95struct BaseSimpleCPUParams;
96
97
98class BaseSimpleCPU : public BaseCPU
99{
100  protected:
101    typedef TheISA::MiscReg MiscReg;
102    typedef TheISA::FloatReg FloatReg;
103    typedef TheISA::FloatRegBits FloatRegBits;
104
105  protected:
106    Trace::InstRecord *traceData;
107
108    inline void checkPcEventQueue() {
109        Addr oldpc, pc = thread->instAddr();
110        do {
111            oldpc = pc;
112            system->pcEventQueue.service(tc);
113            pc = thread->instAddr();
114        } while (oldpc != pc);
115    }
116
117  public:
118    void wakeup();
119
120    void zero_fill_64(Addr addr) {
121      static int warned = 0;
122      if (!warned) {
123        warn ("WH64 is not implemented");
124        warned = 1;
125      }
126    };
127
128  public:
129    BaseSimpleCPU(BaseSimpleCPUParams *params);
130    virtual ~BaseSimpleCPU();
131
132  public:
133    /** SimpleThread object, provides all the architectural state. */
134    SimpleThread *thread;
135
136    /** ThreadContext object, provides an interface for external
137     * objects to modify this thread's state.
138     */
139    ThreadContext *tc;
140
141#if USE_CHECKER
142    CheckerCPU *checker;
143#endif
144  protected:
145
146    enum Status {
147        Idle,
148        Running,
149        Faulting,
150        ITBWaitResponse,
151        IcacheRetry,
152        IcacheWaitResponse,
153        IcacheWaitSwitch,
154        DTBWaitResponse,
155        DcacheRetry,
156        DcacheWaitResponse,
157        DcacheWaitSwitch,
158        SwitchedOut
159    };
160
161    Status _status;
162
163  public:
164
165#if FULL_SYSTEM
166    Addr dbg_vtophys(Addr addr);
167
168    bool interval_stats;
169#endif
170
171    // current instruction
172    TheISA::MachInst inst;
173
174    // The predecoder
175    TheISA::Predecoder predecoder;
176
177    StaticInstPtr curStaticInst;
178    StaticInstPtr curMacroStaticInst;
179
180    //This is the offset from the current pc that fetch should be performed at
181    Addr fetchOffset;
182    //This flag says to stay at the current pc. This is useful for
183    //instructions which go beyond MachInst boundaries.
184    bool stayAtPC;
185
186    void checkForInterrupts();
187    void setupFetchRequest(Request *req);
188    void preExecute();
189    void postExecute();
190    void advancePC(Fault fault);
191
192    virtual void deallocateContext(ThreadID thread_num);
193    virtual void haltContext(ThreadID thread_num);
194
195    // statistics
196    virtual void regStats();
197    virtual void resetStats();
198
199    // number of simulated instructions
200    Counter numInst;
201    Counter startNumInst;
202    Stats::Scalar numInsts;
203
204    void countInst()
205    {
206        numInst++;
207        numInsts++;
208        system->totalNumInsts++;
209        thread->funcExeInst++;
210    }
211
212    virtual Counter totalInstructions() const
213    {
214        return numInst - startNumInst;
215    }
216
217    //number of integer alu accesses
218    Stats::Scalar numIntAluAccesses;
219
220    //number of float alu accesses
221    Stats::Scalar numFpAluAccesses;
222
223    //number of function calls/returns
224    Stats::Scalar numCallsReturns;
225
226    //conditional control instructions;
227    Stats::Scalar numCondCtrlInsts;
228
229    //number of int instructions
230    Stats::Scalar numIntInsts;
231
232    //number of float instructions
233    Stats::Scalar numFpInsts;
234
235    //number of integer register file accesses
236    Stats::Scalar numIntRegReads;
237    Stats::Scalar numIntRegWrites;
238
239    //number of float register file accesses
240    Stats::Scalar numFpRegReads;
241    Stats::Scalar numFpRegWrites;
242
243    // number of simulated memory references
244    Stats::Scalar numMemRefs;
245    Stats::Scalar numLoadInsts;
246    Stats::Scalar numStoreInsts;
247
248    // number of idle cycles
249    Stats::Formula numIdleCycles;
250
251    // number of busy cycles
252    Stats::Formula numBusyCycles;
253
254    // number of simulated loads
255    Counter numLoad;
256    Counter startNumLoad;
257
258    // number of idle cycles
259    Stats::Average notIdleFraction;
260    Stats::Formula idleFraction;
261
262    // number of cycles stalled for I-cache responses
263    Stats::Scalar icacheStallCycles;
264    Counter lastIcacheStall;
265
266    // number of cycles stalled for I-cache retries
267    Stats::Scalar icacheRetryCycles;
268    Counter lastIcacheRetry;
269
270    // number of cycles stalled for D-cache responses
271    Stats::Scalar dcacheStallCycles;
272    Counter lastDcacheStall;
273
274    // number of cycles stalled for D-cache retries
275    Stats::Scalar dcacheRetryCycles;
276    Counter lastDcacheRetry;
277
278    virtual void serialize(std::ostream &os);
279    virtual void unserialize(Checkpoint *cp, const std::string &section);
280
281    // These functions are only used in CPU models that split
282    // effective address computation from the actual memory access.
283    void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
284    Addr getEA()        { panic("BaseSimpleCPU::getEA() not implemented\n");
285        M5_DUMMY_RETURN}
286
287    // The register accessor methods provide the index of the
288    // instruction's operand (e.g., 0 or 1), not the architectural
289    // register index, to simplify the implementation of register
290    // renaming.  We find the architectural register index by indexing
291    // into the instruction's own operand index table.  Note that a
292    // raw pointer to the StaticInst is provided instead of a
293    // ref-counted StaticInstPtr to redice overhead.  This is fine as
294    // long as these methods don't copy the pointer into any long-term
295    // storage (which is pretty hard to imagine they would have reason
296    // to do).
297
298    uint64_t readIntRegOperand(const StaticInst *si, int idx)
299    {
300        numIntRegReads++;
301        return thread->readIntReg(si->srcRegIdx(idx));
302    }
303
304    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
305    {
306        numFpRegReads++;
307        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
308        return thread->readFloatReg(reg_idx);
309    }
310
311    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
312    {
313        numFpRegReads++;
314        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
315        return thread->readFloatRegBits(reg_idx);
316    }
317
318    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
319    {
320        numIntRegWrites++;
321        thread->setIntReg(si->destRegIdx(idx), val);
322    }
323
324    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
325    {
326        numFpRegWrites++;
327        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
328        thread->setFloatReg(reg_idx, val);
329    }
330
331    void setFloatRegOperandBits(const StaticInst *si, int idx,
332                                FloatRegBits val)
333    {
334        numFpRegWrites++;
335        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
336        thread->setFloatRegBits(reg_idx, val);
337    }
338
339    bool readPredicate() { return thread->readPredicate(); }
340    void setPredicate(bool val)
341    {
342        thread->setPredicate(val);
343        if (traceData) {
344            traceData->setPredicate(val);
345        }
346    }
347    TheISA::PCState pcState() { return thread->pcState(); }
348    void pcState(const TheISA::PCState &val) { thread->pcState(val); }
349    Addr instAddr() { return thread->instAddr(); }
350    Addr nextInstAddr() { return thread->nextInstAddr(); }
351    MicroPC microPC() { return thread->microPC(); }
352
353    MiscReg readMiscRegNoEffect(int misc_reg)
354    {
355        return thread->readMiscRegNoEffect(misc_reg);
356    }
357
358    MiscReg readMiscReg(int misc_reg)
359    {
360        numIntRegReads++;
361        return thread->readMiscReg(misc_reg);
362    }
363
364    void setMiscReg(int misc_reg, const MiscReg &val)
365    {
366        numIntRegWrites++;
367        return thread->setMiscReg(misc_reg, val);
368    }
369
370    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
371    {
372        numIntRegReads++;
373        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
374        return thread->readMiscReg(reg_idx);
375    }
376
377    void setMiscRegOperand(
378            const StaticInst *si, int idx, const MiscReg &val)
379    {
380        numIntRegWrites++;
381        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
382        return thread->setMiscReg(reg_idx, val);
383    }
384
385    void demapPage(Addr vaddr, uint64_t asn)
386    {
387        thread->demapPage(vaddr, asn);
388    }
389
390    void demapInstPage(Addr vaddr, uint64_t asn)
391    {
392        thread->demapInstPage(vaddr, asn);
393    }
394
395    void demapDataPage(Addr vaddr, uint64_t asn)
396    {
397        thread->demapDataPage(vaddr, asn);
398    }
399
400    unsigned readStCondFailures() {
401        return thread->readStCondFailures();
402    }
403
404    void setStCondFailures(unsigned sc_failures) {
405        thread->setStCondFailures(sc_failures);
406    }
407
408     MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID)
409     {
410        panic("Simple CPU models do not support multithreaded "
411              "register access.\n");
412     }
413
414     void setRegOtherThread(int regIdx, const MiscReg &val,
415                            ThreadID tid = InvalidThreadID)
416     {
417        panic("Simple CPU models do not support multithreaded "
418              "register access.\n");
419     }
420
421    //Fault CacheOp(uint8_t Op, Addr EA);
422
423#if FULL_SYSTEM
424    Fault hwrei() { return thread->hwrei(); }
425    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
426#endif
427
428    void
429    syscall(int64_t callnum)
430    {
431#if FULL_SYSTEM
432        panic("Syscall emulation isn't available in FS mode.\n");
433#else
434        thread->syscall(callnum);
435#endif
436    }
437
438    bool misspeculating() { return thread->misspeculating(); }
439    ThreadContext *tcBase() { return tc; }
440};
441
442#endif // __CPU_SIMPLE_BASE_HH__
443