base.hh revision 2387
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
30#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
31
32#include "base/statistics.hh"
33#include "config/full_system.hh"
34#include "cpu/base.hh"
35#include "cpu/exec_context.hh"
36#include "cpu/pc_event.hh"
37#include "cpu/sampler/sampler.hh"
38#include "cpu/static_inst.hh"
39#include "mem/packet.hh"
40#include "mem/port.hh"
41#include "mem/request.hh"
42#include "sim/eventq.hh"
43
44// forward declarations
45#if FULL_SYSTEM
46class Processor;
47class AlphaITB;
48class AlphaDTB;
49class PhysicalMemory;
50
51class RemoteGDB;
52class GDBListener;
53
54#else
55
56class Process;
57
58#endif // FULL_SYSTEM
59
60class MemInterface;
61class Checkpoint;
62
63namespace Trace {
64    class InstRecord;
65}
66
67class SimpleCPU : public BaseCPU
68{
69    class CpuPort : public Port
70    {
71
72        SimpleCPU *cpu;
73
74      public:
75
76        CpuPort(SimpleCPU *_cpu)
77            : cpu(_cpu)
78        { }
79
80      protected:
81
82        virtual bool recvTiming(Packet &pkt)
83        { return cpu->recvTiming(pkt); }
84
85        virtual Tick recvAtomic(Packet &pkt)
86        { return cpu->recvAtomic(pkt); }
87
88        virtual void recvFunctional(Packet &pkt)
89        { cpu->recvFunctional(pkt); }
90
91        virtual void recvStatusChange(Status status)
92        { cpu->recvStatusChange(status); }
93
94    };
95
96    CpuPort icache_port;
97    CpuPort dcache_port;
98
99    bool recvTiming(Packet &pkt);
100    Tick recvAtomic(Packet &pkt);
101    void recvFunctional(Packet &pkt);
102
103  public:
104    // main simulation loop (one cycle)
105    void tick();
106
107  private:
108    struct TickEvent : public Event
109    {
110        SimpleCPU *cpu;
111        int width;
112
113        TickEvent(SimpleCPU *c, int w);
114        void process();
115        const char *description();
116    };
117
118    TickEvent tickEvent;
119
120    /// Schedule tick event, regardless of its current state.
121    void scheduleTickEvent(int numCycles)
122    {
123        if (tickEvent.squashed())
124            tickEvent.reschedule(curTick + cycles(numCycles));
125        else if (!tickEvent.scheduled())
126            tickEvent.schedule(curTick + cycles(numCycles));
127    }
128
129    /// Unschedule tick event, regardless of its current state.
130    void unscheduleTickEvent()
131    {
132        if (tickEvent.scheduled())
133            tickEvent.squash();
134    }
135
136  private:
137    Trace::InstRecord *traceData;
138
139  public:
140    //
141    enum Status {
142        Running,
143        Idle,
144        IcacheMissStall,
145        IcacheMissComplete,
146        DcacheMissStall,
147        DcacheMissSwitch,
148        SwitchedOut
149    };
150
151  private:
152    Status _status;
153
154  public:
155    void post_interrupt(int int_num, int index);
156
157    void zero_fill_64(Addr addr) {
158      static int warned = 0;
159      if (!warned) {
160        warn ("WH64 is not implemented");
161        warned = 1;
162      }
163    };
164
165  public:
166    struct Params : public BaseCPU::Params
167    {
168        MemInterface *icache_interface;
169        MemInterface *dcache_interface;
170        int width;
171#if FULL_SYSTEM
172        AlphaITB *itb;
173        AlphaDTB *dtb;
174        FunctionalMemory *mem;
175#else
176        Process *process;
177#endif
178    };
179    SimpleCPU(Params *params);
180    virtual ~SimpleCPU();
181
182  public:
183    // execution context
184    ExecContext *xc;
185
186    void switchOut(Sampler *s);
187    void takeOverFrom(BaseCPU *oldCPU);
188
189#if FULL_SYSTEM
190    Addr dbg_vtophys(Addr addr);
191
192    bool interval_stats;
193#endif
194
195    // L1 instruction cache
196    MemInterface *icacheInterface;
197
198    // L1 data cache
199    MemInterface *dcacheInterface;
200
201    // current instruction
202    MachInst inst;
203
204    // Refcounted pointer to the one memory request.
205    MemReqPtr memReq;
206
207    // Pointer to the sampler that is telling us to switchover.
208    // Used to signal the completion of the pipe drain and schedule
209    // the next switchover
210    Sampler *sampler;
211
212    StaticInstPtr<TheISA> curStaticInst;
213
214    class CacheCompletionEvent : public Event
215    {
216      private:
217        SimpleCPU *cpu;
218
219      public:
220        CacheCompletionEvent(SimpleCPU *_cpu);
221
222        virtual void process();
223        virtual const char *description();
224    };
225
226    CacheCompletionEvent cacheCompletionEvent;
227
228    Status status() const { return _status; }
229
230    virtual void activateContext(int thread_num, int delay);
231    virtual void suspendContext(int thread_num);
232    virtual void deallocateContext(int thread_num);
233    virtual void haltContext(int thread_num);
234
235    // statistics
236    virtual void regStats();
237    virtual void resetStats();
238
239    // number of simulated instructions
240    Counter numInst;
241    Counter startNumInst;
242    Stats::Scalar<> numInsts;
243
244    virtual Counter totalInstructions() const
245    {
246        return numInst - startNumInst;
247    }
248
249    // number of simulated memory references
250    Stats::Scalar<> numMemRefs;
251
252    // number of simulated loads
253    Counter numLoad;
254    Counter startNumLoad;
255
256    // number of idle cycles
257    Stats::Average<> notIdleFraction;
258    Stats::Formula idleFraction;
259
260    // number of cycles stalled for I-cache misses
261    Stats::Scalar<> icacheStallCycles;
262    Counter lastIcacheStall;
263
264    // number of cycles stalled for D-cache misses
265    Stats::Scalar<> dcacheStallCycles;
266    Counter lastDcacheStall;
267
268    void processCacheCompletion();
269
270    virtual void serialize(std::ostream &os);
271    virtual void unserialize(Checkpoint *cp, const std::string &section);
272
273    template <class T>
274    Fault read(Addr addr, T &data, unsigned flags);
275
276    template <class T>
277    Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
278
279    // These functions are only used in CPU models that split
280    // effective address computation from the actual memory access.
281    void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
282    Addr getEA() 	{ panic("SimpleCPU::getEA() not implemented\n"); }
283
284    void prefetch(Addr addr, unsigned flags)
285    {
286        // need to do this...
287    }
288
289    void writeHint(Addr addr, int size, unsigned flags)
290    {
291        // need to do this...
292    }
293
294    Fault copySrcTranslate(Addr src);
295
296    Fault copy(Addr dest);
297
298    // The register accessor methods provide the index of the
299    // instruction's operand (e.g., 0 or 1), not the architectural
300    // register index, to simplify the implementation of register
301    // renaming.  We find the architectural register index by indexing
302    // into the instruction's own operand index table.  Note that a
303    // raw pointer to the StaticInst is provided instead of a
304    // ref-counted StaticInstPtr to redice overhead.  This is fine as
305    // long as these methods don't copy the pointer into any long-term
306    // storage (which is pretty hard to imagine they would have reason
307    // to do).
308
309    uint64_t readIntReg(const StaticInst<TheISA> *si, int idx)
310    {
311        return xc->readIntReg(si->srcRegIdx(idx));
312    }
313
314    float readFloatRegSingle(const StaticInst<TheISA> *si, int idx)
315    {
316        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
317        return xc->readFloatRegSingle(reg_idx);
318    }
319
320    double readFloatRegDouble(const StaticInst<TheISA> *si, int idx)
321    {
322        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
323        return xc->readFloatRegDouble(reg_idx);
324    }
325
326    uint64_t readFloatRegInt(const StaticInst<TheISA> *si, int idx)
327    {
328        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
329        return xc->readFloatRegInt(reg_idx);
330    }
331
332    void setIntReg(const StaticInst<TheISA> *si, int idx, uint64_t val)
333    {
334        xc->setIntReg(si->destRegIdx(idx), val);
335    }
336
337    void setFloatRegSingle(const StaticInst<TheISA> *si, int idx, float val)
338    {
339        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
340        xc->setFloatRegSingle(reg_idx, val);
341    }
342
343    void setFloatRegDouble(const StaticInst<TheISA> *si, int idx, double val)
344    {
345        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
346        xc->setFloatRegDouble(reg_idx, val);
347    }
348
349    void setFloatRegInt(const StaticInst<TheISA> *si, int idx, uint64_t val)
350    {
351        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
352        xc->setFloatRegInt(reg_idx, val);
353    }
354
355    uint64_t readPC() { return xc->readPC(); }
356    void setNextPC(uint64_t val) { xc->setNextPC(val); }
357
358    uint64_t readUniq() { return xc->readUniq(); }
359    void setUniq(uint64_t val) { xc->setUniq(val); }
360
361    uint64_t readFpcr() { return xc->readFpcr(); }
362    void setFpcr(uint64_t val) { xc->setFpcr(val); }
363
364#if FULL_SYSTEM
365    uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); }
366    Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
367    Fault hwrei() { return xc->hwrei(); }
368    int readIntrFlag() { return xc->readIntrFlag(); }
369    void setIntrFlag(int val) { xc->setIntrFlag(val); }
370    bool inPalMode() { return xc->inPalMode(); }
371    void ev5_trap(Fault fault) { xc->ev5_trap(fault); }
372    bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
373#else
374    void syscall() { xc->syscall(); }
375#endif
376
377    bool misspeculating() { return xc->misspeculating(); }
378    ExecContext *xcBase() { return xc; }
379};
380
381#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
382